Discrete Comput Geom 11:433~52 (1994) GeometryDiscrete & Computatioeat 1994 Springer-Verlag New York Inc. Algorithms for Ham-Sandwich Cuts* Chi-Yuan Lo, 1 J. Matougek, 2 and W. Steiger 3 1 AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974, USA 2 Charles University, Malostransk6 nfim, 25, 118 00 Praha 1, Czech Republic and Free University Berlin, Arnimallee 2-6, D-14195 Berlin, Germany matousek@cspguk 11.bitnet a Rutgers University, Piscataway, NJ 08903, USA
[email protected] Abstract. Given disjoint sets PI, P2 ..... Pd in R a with n points in total, a ham- sandwich cut is a hyperplane that simultaneously bisects the Pi. We present algorithms for finding ham-sandwich cuts in every dimension d > 1. When d = 2, the algorithm is optimal, having complexity O(n). For dimension d > 2, the bound on the running time is proportional to the worst-case time needed for constructing a level in an arrangement of n hyperplanes in dimension d - 1. This, in turn, is related to the number of k-sets in R d- ~. With the current estimates, we get complexity close to O(n 3/2) for d = 3, roughly O(n s/3) for d = 4, and O(nd- 1 -atd~) for some a(d) > 0 (going to zero as d increases) for larger d. We also give a linear-time algorithm for ham-sandwich cuts in R 3 when the three sets are suitably separated. 1. Introduction and Summary A hyperplane h is said to bisect a set P of n points in R d if no more than n/2 points of P lie in either of the open half-spaces defined by h.