Genetic Differentiation Among Geographic Groups of Three Honeybee

Total Page:16

File Type:pdf, Size:1020Kb

Genetic Differentiation Among Geographic Groups of Three Honeybee Article Genetic differentiation among geographic groups of three honeybee species, Apis cerana, A. koschevnikovi and A. dorsata, in Borneo Hiroyuki Tanaka1*, Takeshi Suka2, David W. Roubik3 and Maryati Mohamed4 1 Center for Ecological Research, Kyoto University, Kamitanokami, Otsu, Shiga 520-2113, Japan 2 Nagano Nature Conservation Research Institute, 2054-120 Kitago, Nagano 381-0075, Japan 3 Smithsonian Tropical Research Institute, APDO 2072, Balboa, Panama 4 Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Locked Bag 2073, 88999 Kota Kinabalu, Sabah, Malaysia Abstract We sequenced the mitochondrial cytochrome oxidase 1 (COl) gene of three honeybee species of Borneo, Apis cerana, A. koschevnikovi and A. dorsata, and carried out phylogenetic analyses considering geographic genetic variation. We also compared the sequence divergence-geographic distance relationships among the three species. Estimated genetic differentiation was an order of magnitude larger in A. koschevnikovi than in A. cerana and A. dorsata. Migratory nesting behavior and cold tolerance of each honeybee, and the paleoclimate of the Southeast Asian tropics, are discussed as factors that produced these characteristics for mitochondrial genetic markers, and conservation priorities are recommended. Key words: Apis, Borneo, cytochrome oxidase 1, genetic differentiation, migratory nesting behavior, paleoclimate Introduction to understanding evolution of plant-pollinator interaction but also present essential knowledge to Of the nine species and/or candidate of species conservation planning of tropical forests (see Lee et recognized at present in honeybees, genus Apis (Engel, al., 2000; Rincon et al., 1999). We suggest that genetic 1999; Otis, 1996), five species inhabit Borneo; the dwarf variation within plant-pollinator assemblages clarifies honeybee (A. andreniformis), the giant honeybee (A. not only phylogenetic concepts associated with dorsata), the Asian honeybee (A. c era no), the Saban biological species, but may also indicate evolutionary honeybee (A. koschevnikovi) and the Bornean montane potential and adaptive diversity in mutualisms honeybee (A. nuluensis). The dwarf honeybees and the (Thompson, 1994). giant honeybees make a single-comb nest in the open Smith (1991) demonstrated that mitochondrial DNA (Ruttner, 1988), whereas the others are cavity-nesting (mtDNA) was a powerful tool to estimate genetic honeybees which construct multiple parallel combs in differentiation and geographic variations within species hollows (Ruttner, 1988; Tingek et al., 1988, 1996). of Apis. For A. mellifera, the western cavity-nesting Recent studies reveal that eusocial bees such as honeybee, intensive studies have been carried out to honeybees and stingless bees (Apini and Meliponini, clarify the phylogeny of subspecies or geographic races Apidae) are important as pollinators for many tropical by employing the C01-C02 region (the intergenic non- plant species (e.g., Momose et al., 1998). Hence, coding region between cytochrome oxidases 1 and 2) detailed geographic studies on phylogenetic (Cornuet and Garnery, 1991; Franck et al., 1998; relationships and genetic divergence among honeybees Garnery et al., 1992) and NADH dehydrogenase 2 in the Southeast Asian tropics will not only contribute (Arias and Sheppard, 1996) of mtDNA. Geographic * Present address: Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan relationships of A. cerana in its range (Deowanish et localities shown in Fig. 1. In Crocker Range Park, al., 1996; Smith and Hagen, 1996; Smith et al., 2000) Sabah, Malaysia, A. cerana and A. koschevnikovi were and population structure of this species in Thailand collected at Mahua camp and A. dorsata was caught at (Sihanuntavong et al., 1999) and in the Philippines (De Ulu Senagang in a field survey as a part of the La Rua et al., 2000) were also investigated by using the CROCKER XPDC '99 organized by The Sabah Parks, C01-C02 region. However, such a genetic study has Universiti Malaysia Sabah and Universiti Malaysia been rarely conducted for other Apis since Smith's Sarawak. Both Mahua and Ulu Senagang are located (1991) work, and never for more than one co-occurring on the eastern side of the mountain range. The species. Tanaka et al. (2001) suggested that specimens of A. dorsata were also collected in Bandar mitochondrial cytochrome oxidase 1 (COl) is useful Sri Aman, Sarawak, Malaysia. After the collection, bee for intra-specific genetic studies in Apis in the previous samples were fixed with 99.5 % ethanol until DNA work that examined the phylogenetic position of A. extraction. Samples examined in a previous study nuluensis of northern Borneo in genus Apis. (Tanaka et al., 2001) were also included in phylogenetic In the present study, we sequence the COl gene of analyses (see below). Those specimens comprise A. three honeybee species living in Borneo (A. cerana, A. cerana from Kinabalu Park (Sabah), Brunei, Taiwan, koschevnikovi and A. dorsata) and carry out Thailand, Russia, Japan, South Korea, A. nuluensis from phylogenetic analyses in order to examine genetic Mt. Kinabalu, A. koschevnikovi from Brunei, Lambir relationships among geographic groups of each species. (Sarawak), A. mellifera from Uzbekistan, and A. dorsata Then we compare the sequence divergence-geographic from Lambir (Table 1). distance relationships in Borneo among the three Extraction of total DNA was done according to the species. Finally, we discuss possible roles of different method of Hillis et al. (1996). A partial sequence of factors producing geographical genetic divergences the CO 1 was amplified by polymerase chain reaction among those species. (PCR). The primers used in amplification and the condition of PCR were described elsewhere (Tanaka et Materials and Methods al., 2001). Amplified fragments were purified by a QIAquick PCR purification kit (QIAGEN) and then Collection of bees and experimental procedures used in sequencing reaction with a Dye terminator cycle Bee samples of Borneo were collected from sequencing kit (Applied Biosystems). The DNA Fig. 1. Map showing the sampling sites of Apis specimens in Borneo. Table 1. List of Apis samples used in phylogenetic analyses in the present study sequencing was carried out with an auto-sequencer Results (Applied Biosystems 373 DNA sequencer). Voucher specimens are at the Center for Ecological Research, Phylogenetic analyses Kyoto University. Sequence data obtained here have been entered in Gen Bank (Table 1). The common CO 1 haplotypes were Phylogenetic analyses shared between A. cerana of Kinabalu 1 (sample No. 1 The honeybee sequences listed in Table 1 were collected at Kinabalu Park) and of Brunei and also aligned with an outgroup sequence of a stingless bee between A. cerana of Japan and of South Korea, (Trigona amalthea; Genbank accession No. AF214669, respectively. Therefore, a total of 20 different honeybee Tanaka et al., 2001) using CLUSTAL W (Thompson et sequences were analyzed. Of the 1041 nucleotide al., 1994). The 1041 base-pair sequences were analyzed positions, 277 characters were variable, which included by maximum parsimony (MP) and neighbor-joining 180 parsimony-informative characters. Figures 2 and (NJ) methods using PAUP*4.0 beta version (Swofford, 3 present phylogenetic relationships among Apis species 1999). In the MP analysis, a character-weighting and geographic groups of A. cerana, A. koschevnikovi method was performed with transversions weighted 5 and A. dorsata obtained by the weighted MP and NJ times as much as transitions, according to our previous analyses, respectively. The topologies of both study (Tanaka et al., 2001). The heuristic search option phylogenetic trees were nearly congruent with each with the simple sequence addition and TBR branch- other. The species relationships depicted in these trees swapping algorithm were selected. For the NJ analysis, coincided with the Apis phylogeny proposed by Engel evolutionary distance was measured by a general time- (1998) and Engel and Schultz (1997), also with that reversible model (Yang, 1994). To evaluate the reconstructed using morphological data (Alexander, confidence of internal branches, a bootstrap test was 1991 a, 1991b), except for including A. nuluensis (sister implemented with 1,000 replicates in both analyses. to A. cerana) and excluding dwarf honeybees (basal to To estimate the degree of genetic differentiation A. dorsata). among geographic groups of A. cerana, A. In the phylogenetic trees, A. cerana from Crocker koschevnikovi and A. dorsata, sequence di vergence was Range was placed in a cluster of Bornean group. Apis calculated using the Tamura and Nei (1993) distance, koschevnikovi from Crocker Range was connected to based on pairwise comparisons of COl haplotypes. the cluster consisting of Lambir and Brunei but diverged from each, as indicated by the deep branching pattern in the NJ tree (Fig. 3). For A. dorsata, two slightly Fig. 2. Phylogenetic relationships of Apis species and the Fig. 3. The neighbor-joining tree showing phylogenetic geographic groups of A. cerana, A. koschevnikovi and A. dorsata relationships of Apis species and the geographic groups of A. studied. The tree is strict consensus of 3 equally parsimonious cerana, A. koschevnikovi and A. dorsata studied. The trees obtained by weighted maximum parsimony analysis with evolutionary distance was measured by a general time-reversible transversions weighted five times as much as transitions. model (Yang, 1994). Numbers above the
Recommended publications
  • Geographic Variation in the Japanese Islands of Apis Cerana Japonica and in A
    Apidologie 38 (2007) 335–340 Available online at: c INRA/DIB-AGIB/ EDP Sciences, 2007 www.apidologie.org DOI: 10.1051/apido:2007018 Original article Geographic variation in the Japanese islands of Apis cerana japonica and in A. cerana populations bordering its geographic range* Jun-ichi Ta, Tadaharu Ya, Toshiyuki Tb, Shin’ichi Ac, Kun S. Wd, Sureerat De, Randall Hf,JunNa, Mitsuo M a a Honeybee Science Research Center, Research Institute, Tamagawa University, Machida, Tokyo, 194-8610, Japan b Laboratory of Entomology, Department of Agriculture, Graduate School of Agriculture, Tamagawa University, Machida, Tokyo, 194-8610, Japan c Laboratory of Systematic Entomology, Department of Ecology and Systematics, Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan d Institute of Korea Beekeeping Science College of Agriculture and Life Sciences, Seoul National University e Bee Biology Research Unit, Department of Biology, Chulalongkom University, Korea, Bangkok 10330, Thailand f Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa Received 31 January 2006 – Revised 15 February 2007 – Accepted 15 February 2007 Abstract – Genetic variation among Apis cerana japonica isolates from Japan and Apis cerana isolates from the neighboring areas of Russia, South Korea, and Taiwan was determined from DNA sequences of the mitochondrial DNA non-coding region (between tRNA leu and COII). Three haplotypes were identified among 470 colonies samples at 47 Japanese sites. All isolates from the main Japanese Islands of Honshu, Shikoku, and Kyushu belonged to a single haplotype, a previously reported Japan 1 haplotype. Two new haplotypes were found on the far southern Japanese islands of Amami-Oshima and Tsushima (the Japan 3 and Japan 4 haplotypes, respectively).
    [Show full text]
  • Of Varroa Species Infesting Honey Bees
    Invited review article Identification and comparison of Varroa species infesting honey bees Lilia I. de Guzman Thomas E. Rinderer ARS, USDA, Honey Bee Breeding, Genetics and Physiology Laboratory, 1157 Ben Hur Road, Baton Rouge, LA 70820, USA (Received 26 July 1998; accepted 21 February 1999) Abstract - Varroa jacobsoni Oudemans, V. underwoodi Delfinado-Baker and Aggarwal and V. rindereri de Guzman and Delfinado-Baker are obligatory parasites of honey bees. The key mor- phological characters, host range and geographic distribution of these three species are reviewed. The occurrence of different genotypes of V. jacobsoni, their geographic distribution and virulence on honey bee hosts are discussed. © Inra/DIB/AGIB/Elsevier, Paris Varroa jacobsoni / Varroa underwoodi / Varroa rindereri / morphology / genotype / host range / distribution 1. INTRODUCTION covery of still more species of Varroa. This review compares the key morphological characters, host and distribution of There are three known species of Var- range the three known Varroa In addi- roa (Acari: Varroidae) parasitizing honey species. bees (Apis spp.), namely: Varroa jacobsoni tion, the genetic diversity of V. jacobsoni Oudemans 1904, V. underwoodi Delfinado- and its possible correlation to the virulence Baker and Aggarwal 1987 and V. rindereri of mites on infested hosts are also discussed. de Guzman and Delfinado-Baker 1996. The recent identification of V. rindereri from the cavity dwelling honey bee, Apis kosche- 2. VARROA JACOBSONI vnikovi Buttel-Reepen, in Borneo and the identification of different varieties of The general morphology and chaetotaxy V. jacobsoni indicate the need for further of V. jacobsoni, V. rindereri and V. under- investigations which may lead to the dis- woodi are very similar.
    [Show full text]
  • Identification of Varroa Mites
    Identification of Varroa mites (Acari: Varroidae) infesting Apis cerana and Apis mellifera in China Ting Zhou, Denis Anderson, Zachary Huang, Shuangxiu Huang, Jun Yao, Tan Ken, Qingwen Zhang To cite this version: Ting Zhou, Denis Anderson, Zachary Huang, Shuangxiu Huang, Jun Yao, et al.. Identification of Var- roa mites (Acari: Varroidae) infesting Apis cerana and Apis mellifera in China. Apidologie, Springer Verlag, 2004, 35 (6), pp.645-654. 10.1051/apido:2004059. hal-00891859 HAL Id: hal-00891859 https://hal.archives-ouvertes.fr/hal-00891859 Submitted on 1 Jan 2004 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie 35 (2004) 645–654 © INRA/DIB-AGIB/ EDP Sciences, 2004 645 DOI: 10.1051/apido:2004059 Original article Identification of Varroa mites (Acari: Varroidae) infesting Apis cerana and Apis mellifera in China Ting ZHOUa,c,d, Denis L. ANDERSONb, Zachary Y. HUANGa,c*, Shuangxiu HUANGc, Jun YAOc, Tan KENe, Qingwen ZHANGa a Department of Entomology, China Agricultural University, Beijing 100094, China b CSIRO Entomology, PO Box 1700, Canberra, ACT 2601, Australia c Department of Entomology, Michigan State University, East Lansing, MI 48824, USA d Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China e Eastern Bee Research Institute, Yunnan Agricultural University, Heilongtan, 650201, Kunming, China (Received 8 September 2003; revised 19 April 2004; accepted 22 April 2004) Abstract – A total of 24 Varroa mite samples were collected from A.
    [Show full text]
  • Of the Red Honeybee Apis Koschevnikovi Von Buttel-Reepen, 1906 in Sabah, Borneo
    Original article Expression of body and hair color in three adult castes of the red honeybee Apis koschevnikovi von Buttel-Reepen, 1906 in Sabah, Borneo J Woyke Bee Division, Agricultural University - SGGW, 166 Nowoursynowska, 02-787 Warsaw, Poland (Received 10 December 1996; accepted 15 July 1997) Summary — Apis koschevnikovi bees were collected in Sabah, Borneo. A total of 303 workers from ten colonies were measured in 1995, and 500 workers, 200 drones and ten queens were inves- tigated in 1996. Measurements were made of the width of the dark bands on terga II, III and IV. Drawings of the different body color patterns were made. The workers are light orange with dark brown bands on abdominal terga. Body color patterns were assigned to five groups. The successive groups are gradually darker. Queens and drones have different color patterns and are darker than the work- ers. The upper part of the head and the scutum are black, and the dark brown bands on terga are similar in all three bee castes. However, the light colored body parts such as clypeus, scutellum, and the light abdominal bands are light orange or orange in workers and light brown or reddish brown in the sexuals: queens and drones. The major gene responsible for body color in A koschevnikovi is proposed to be designated as Ko. Hairs covering the thoraces of workers, queens and drones are light orange, gold and gray, respectively. The gene responsible for the color of these hairs is proposed to be designated as Kh. Apis koschevnikovi / honeybee body color / color differences in castes INTRODUCTION Earlier papers concerning the heredity of body color in honeybees were reviewed by Body color is a striking character of any Woyke (1977) and Tucker (1986).
    [Show full text]
  • Parasites, Pathogens, and Pests of Honeybees in Asia Panuwan Chantawannakul, Lilia I
    Parasites, pathogens, and pests of honeybees in Asia Panuwan Chantawannakul, Lilia I. de Guzman, Jilian Li, Geoffrey R. Williams To cite this version: Panuwan Chantawannakul, Lilia I. de Guzman, Jilian Li, Geoffrey R. Williams. Parasites, pathogens, and pests of honeybees in Asia. Apidologie, Springer Verlag, 2016, 47 (3), pp.301-324. 10.1007/s13592-015-0407-5. hal-01532338 HAL Id: hal-01532338 https://hal.archives-ouvertes.fr/hal-01532338 Submitted on 2 Jun 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie (2016) 47:301–324 Review article * INRA, DIB and Springer-Verlag France, 2015 DOI: 10.1007/s13592-015-0407-5 Parasites, pathogens, and pests of honeybees in Asia 1 2 3 4,5 Panuwan CHANTAWANNAKUL , Lilia I. de GUZMAN , Jilian LI , Geoffrey R. WILLIAMS 1Bee Protection Laboratory (BeeP), Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand 2Honey Bee Breeding, Genetics and Physiology Laboratory, USDA-ARS, Baton Rouge, LA 70820, USA 3Key Laboratory of Pollinating Insect Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China 4Institute of Bee Health, Vetsuisse Faculty, University of Bern, 3003, Bern, Switzerland 5Agroscope, Swiss Bee Research Centre, 3003, Bern, Switzerland Received 20 May 2015 – Revised 7 October 2015 – Accepted 26 October 2015 Abstract – Asia is home to at least nine honeybee species, including the introduced Apis mellifera .Inadditionto A.
    [Show full text]
  • Population Structure and Classification of Apis Cerana Sarah E
    Population structure and classification of Apis cerana Sarah E. Radloff, Colleen Hepburn, H. Randall Hepburn, Stefan Fuchs, Soesilawati Hadisoesilo, Ken Tan, Michael S. Engel, Viktor Kuznetsov To cite this version: Sarah E. Radloff, Colleen Hepburn, H. Randall Hepburn, Stefan Fuchs, Soesilawati Hadisoesilo, et al.. Population structure and classification of Apis cerana. Apidologie, Springer Verlag, 2010, 41(6), 10.1051/apido/2010008. hal-00892035 HAL Id: hal-00892035 https://hal.archives-ouvertes.fr/hal-00892035 Submitted on 1 Jan 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie 41 (2010) 589–601 Available online at: c INRA/DIB-AGIB/EDP Sciences, 2010 www.apidologie.org DOI: 10.1051/apido/2010008 Original article Population structure and classification of Apis cerana* Sarah E. Radloff1∗, Colleen Hepburn1,H.RandallHepburn2,StefanFuchs3, Soesilawati Hadisoesilo4,KenTan5, Michael S. Engel6,ViktorKuznetsov** 1 Department of Statistics, Rhodes University, Grahamstown 6140, South Africa 2 Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa 3 Institut für Bienenkunde, Fachbereich Biowissenschaften, Goethe-Universität Frankfurt am Main, Karl-von- Frisch-Weg 2, 61440 Oberursel, Germany 4 Forest and Nature Conservation Research and Development Centre, Jl.
    [Show full text]
  • Varroa Destructor: a Complex Parasite, Crippling Honeybees Worldwide
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 February 2020 doi:10.20944/preprints202002.0374.v1 Varroa destructor: A complex parasite, crippling honeybees worldwide Kirsten S. Traynor,1* Fanny Mondet,2 Joachim R. de Miranda,3 Maeva Techer,4 Vienna Kowallik,4 Melissa A. Y. Oddie,3 Panuwan Chantawannakul,5 and Alison McAfee6 1. Global Biosocial Complexity Institute, Arizona State University, Tempe, AZ, USA 2. INRAE, Abeilles et Environnement, Avignon 84914, France 3. Department of Ecology, Swedish University of Agricultural Sciences, Uppsala 750 07, Sweden 4. Ecology and Evolution Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, 904-0495, Japan 5. Environmental Science Research Center (ESRC), Faculty of Science, Chiang Mai University, 50200, Chaing Mai, Thailand 6. Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA *Correspondence: [email protected] (K.S. Traynor). Keywords Host-parasite, honey bee, varroa, virus, mite control Abstract The parasitic mite, Varroa destructor, has shaken the beekeeping and pollination industries since its spread from its native host, the Asian honeybee (Apis cerana), to the naïve European honeybee (A. mellifera) used commercially for pollination and honey production around the globe. Varroa is the greatest threat to honeybee health. Worrying observations include increasing acaricide resistance in the varroa population and sinking economic treatment thresholds, suggesting that the mites or their vectored viruses are becoming more virulent. Highly infested weak colonies, popularly dubbed “mite bombs”, facilitate mite dispersal and disease transmission to stronger and healthier colonies. Here, we review recent developments 1 © 2020 by the author(s). Distributed under a Creative Commons CC BY license.
    [Show full text]
  • Position of the Red Honey Bee, Apis Koschevnikovi (Buttel-Reepen 1906), Within the Genus Apis F
    Position of the Red Honey bee, Apis koschevnikovi (Buttel-Reepen 1906), within the Genus Apis F. Ruttner, D. Kauhausen, N. Koeniger To cite this version: F. Ruttner, D. Kauhausen, N. Koeniger. Position of the Red Honey bee, Apis koschevnikovi (Buttel- Reepen 1906), within the Genus Apis. Apidologie, Springer Verlag, 1989, 20 (5), pp.395-404. hal- 00890794 HAL Id: hal-00890794 https://hal.archives-ouvertes.fr/hal-00890794 Submitted on 1 Jan 1989 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Original article Position of the Red Honey bee, Apis koschevnikovi (Buttel-Reepen 1906), within the Genus Apis F. Ruttner D.2 Kauhausen N. Koeniger 1 Universität Frankfurt, Institut für Bienenkunde (Polytechn. Gesellschaft), D-6370 Oberursel, FRG 2 Bayerische Landesanstalt für Bienenzucht, D-8520 Erlangen, FRG (received 19 December 1989, accepted 29 March 1989) Summary — The "Red Bee" of Borneo, described in 1988 by Koeniger et al. and Tingek et al. as a separate species, was first named by H. v. Buttel-Reepen in 1906. The correct name, therefore, is Apis koschevnikovi Buttel-Reepen 1906 and not Apis vechti Maa 1953. By multivariate analysis (PCA and DA) Apis koschevnikovi can clearly be separated from the 2 other cavity-nesting Apis spe- cies.
    [Show full text]
  • Morphometric Analysis and Biogeography of Apis Koschevnikovi Enderlein (1906) S
    Morphometric analysis and biogeography of Apis koschevnikovi Enderlein (1906) S. Hadisoesilo, Rika Raffiudin, Wirian Susanti, Tri Atmowidi, Colleen Hepburn, Sarah E. Radloff, Stefan Fuchs, H. Randall Hepburn To cite this version: S. Hadisoesilo, Rika Raffiudin, Wirian Susanti, Tri Atmowidi, Colleen Hepburn, et al.. Morphometric analysis and biogeography of Apis koschevnikovi Enderlein (1906). Apidologie, Springer Verlag, 2008, 39 (5), pp.495-503. hal-00891922 HAL Id: hal-00891922 https://hal.archives-ouvertes.fr/hal-00891922 Submitted on 1 Jan 2008 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie 39 (2008) 495–503 Available online at: c INRA/DIB-AGIB/ EDP Sciences, 2008 www.apidologie.org DOI: 10.1051/apido:2008029 Original article Morphometric analysis and biogeography of Apis koschevnikovi Enderlein (1906)* S. Hadisoesilo1,RikaRaffiudin2, Wirian Susanti2,TriAtmowidi2, Colleen Hepburn4, Sarah E. Radloff4,StefanFuchs5, H. Randall Hepburn3 1 Forest and Nature Conservation Res. and Dev. Centre, Jl. Gunung Batu, Bogor, Indonesia 2 Department of Biology, Fac. of Mathematics and Natural Sciences, Bogor Agricultural University, Jalan Raya Pajajaran, Bogor, Indonesia 3 Department of Zoology and Entomology, Rhodes University, Grahamstown, South Africa 4 Department of Statistics, Rhodes University, Grahamstown, South Africa 5 Institut fuer Bienenkunde (Polytechnische Gesellschaft), Fachbereich Biologie der J.
    [Show full text]
  • Interspecific Rearing and Acceptance and Apis Koschevnikovi Buttel
    Original article Interspecific rearing and acceptance of queens between Apis cerana Fabricius, 1793 and Apis koschevnikovi Buttel-Reepen, 1906 N Koeniger G Koeniger S Tingek A Kelitu 1 Institut für Bienenkunde (Polytechnische Gesellschaft), Fachbereich Biologie der JW Goethe-Universität Frankfurt aM, Karl-von-Frisch-Weg 2, 61440 Oberursel, Germany; 2 Agricultural Research Station, Lagud Seberang PO Box 197, 89908 Tenom, Sabah, Malaysia (Received 19 July 1996; accepted 4 October 1996) Summary — Artificial queen cells with grafted young worker larvae of Apis cerana and Apis koschevnikovi were simultaneously introduced into queenless colonies of either A cerana and A koschevnikovi. All colonies preferred to rear conspecific larvae. The degree of this larval preference was different: A cerana colonies were more selective than A koschevnikovi colonies against alien larvae. In contrast, the A koschevnikovi colonies destroyed most of the introduced mature A cerana queen cells and killed all the queens that were able to emerge. A long term acceptance of alien queens occurred in A cerana colonies. The A koschevnikovi queens performed successful mating flights from A cerana colonies and the time of mating flights of these queens did not differ from A koschevnikovi queens fly- ing from conspecific colonies. The mated A koschevnikovi queens laid eggs and the emerged bees were successfully reared by the A cerana worker bees. The A cerana host colonies were gradually transformed into A koschevnikovi colonies. Apis cerana / Apis koschevnikovi
    [Show full text]
  • Population Structure and Classification of Apis Cerana
    Apidologie 41 (2010) 589–601 Available online at: c INRA/DIB-AGIB/EDP Sciences, 2010 www.apidologie.org DOI: 10.1051/apido/2010008 Original article Population structure and classification of Apis cerana* Sarah E. Radloff1∗, Colleen Hepburn1,H.RandallHepburn2,StefanFuchs3, Soesilawati Hadisoesilo4,KenTan5, Michael S. Engel6,ViktorKuznetsov** 1 Department of Statistics, Rhodes University, Grahamstown 6140, South Africa 2 Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa 3 Institut für Bienenkunde, Fachbereich Biowissenschaften, Goethe-Universität Frankfurt am Main, Karl-von- Frisch-Weg 2, 61440 Oberursel, Germany 4 Forest and Nature Conservation Research and Development Centre, Jl. Gunung Batu, Bogor, Indonesia 5 Eastern Bee Research Institute of Yunnan Agricultural University, Kunming, Yunnan, China 6 Division of Entomology, Natural History Museum and Biodiversity Research Center and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas 66045-7523, USA Received 1 December 2008 – Revised 15 October 2009 – Accepted 24 November 2009 Abstract – Multivariate morphometric analyses of Apis cerana Fabricius, 1793 across its full geographical range were performed. Principal components plots did not reveal distinct morphoclusters. Further substruc- turing of the principal component plots could not initially be derived but only by introducing local labelling did it reveal six main morphoclusters. We apply geographically based common epithets to the morpho- clusters and designate them as: as “Northern cerana”, “Himalayan cerana” “Indian plains cerana” “Indo- chinese cerana” “Philippine cerana” and “Indo-Malayan cerana”. A. cerana naturally occurs in climatic zones ranging from rainforest, savanna, steppe, grasslands and deciduous forest to taiga. The distributions of the morphoclusters are related to these physiographic and climatic factors.
    [Show full text]
  • The Morphometric Position of Apis Nuluensis Tingek, Koeniger and Koeniger, 1996 Within Cavity-Nesting Honey Bees S Fuchs, N Koeniger, S Tingek
    The morphometric position of Apis nuluensis Tingek, Koeniger and Koeniger, 1996 within cavity-nesting honey bees S Fuchs, N Koeniger, S Tingek To cite this version: S Fuchs, N Koeniger, S Tingek. The morphometric position of Apis nuluensis Tingek, Koeniger and Koeniger, 1996 within cavity-nesting honey bees. Apidologie, Springer Verlag, 1996, 27 (5), pp.397- 405. hal-00891383 HAL Id: hal-00891383 https://hal.archives-ouvertes.fr/hal-00891383 Submitted on 1 Jan 1996 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Original article The morphometric position of Apis nuluensis Tingek, Koeniger and Koeniger, 1996 within cavity-nesting honey bees S Fuchs N Koeniger S Tingek 1 Institut für Bienenkunde (Polytechnische Gesellschaft), Fachbereich Biologie der JW Goethe-Universität Frankfurt aM, Karl-von-Frisch-Weg 2, 61440 Oberursel, Germany; 2 Agricultural Research Station, Lagud Seberang, PO Box 197, 89908 Tenom, Sabah, Malaysia (Received 3 August 1996; accepted 8 November 1996) Summary — Morphological features of nine samples of Apis nuluensis collected at the region of Sabah, Borneo, Malaysia in mountainous areas ranging from 1 524 to 3 400 m were analysed using 38 characteristics. Seventeen measurements of sizes, ten of coloration and hairyness, and 11 of wing venation angles were measured according to the methods of Ruttner et al (1978).
    [Show full text]