A Preliminary Comparative Anatomical Study of the Mesothoracic Aorta of the Lepidoptera

Total Page:16

File Type:pdf, Size:1020Kb

A Preliminary Comparative Anatomical Study of the Mesothoracic Aorta of the Lepidoptera A preliminary comparative anatomical study of the mesothoracic aorta of the Lepidoptera Item Type text; Thesis-Reproduction (electronic) Authors Hessel, John Hofman, 1934- Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 02/10/2021 08:56:47 Link to Item http://hdl.handle.net/10150/318547 A PRELIMINARY COMPARATIVE ANATOMICAL STUDY OF THE MESOTHORACIC AORTA OF THE LEPIDOPTERA by John H<, Hesse 1 A Thesis Submitted to the Faculty of the DEPARTMENT OF ENTOMOLOGY In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE In the Graduate College THE UNIVERSITY OF ARIZONA 19 6 6 STATEMENT BY AUTHOR This thesis has been submitted in partial fulfillment of requirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library, Brief quotations from this thesis are allowable without special permission, provided that accurate acknowledgment of source is made„ Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his judgment the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author. SIGNED: APPROVAL BY THESIS DIRECTOR This thesis has been approved on the date shown below: /-2, , fa WILLIAM L, NUTTING / Date Professor of Entomology ACKNOWLEDGMENTS For my introduction to the .study of insect morphology as well as for his continued encouragement and most helpful suggestions throughout the course of this studys I wish to express my most sincere gratitude and appreciation to Dr, William L, Nutting, To Dr, Charles L, Remington of Yale University I am most grateful for his helpful suggestions : concerning possible species for investigation and the communication of his current thoughts on the phylogeny of the Lepidoptera, In addition, I am most appreciative of Dr. Remington’s kindness in supplying living specimens of Galleria meHone11a for study. Lastly, I am indebted to Mr, Scott Ellis of Hotchkiss, Colorado, for his efforts in supplying preserved specimens of Fafn'a's'sius phoebis smintheus, and to my father, Sidney A. Hessel, for providing determinations of several of the species studied. TABLE OF. CONTENTS Page LIST OF FIGURES v ABSTRACT <► <> a o » o o <> o » » <> » o <> <> v n INTRODUCTION 1 LIST OF SPECIES OF LEPIDOPTERA STUDIED , „ 0 :4 . MATERIALS. AND METHODS 10 RESULTS OOOOOOOOOOOOOOOO 14 Generalized morphology of the aorta . 14 Types of aortal arrangement , . 16 l o Ventral unchambered aorta . 16 2 o Vertically chambered aorta . « 16 . 3<,Horizontally chambered aorta , 18 Chamber . » « 0 . 18 0 S *t. 3- a. OpOOOOOOO 18 Variations in the anatomy of the chamber « o « o o 22 Aortal configuration » , 24 4o- Dorsal unchambered aorta . o <. 26 Variations . « , o o = 26 PHYLOGENETIC CONSIDERATIONS AND CONCLUSIONS , 28 SUMMARY OOOOOOOOOOOOOOOOOOO 36 LITERATURE CITED 39 KEY TO ABBREVIATIONS o » = 41 LIST OF FIGURES Figure Page 1. Parasagittal view of portion of mesothorax showing typical rhopaloceran aortic and horizontal chamber location and configuration „ . „ , = .42 lAo Enlarged view of ostial apparatus . 42 - 2 o Parasagittal view of higher moth mesothorax showing aortic and vertical chamber location and configuration , , 42 3. Parasagittal view of mesothorax of a pyralidoid showing primitive arrangement of the aorta ^ooooeoeoo.o 42 4„ Parasagittal view of mesothorax of a . cossoid showing aortal and chamber arrangement. 42 5, Parasagittal view of mesothorax of Megathymus yuccae .........o. 43 6 o Parasagittal view of mesothorax of Hy'lephila phyleus ° . 43 7. Parasagittal view of mesothorax of Epargyreus clarus „ » » .......... 43 8. Parasagittal view of mesothorax of Pyrrhopyge araxes 43 9. Parasagittal view of mesothorax of Parnassius ph'oebus . » » . « « » 43 10. Parasagittal view of mesothorax of Battus philenor .......... 43 V Figure Page 11, Parasagittal view of mesothorax of Papilio rutulus . ,>00000 43 12. Parasagittal view of mesothorax of Papilio multicaudata ..... 43 13. Parasagittal view of mesothorax of Pieris protodice 44 14. Parasagittal view of mesothorax of Colias caesonia 44 15. Parasagittal, view of mesothorax of Danaus gilippus 000000 44 16. Parasagittal view of mesothorax of Euptychia henshawi 000000 44 17. Parasagittal view of mesothorax of Vanessa cardui 000000 44 18, Parasagittal view of mesothorax of Libytheana bachmanii . 44 19. Parasagittal view of mesothorax of Hypaufotis crysalus 44 CM O Parasagittal, view of mesothorax of Apodemia mormo 000000 44 21, Dendrogram showing general association of some 1 epidop"te'ran superfamilies, 45 ABSTRACT The aortas of fifty-eight species of Lepidoptera representing two superfamilies of Rhopalocera and seven superfamilies of Heterocera were examined with the aid of vital staining. Two distinct types of mesothoracic aortal chambers were found, A vertical type was found in the Tortricoidea and higher moths * and a horizontal type was found in the Cossoidea and most rhopaloceran families. No chamber was found in the Papilionidae or Pyralidoidea, The former case may be attributed to a degenerate condition, and the latter to an exhibition of the primitive aortal configuration, A pair of lateral incurrent ostia of an unusual type were found in the horizontal chamber and the details of their conformation were worked out. It is proposed that the ostia operate passively in response to differ­ ential haemolymph pressure. In the Rhopalocera, the entrance of the aorta into the mesothorax is generally found to involve perforation of the second phragma. In the Hesperiinae, Papilioninae, and Lycaenidae the aorta passes beneath the phragma and enters the region viii of the flight muscles anterior to the phragma. Phylogenetic relationships based on chamber type are proposed which involve some modifications of previously proposed schemes. INTRODUCTION While considerable work, has been done relating to the external morphology of. the Lepidoptera, little has been studied of the internal morphology in this order. The previous endeavors have been largely in the nature of more or less detailed studies of single species and, as far as I am aware, no comparative studies have been undertaken with the examination of representative species from various families and subfamilies. Of all the internal systems, the dorsal, vessel probably has received the least attention. Only in the case of Bombyx mori L, has the insect been studied in detail, and the structure of the dorsal vessel of B.mori in all stages of the life cycle has been exhaustively treated by Gerould (1938), Broeher (1919, 1920) has dealt with the mesothoracic aorta in several species of Sphingidae„ Of all the Rhopalocera, only the monarch butterfly, Danaus plexippus (L,), has received significant treatment by internal morpholo- gists, although Burgess (1880), Urquardt (1960), and 1 Ehrlich and Davidson (1961) devoted, little attention to the. dorsal vessel in their respective studies of the internal anatomy of this well-known butterfly. It was therefore decided that a comparative anatomical study of the dorsal vessel^ such as was conducted by Nutting (1951) in the Ortho.pteroid Complex and Wille (19.58) in the Apoidea, might yield hitherto undiscovered facts which would be useful to taxonomists and which might shed light on phylogenetic relationships within the Lepidoptera, In this nexploratory” study to determine whether a more exhaustive investigation would prove worth while9 it was thought best to limit the investigation to the mesothoracic aorta of the Rhopaloeera and to a few representative Heterocera which might reveal a close phylogenetic relationship to the Rhopalocera, Species of Rhopalocera were chosen in an attempt to represent as many subfamilies as possible. The intensity of treatment of the subfamilies is9 admittedly uneven. This is due partially to a bias on the part of the author for common9 large 9 and easily dissected species 9 and partly due to the necessity of appraising the differences found. Only by investigating several closely related species could observed differences be! ascribed, to specific, generic, subfamily, or family characteristicso The reason for the relatively extensive treatment of. the Papilioninae was due to the unusual nature of the aorta in this taxon. With the exception of. the Parnassiinae, representatives were collected by the author in Arizona or Connecticut, For this reason subfamilies not represented in the fauna of these states regrettably have been omitted. LIST'OF SPECIES OF LEPIDOPTERA STUDIED In the following arrangement of species studied, no single authority is followed. Rather,, the most readily available of recent synonymic lists are used for species and generic nomenclature, while the most generally accepted systematic schemes, which reflect recent re visionary studies are used for higher cate­ gories, This decision is based largely on convenience and is not intended to express any convictions of the author as to the systematics of the Lepidoptera, In the Rhopalocera, nomenclature through the generic level in the Papilionoidea,
Recommended publications
  • Butterflies and Moths of Cibola County, New Mexico, United States
    Heliothis ononis Flax Bollworm Moth Coptotriche aenea Blackberry Leafminer Argyresthia canadensis Apyrrothrix araxes Dull Firetip Phocides pigmalion Mangrove Skipper Phocides belus Belus Skipper Phocides palemon Guava Skipper Phocides urania Urania skipper Proteides mercurius Mercurial Skipper Epargyreus zestos Zestos Skipper Epargyreus clarus Silver-spotted Skipper Epargyreus spanna Hispaniolan Silverdrop Epargyreus exadeus Broken Silverdrop Polygonus leo Hammock Skipper Polygonus savigny Manuel's Skipper Chioides albofasciatus White-striped Longtail Chioides zilpa Zilpa Longtail Chioides ixion Hispaniolan Longtail Aguna asander Gold-spotted Aguna Aguna claxon Emerald Aguna Aguna metophis Tailed Aguna Typhedanus undulatus Mottled Longtail Typhedanus ampyx Gold-tufted Skipper Polythrix octomaculata Eight-spotted Longtail Polythrix mexicanus Mexican Longtail Polythrix asine Asine Longtail Polythrix caunus (Herrich-Schäffer, 1869) Zestusa dorus Short-tailed Skipper Codatractus carlos Carlos' Mottled-Skipper Codatractus alcaeus White-crescent Longtail Codatractus yucatanus Yucatan Mottled-Skipper Codatractus arizonensis Arizona Skipper Codatractus valeriana Valeriana Skipper Urbanus proteus Long-tailed Skipper Urbanus viterboana Bluish Longtail Urbanus belli Double-striped Longtail Urbanus pronus Pronus Longtail Urbanus esmeraldus Esmeralda Longtail Urbanus evona Turquoise Longtail Urbanus dorantes Dorantes Longtail Urbanus teleus Teleus Longtail Urbanus tanna Tanna Longtail Urbanus simplicius Plain Longtail Urbanus procne Brown Longtail
    [Show full text]
  • A New Sandy-Desert Subspecies of Megathymus Coloradensis (Megathymidae) from Extreme Northern Arizona
    BULLETIN OF THE ALLYN MUSEUM Published by THE ALLYN MUSEUM OF ENTOMOLOGY Sarasota, Florida Number -- 17 12 APRIL 1974 A NEW SANDY-DESERT SUBSPECIES OF MEGATHYMUS COLORADENSIS (MEGATHYMIDAE) FROM EXTREME NORTHERN ARIZONA Ronald S.' and Dale Wielgus 3434 West Augusta Avenue, Phoenix, Arizona 85021 Recent descriptions in the genus Cercyonis (Satyridae) by Emmel & Emmel (1969; 1971) and Emmel & Mattoon (1972) have shown the existence of distinctive whitish races adapted to arid alkaline flats of the western deserts of the United States. Such environmental adaptation appears to extend to a population of Megathymus coloradensis Riley inhabiting a sandy-desert area of extreme northern Arizona. The discovery of the subspecies described herein was a result of our initial investigations into the biology of Megathymus streckeri (Skinner). The purpose of this paper is to describe the new population and to note its life history. This study considered the following subspecies: Megathymus coloradensis navajo Skinner, Megathymus coloradensis arizonae Tinkham, Megathymus coloradensis reubeni Stallings, Turner & Stallings, Megathymus coloradensis coloradensis Riley and Megathymus coloradensis browni Stallings & Turner. Megathymus coloradensis albasuffusa Ronald S. and Dale Wielgus, new subspecies. Female. Head: vertex grey, Palpus: white, with some black-tipped scales. Antenna: shaft white distad, ringed with black basad; club black. Thorax: grey dorsally with long greenish-brown hairs caudad, blackish ventrally. Abdomen: black dorsally, grey ventrally.
    [Show full text]
  • INSECTA: LEPIDOPTERA) DE GUATEMALA CON UNA RESEÑA HISTÓRICA Towards a Synthesis of the Papilionoidea (Insecta: Lepidoptera) from Guatemala with a Historical Sketch
    ZOOLOGÍA-TAXONOMÍA www.unal.edu.co/icn/publicaciones/caldasia.htm Caldasia 31(2):407-440. 2009 HACIA UNA SÍNTESIS DE LOS PAPILIONOIDEA (INSECTA: LEPIDOPTERA) DE GUATEMALA CON UNA RESEÑA HISTÓRICA Towards a synthesis of the Papilionoidea (Insecta: Lepidoptera) from Guatemala with a historical sketch JOSÉ LUIS SALINAS-GUTIÉRREZ El Colegio de la Frontera Sur (ECOSUR). Unidad Chetumal. Av. Centenario km. 5.5, A. P. 424, C. P. 77900. Chetumal, Quintana Roo, México, México. [email protected] CLAUDIO MÉNDEZ Escuela de Biología, Universidad de San Carlos, Ciudad Universitaria, Campus Central USAC, Zona 12. Guatemala, Guatemala. [email protected] MERCEDES BARRIOS Centro de Estudios Conservacionistas (CECON), Universidad de San Carlos, Avenida La Reforma 0-53, Zona 10, Guatemala, Guatemala. [email protected] CARMEN POZO El Colegio de la Frontera Sur (ECOSUR). Unidad Chetumal. Av. Centenario km. 5.5, A. P. 424, C. P. 77900. Chetumal, Quintana Roo, México, México. [email protected] JORGE LLORENTE-BOUSQUETS Museo de Zoología, Facultad de Ciencias, UNAM. Apartado Postal 70-399, México D.F. 04510; México. [email protected]. Autor responsable. RESUMEN La riqueza biológica de Mesoamérica es enorme. Dentro de esta gran área geográfi ca se encuentran algunos de los ecosistemas más diversos del planeta (selvas tropicales), así como varios de los principales centros de endemismo en el mundo (bosques nublados). Países como Guatemala, en esta gran área biogeográfi ca, tiene grandes zonas de bosque húmedo tropical y bosque mesófi lo, por esta razón es muy importante para analizar la diversidad en la región. Lamentablemente, la fauna de mariposas de Guatemala es poco conocida y por lo tanto, es necesario llevar a cabo un estudio y análisis de la composición y la diversidad de las mariposas (Lepidoptera: Papilionoidea) en Guatemala.
    [Show full text]
  • Archiv Für Naturgeschichte
    © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at Lepidoptera für 1903. Bearbeitet von Dr. Robert Lucas in Rixdorf bei Berlin. A. Publikationen (Autoren alphabetisch) mit Referaten. Adkin, Robert. Pyrameis cardui, Plusia gamma and Nemophila noc- tuella. The Entomologist, vol. 36. p. 274—276. Agassiz, G. Etüde sur la coloration des ailes des papillons. Lausanne, H. Vallotton u. Toso. 8 °. 31 p. von Aigner-Abafi, A. (1). Variabilität zweier Lepidopterenarten. Verhandlgn. zool.-bot. Ges. Wien, 53. Bd. p. 162—165. I. Argynnis Paphia L. ; IL Larentia bilineata L. — (2). Protoparce convolvuli. Entom. Zeitschr. Guben. 17. Jahrg. p. 22. — (3). Über Mimikry. Gaea. 39. Jhg. p. 166—170, 233—237. — (4). A mimicryröl. Rov. Lapok, vol. X, p. 28—34, 45—53 — (5). A Mimicry. Allat. Kozl. 1902, p. 117—126. — (6). (Über Mimikry). Allgem. Zeitschr. f. Entom. 7. Bd. (Schluß p. 405—409). Über Falterarten, welche auch gesondert von ihrer Umgebung, in ruhendem Zustande eine eigentümliche, das Auge täuschende Form annehmen (Lasiocampa quercifolia [dürres Blatt], Phalera bucephala [zerbrochenes Ästchen], Calocampa exoleta [Stück morschen Holzes]. — [Stabheuschrecke, Acanthoderus]. Raupen, die Meister der Mimikry sind. Nachahmung anderer Tiere. Die Mimik ist in vielen Fällen zwecklos. — Die wenn auch recht geistreichen Mimikry-Theorien sind doch vielleicht nur ein müßiges Spiel der Phantasie. Aitken u. Comber, E. A list of the butterflies of the Konkau. Journ. Bombay Soc. vol. XV. p. 42—55, Suppl. p. 356. Albisson, J. Notes biologiques pour servir ä l'histoire naturelle du Charaxes jasius. Bull. Soc. Etud. Sc. nat. Nimes. T. 30. p. 77—82. Annandale u. Robinson. Siehe unter S w i n h o e.
    [Show full text]
  • The Taxonomic Report of the INTERNATIONAL LEPIDOPTERA SURVEY
    Volume 7 1 February 2010 Number 3 The Taxonomic Report OF THE INTERNATIONAL LEPIDOPTERA SURVEY TIPS ON COLLECTING AND REARING IMMATURES OF 375 BUTTERFLY AND SKIPPER TAXA JACQUE WOLFE 459 East 2700 South Apt 16, Salt Lake City, UT 84115 JACK HARRY 47 San Rafael Court, West Jordan, UT 84088 TODD STOUT 1 1456 North General Drive, Salt Lake City, UT 84116 ABSTRACT: Rearing techniques are discussed for 375 different butterfly and skipper taxa from Utah and beyond. Additional keywords: ova, larvae, pupae, over wintering, obtaining and caring for immatures INTRODUCTION The authors of this paper, Jacque Wolfe, Jack Harry, and Todd Stout, with contributions from Dale Nielson have over 100 years combined experience collecting and rearing butterflies. This publication includes natural and lab host plants. We hope that this information will help you avoid some of the mistakes and losses we have experienced. We also hope that this publication will encourage someone who has only collected adults to give rearing a try. For those new to rearing we encourage starting small. Not only can rearing provide perfect specimens but also provide knowledge regarding the life histories of butterflies, which includes how to find caterpillars or how to entice live females to lay eggs. The advantages justify the time and effort it requires. Another advantage of rearing is that some species, like Papilio indra and Megathymus species, are difficult to collect as adults. Therefor, rearing them can be much easier. For example, collecting larvae or netting a single live female can result in obtaining a nice series of perfect specimens.
    [Show full text]
  • Amphiesmeno- Ptera: the Caddisflies and Lepidoptera
    CY501-C13[548-606].qxd 2/16/05 12:17 AM Page 548 quark11 27B:CY501:Chapters:Chapter-13: 13Amphiesmeno-Amphiesmenoptera: The ptera:Caddisflies The and Lepidoptera With very few exceptions the life histories of the orders Tri- from Old English traveling cadice men, who pinned bits of choptera (caddisflies)Caddisflies and Lepidoptera (moths and butter- cloth to their and coats to advertise their fabrics. A few species flies) are extremely different; the former have aquatic larvae, actually have terrestrial larvae, but even these are relegated to and the latter nearly always have terrestrial, plant-feeding wet leaf litter, so many defining features of the order concern caterpillars. Nonetheless, the close relationship of these two larval adaptations for an almost wholly aquatic lifestyle (Wig- orders hasLepidoptera essentially never been disputed and is supported gins, 1977, 1996). For example, larvae are apneustic (without by strong morphological (Kristensen, 1975, 1991), molecular spiracles) and respire through a thin, permeable cuticle, (Wheeler et al., 2001; Whiting, 2002), and paleontological evi- some of which have filamentous abdominal gills that are sim- dence. Synapomorphies linking these two orders include het- ple or intricately branched (Figure 13.3). Antennae and the erogametic females; a pair of glands on sternite V (found in tentorium of larvae are reduced, though functional signifi- Trichoptera and in basal moths); dense, long setae on the cance of these features is unknown. Larvae do not have pro- wing membrane (which are modified into scales in Lepi- legs on most abdominal segments, save for a pair of anal pro- doptera); forewing with the anal veins looping up to form a legs that have sclerotized hooks for anchoring the larva in its double “Y” configuration; larva with a fused hypopharynx case.
    [Show full text]
  • Yucca Moth,Tegeticula Yuccasella,Non-Pollinating Yucca
    COSEWIC Assessment and Status Report on the Yucca Moth Tegeticula yuccasella Non-pollinating Yucca Moth Tegeticula corruptrix Five-spotted Bogus Yucca Moth Prodoxus quinquepunctellus in Canada ENDANGERED 2013 COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC. 2013. COSEWIC assessment and status report on the Yucca Moth Tegeticula yuccasella, Non-pollinating Yucca Moth Tegeticula corruptrix and the Five-spotted Bogus Yucca Moth Prodoxus quinquepunctellus in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xix + 49 pp. (www.registrelep-sararegistry.gc.ca/default_e.cfm). Previous report(s): COSEWIC. 2002. COSEWIC assessment and update status report on the yucca moth Tegeticula yuccasella in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vi + 24 pp. COSEWIC. 2006. COSEWIC assessment and status report on the Non-pollinating Yucca Moth Tegeticula corruptrix in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vi + 24 pp. (www.sararegistry.gc.ca/status/status_e.cfm). COSEWIC. 2006. COSEWIC assessment and status report on the Five-spotted Bogus Yucca Moth Prodoxus quinquepunctellus in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vi + 31 pp. (www.sararegistry.gc.ca/status/status_e.cfm). Production note: COSEWIC would like to acknowledge Donna Hurlburt for writing the status report on Yucca Moth, Tegeticula yuccasella, Non-pollinating Yucca Moth, Tegeticula corruptrix, and Five-spotted Bogus Yucca Moth, Prodoxus quinquepunctellus, in Canada, prepared under contract with Environment Canada. This report was overseen and edited by Jennifer Heron, Co-chair of the COSEWIC Arthropods Specialist Subcommittee.
    [Show full text]
  • (Lepidoptera). Zootaxa 3198: 1-28
    INSECTA MUNDI A Journal of World Insect Systematics 0327 Thorax and abdomen morphology of some Neotropical Hesperiidae (Lepidoptera) Eduardo Carneiro, Olaf H. H. Mielke, Mirna M. Casagrande Laboratório de Estudos de Lepidoptera Neotropical Departamento de Zoologia, UFPR Caixa Postal 19020, 81531-980 Curitiba, Paraná, Brasil Date of Issue: October 25, 2013 CENTER FOR SYSTEMATIC ENTOMOLOGY, INC., Gainesville, FL Eduardo Carneiro, Olaf H. H. Mielke, and Mirna M. Casagrande Thorax and abdomen morphology of some Neotropical Hesperiidae (Lepidoptera) Insecta Mundi 0327: 1-47 ZooBank Registered: urn:lsid:zoobank.org: pub:074AC2A8-83D9-4B8A-9F1B-7860E1AFF172IM Published in 2013 by Center for Systematic Entomology, Inc. P. O. Box 141874 Gainesville, FL 32614-1874 USA http://www.centerforsystematicentomology.org/ Insecta Mundi is a journal primarily devoted to insect systematics, but articles can be published on any non- marine arthropod. Topics considered for publication include systematics, taxonomy, nomenclature, checklists, faunal works, and natural history. Insecta Mundi will not consider works in the applied sciences (i.e. medical entomology, pest control research, etc.), and no longer publishes book reviews or editorials. Insecta Mundi pub- lishes original research or discoveries in an inexpensive and timely manner, distributing them free via open access on the internet on the date of publication. Insecta Mundi is referenced or abstracted by several sources including the Zoological Record, CAB Abstracts, etc. Insecta Mundi is published irregularly throughout the year, with completed manuscripts assigned an indi- vidual number. Manuscripts must be peer reviewed prior to submission, after which they are reviewed by the editorial board to ensure quality. One author of each submitted manuscript must be a current member of the Center for Systematic Entomology.
    [Show full text]
  • Book Reviews, New Publica- Tions, Metamorphosis, Announcements
    ________________________________________________________________________________________ Volume 57, Number 4 Winter 2015 www.lepsoc.org ________________________________________________________________________________________ Inside: Butterflies of Bolivia Are there caterpillars on butterfly wings? A citizen science call for action Ghost moths of the world website A conservation concern from the 1870’s Fruit-feeding Nymphali- dae in a west Mexican neotropical garden Fender’s Blue Butterfly conservation and re- covery Membership Updates, Marketplace, Book Reviews, New Publica- tions, Metamorphosis, Announcements ... ... and more! ________________________________________________________________________________________ ________________________________________________________ Contents ________________________________________________________www.lepsoc.org Species diversity and temporal distribution in a community of fruit- ____________________________________ feeding Nymphalidae in a west Mexican neotropical garden Volume 57, Number 4 Gerald E. Einem and William Adkins. ............................................... 163 Winter 2015 Windows for butterfly nets The Lepidopterists’ Society is a non-profit ed- J. Alan Wagar. ................................................................................... 173 ucational and scientific organization. The ob- Announcements: .......................................................................................... 174 ject of the Society, which was formed in May Zone Coordinator Needed; Season Summary
    [Show full text]
  • Coastal Butterflies & Host Plants
    GIANT SKIPPERS Family: Hesperiidae, Subfamily: Megathymi- nae Yucca Giant-Skipper: Megathymus yuccae Host: Yuccas (Yucca aloifolia, Y. gloriosa, Y. fila- mentosa, Y. flaccida) Carolina Satyr S. Pearly-eye Gemmed Satry Viola’s Wood-Satyr Horace’s Duskywing by Gosse Silver-spotted Skipper nectaring on pickerlweed Butterflies need native host plants to complete SATYRS their life cycle. The larvae of many species can Family: Nymphalidae, Subfamily: Satyrinae only survive on specific plants; think of mon- Southern Pearly-eye: Enodia portlandia * archs and milkweeds, longwings and passion- Host: Switchcane (Arundinaria tecta) flowers. The host plants listed here are native to the coastal region of Georgia & South Caro- Creole Pearly Eye: Enodia creola Delaware Skipper Long-tailed Skipper Host: Switchcane (Arundinaria tecta) lina. They provide a critical link for butterfly survival. Protect native plants in your landscape Appalachian Brown: Satyrodes appalachia and grow them in your gardens to support Host: Carex spp., Rhynchospora spp. these important pollinators. Gemmed Satyr: Cyllopsis gemma * Host: Woodoats (Chasmanthium laxum, C. ses- siliflorum) Sachem Skipper Whirlabout Skipper Carolina Satyr: Hermeuptychia sosybius * Host: St. Augustine (Stenotaphrum secundatum) Georgia Satyr: Neonympha areolata Host: Sawgrass (Cladium jamaicense), Sedges (Cyperaceae) Fiery Skipper Checkered Skipper Provided by Coastal WildScapes Little Wood Satyr: Megisto cymela * Twin-spotted Skipper Lace-winged Roadside (www.coastalwildscapes.org) Host: St. Augustine
    [Show full text]
  • Rare Animals Tracking List
    Louisiana's Animal Species of Greatest Conservation Need (SGCN) ‐ Rare, Threatened, and Endangered Animals ‐ 2020 MOLLUSKS Common Name Scientific Name G‐Rank S‐Rank Federal Status State Status Mucket Actinonaias ligamentina G5 S1 Rayed Creekshell Anodontoides radiatus G3 S2 Western Fanshell Cyprogenia aberti G2G3Q SH Butterfly Ellipsaria lineolata G4G5 S1 Elephant‐ear Elliptio crassidens G5 S3 Spike Elliptio dilatata G5 S2S3 Texas Pigtoe Fusconaia askewi G2G3 S3 Ebonyshell Fusconaia ebena G4G5 S3 Round Pearlshell Glebula rotundata G4G5 S4 Pink Mucket Lampsilis abrupta G2 S1 Endangered Endangered Plain Pocketbook Lampsilis cardium G5 S1 Southern Pocketbook Lampsilis ornata G5 S3 Sandbank Pocketbook Lampsilis satura G2 S2 Fatmucket Lampsilis siliquoidea G5 S2 White Heelsplitter Lasmigona complanata G5 S1 Black Sandshell Ligumia recta G4G5 S1 Louisiana Pearlshell Margaritifera hembeli G1 S1 Threatened Threatened Southern Hickorynut Obovaria jacksoniana G2 S1S2 Hickorynut Obovaria olivaria G4 S1 Alabama Hickorynut Obovaria unicolor G3 S1 Mississippi Pigtoe Pleurobema beadleianum G3 S2 Louisiana Pigtoe Pleurobema riddellii G1G2 S1S2 Pyramid Pigtoe Pleurobema rubrum G2G3 S2 Texas Heelsplitter Potamilus amphichaenus G1G2 SH Fat Pocketbook Potamilus capax G2 S1 Endangered Endangered Inflated Heelsplitter Potamilus inflatus G1G2Q S1 Threatened Threatened Ouachita Kidneyshell Ptychobranchus occidentalis G3G4 S1 Rabbitsfoot Quadrula cylindrica G3G4 S1 Threatened Threatened Monkeyface Quadrula metanevra G4 S1 Southern Creekmussel Strophitus subvexus
    [Show full text]
  • Chapter 4. Virginia's Mid-Atlantic Coastal Plain
    Chapter 4. Virginia’s Mid-Atlantic Coastal Plain Figure 4.1. The Mid-Atlantic Coastal Plain ecoregion. 4.1. Introduction 4.1.1. Description The Mid-Atlantic Coastal Plain (Coastal Plain, Figure 4.1) corresponds to what other classification systems call the Coastal Plain (Table 4.1). The terrain is mostly flat. This province is bounded by the Southern Appalachian Piedmont to the west and the Chesapeake Bay and Atlantic Ocean to the east. The soils of the Coastal Plain are predominantly deep, moist Aquults and Aqualfs (McNab and Avers 1994). Rainfall in the region averages 110cm per year, and the average temperature ranges from 13 to 14°C (McNab and Avers 1994). The growing season generally lasts between 185 and 259 days (shortest in the northern portion, longest in the City of Virginia Beach, Woodward and Hoffman 1991). Forest cover is mostly loblolly pine- hardwood (McNab and Avers 1994), except the southernmost portion, which is mainly southeastern evergreen (longleaf and loblolly pine, Woodward and Hoffman 1991). Most streams are small to intermediate in size and have very low flow rates (McNab and Avers 1994). Table 4.1. Names for the Mid-Atlantic Coastal Plain as used in other ecoregional schemes and planning efforts. The following at least roughly correspond to the same area as Mid-Atlantic Coastal Plain as used in this document. Planning Effort/Regional Scheme Name of Ecoregion Reference NABCI Bird Conservation Regions (BCR) 27, NABCI 2000 Southeastern Coastal Plain, and 30, New England/Mid-Atlantic Coast 1 PIF Mid-Atlantic Coastal Plain Watts 1999 (Physigraphic Region 44) 2 4-1 VIRGINIA’S COMPREHENSIVE WILDLIFE CONSERVATION STRATEGY Chapter 4 — The Mid-Atlantic Coastal Plain Planning Effort/Regional Scheme Name of Ecoregion Reference United States Shorebird Planning Region 29, Southern Coastal Brown et al.
    [Show full text]