Named Processes in Chemical Technology Third Edition

Total Page:16

File Type:pdf, Size:1020Kb

Named Processes in Chemical Technology Third Edition ENCYCLOPEDIC DICTIONARY OF NAMED PROCESSESUses Educational IN CHEMICALFor TECHNOLOGY THIRD EDITION http://sites.google.com/site/irdadeh/ ,09126599985,[email protected], Center Data © 2007 by TaylorData & Francis Center Group, LLC ,09126599985,[email protected], For Educational Uses ENCYCLOPEDIC DICTIONARY OF NAMED PROCESSES IN CHEMICAL TECHNOLOGY THIRD EDITION Alan E. Comyns Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business © 2007 by TaylorData & Francis Center Group, LLC ,09126599985,[email protected], For Educational Uses CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2007 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed in the United States of America on acid-free paper 10 9 8 7 6 5 4 3 2 1 International Standard Book Number-10: 0-8493-9163-6 (Hardcover) International Standard Book Number-13: 978-0-8493-9163-7 (Hardcover) This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use. No part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any informa- tion storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http:// www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC) 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For orga- nizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Library of Congress Cataloging-in-Publication Data Comyns, Alan E. Encyclopedic dictionary of named processes in chemical technology / author/editor, Alan E. Comyns. -- 3rd ed. p. cm. Includes bibliographical references and index. ISBN 978-0-8493-9163-7 (alk. paper) 1. Chemical processes--Dictionaries. I. Title. II. Title: Named processes in chemical technology. TP155.7.C664 2007 660’.28103--dc22 2006102488 Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com © 2007 by TaylorData & Francis Center Group, LLC ,09126599985,[email protected], For Educational Uses Dedication Dedicated to the generations of industrial chemists and engineers whose ingenuity has given us the materials of civilization. © 2007 by TaylorData & Francis Center Group, LLC ,09126599985,[email protected], For Educational Uses Foreword It is both a pleasure and a privilege to have been invited to write the Foreword to a book of such importance as Dr. Comyns’ dictionary of named processes in the chemical industry. For many years, chemists have had access to books with titles like Named Reactions in Organic Chemistry. Here the busy student or researcher can discover immediately the nature of the Wurtz reaction, the Cannizzaro reaction, and such curiosities as the Hell-Volhard-Zelinsky reaction. Until the first edition of the present book appeared in 1993, no such literary assistance was available to the multitudes who labored in the chemical industry. Six years later, a second edition took into account the many novelties that had appeared in that short period. Now a third edition is expanded still further, particularly by inclusion of many biological processes that industry now uses. This book is encyclopedic in scope as well as in name, covering a vast range of industrial practice. No single industrial chemist could possibly be familiar with more than a small fraction of the processes named; when a new one suddenly appears on the horizon, help is immediately available on these pages. I very much hope that all companies involved in chemical technology will ensure it finds a place in their libraries. Although few people borrow dictionaries for leisure reading (even dictionaries as good as this one), its natural home will be the reference section, so that it is instantly available on demand. There is, however, another reason for commending this book. Many of the names given to industrial chemical processes arise from their history. Some (such as Ayers) denote the names of their inventors; others (such as Hercules-BP) display the names of firms that originated or at least operated the process; others (such as hydrocracking) drop more than a hint of the principal reagent involved; others (such as PRI-SC) are acronyms constructed from initials of words in a phrase. However, others (such as CAMERE) are made from bits of different words and yet others (such as Merseburg) could mean anything at all. It happens to be the case that the history of the chemical industry, woefully neglected for decades, is just now coming back into fashion. This welcome development can be considerably assisted by the present work, where some historical detail often is included. Naturally, historians would have liked more (they always do). But there is sufficient detail to whet the appetites of workers in chemical technology to learn something further of the fascinating stories of their predecessors. This book can be dipped into with pleasure again and again. I warmly recommend it to anyone interested in the chemical industry — past, present, or future. Colin A. Russell Emeritus Professor of History of Science and Technology, The Open University Research Scholar affiliated to the Department of the History and Philosophy of Science, University of Cambridge © 2007 by TaylorData & Francis Center Group, LLC ,09126599985,[email protected], For Educational Uses Acknowledgments I should like to thank my wife Daphne, without whose patience during the last 18 years these three editions could never have been produced. I should like to thank also the following people for their various contributions: Mr. Reg Adams (Artikol) Dr. Robert Coffee (ex ICI) Dr. Lorenzo Costa (Novara Technology) Mr. Stanley Erisman (Perstorp Formax) Dr. Martin Fakley (U4RIC) Mr. Martin Gravett (ORT) Professor Bill Griffith (Imperial College) Dr. Karl Harrison (Oxford University) Mr. Les Kane (Hydrocarbon Processing) Dr. John T. Kopfle (MIDREX Technologies) Mr. Robert Lentz (UOP) Dr. Don McIntyre (Dalton Publishing) Mr. Sidney Nelson Jr. (Sorbent Technologies Corp.) Professor Magdi Ragheb (University of Illinois) Mr. Chris Ravenscroft (MIDREX Technologies) Dr. Keith Simons (KS Associates) Dr. Alan Tully (ex Kodak) Dr. Mike Wood (Davy Process Technology) © 2007 by TaylorData & Francis Center Group, LLC ,09126599985,[email protected], For Educational Uses Introduction The purpose of this dictionary is to provide concise descriptions of those processes in chemical technology that are known by special names that are not self-explanatory. The chemical industry is notoriously difficult to define. In addition to its obvious role as a producer of “chemicals” such as sulfuric acid, it may be said to embrace all those industries in which chemical processes are conducted. There is no generally agreed list of such industries, but obvious ones include extractive metallurgy, plastics, paper, ceramics, sewage treatment, and now even electronics. It is this broad spectrum of “chemical technology” that is addressed in this book. It thus includes the gigantic Bessemer process for making steel and the microscopic Manasevit process for applying circuits to silicon chips. The only deliberate omission is food chemistry. The aim has been to include all those processes that are known by special names, of whatever origin. Of course, only a minority of industrial chemical processes are distinguished by the possession of special names, so this book does not include all of even the more important processes. Overviews of the industry are provided by other books, notably the Kirk-Othmer and Ullmann encyclopedias. Many named processes are included in such works, but only a fraction of the names in the present compilation are to be found in them. The names show a heterogeneous etymology, their origins including inventors, companies, institutions, places, acronyms, abbreviations, and obvious corruptions of the chemical nomenclature. Derivations of the names, where known, are indicated in square brackets [ ]. The names of chemicals used in the entries are the traditional names commonly used in industry today; systematic names have yet to replace many common names and may never do so. Criteria for selection of names for inclusion are inevitably subjective, but the intention has been to include all named processes in current commercial use anywhere in the world, and those that have been or are being piloted on a substantial scale. Obsolete processes that have been or might have been important in the past are included, too. The coverage is primarily of English names, but some foreign names are included.
Recommended publications
  • GREEN SYNTHESIS and CHARACTERIZATION of SODIUM Supported by CYANIDE from CASSAVA (Manihot Esculenta CRANTZ)
    GREEN SYNTHESIS AND CHARACTERIZATION OF SODIUM Supported by CYANIDE FROM CASSAVA (Manihot esculenta CRANTZ) E. B. AttahDaniel1*, P. O. Enwerem2, P. G. Lawrence1, C. U. Ofiwe 3, S. O. O. Olusunle4 and A. R. Adetunji5 1Department of Chemical Sciences, Federal University Wukari, PMB 1020, Taraba State, Nigeria 2Department of Chemistry, River State University, PMB 5080, Mkpoluorowurukwo, Port Harcourt, Nigeria 3National Agency for Science & Engineering Infrastructure, Centre of Excellence, Nanotechnology and Advanced Material, Akure x, Ondo State, Nigeria 4Engineering Materials Development Institute, PMB 611 Akure, Ondo State, Nigeria 5Department of Materials and Metallurgical Engineering, Obafemi Awolowo University, Ile Ife, Nigeria *Corresponding author: [email protected] Received: January 09, 2020 Accepted: February 24, 2020 Abstract: This study was carried out to develop a green, simple and cost-effective route for synthesis of sodium cyanidevia aquohydrolysis of linamarin a cyanogenic glucoside found in cassava (Manihot esculenta Crantz). Two procedures were employed and compared, the acid hydrolysis method and direct (aquo) hydrolysis. The CN– ion released was reacted with Na+ via ion exchange to replace the hydroxyl ion (OH–) and yielded NaCN. The NaCN was crystallized via evaporation in an air ventilated oven by maintaining the temperature of the reaction solution at 100oC. The crystalized salt was quantified using the modified Vogel’s Argentometric method of cyanide quantification. The concentrations were found to be 10.56 mg/g for whole tuber, 13.92 mg/g for tuber tissue and 4.5 mg/g for cassava peels. Analyte grade sodium cyanide purchased off shelf was used as a reference. The crystals were characterized using, X-ray diffraction analysis; the X-ray diffractogram confirmed the products from acid hydrolysis was a cyanogen (CN2CN2) while the product from direct hydrolysis was sodium cyanide.
    [Show full text]
  • 4.3 Synthetic Graphite
    BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ DEPARTMENT OF ELECTRICAL AND ELECTRONIC TECHNOLOGY ÚSTAV ELEKTROTECHNOLOGIE THE EFFECT OF ELECTRODE BINDERS TO ELECTROCHEMICAL PROPERTIES OF NEGATIVE ELECTRODE MATERIALS BACHELOR'S THESIS VLIV POJIV NA ELEKTROCHEMICKÉ VLASTNOSTI ZÁPORNÝCH ELEKTRODOVÝCH HMOT BAKALÁŘSKÁ PRÁCE AUTHOR András Zsigmond AUTOR PRÁCE SUPERVISOR Ing. Jiří Libich, Ph.D. VEDOUCÍ PRÁCE BRNO 2016 BRNO UNIVERSITY OF TECHNOLOGY Faculty of Electrical Engineering and Communication Department of Electrical and Electronic Technology Bachelor thesis Bachelor's study field Microelectronics and Technology Student: András Zsigmond ID: 154915 Year of study: 3 Academic year: 2015/16 TITLE OF THESIS: The Effect of Electrode Binders to Electrochemical Properties of Negative Electrode Materials INSTRUCTION: Get acquaint with Lithium-Ion batteries and their charactericti electrochemicla properties. Study operation principle of Litihum-Ion battery along with intercalaction process. Lead experiments which involve different kinds of binders and their using in electrodes. REFERENCE: Podle pokynů vedoucího práce. Assigment deadline: 8. 2. 2016 Submission deadline: 2. 6. 2016 Head of thesis: Ing. Jiří Libich, Ph.D. Consultant: doc. Ing. Jiří Háze, Ph.D. Subject Council chairman WARNING: The author of this bachelor thesis claims that by creating this thesis he/she did not infringe the rights of third persons and the personal and/or property rights of third persons were not subjected to derogatory treatment. The author isfully aware of the legal consequences of an infringement of provisions asper Section 11 and following of Act No 121/2000 Coll. on copyright and rights related to copyright and on amendments to some other laws (the Copyright Act) in the wording of subsequent directives including the possible criminal consequences asresulting from provisions of Part 2, Chapter VI, Article 4 of Criminal Code 40/2009 Coll.
    [Show full text]
  • Private Owner Wagons Index
    PRIVATE OWNER WAGONS & TANKERS INDEX [MAINLY PRE – 1948] COMPILED BY JOE GREAVES This index alphabetically lists references in books to private owner railway wagons and tankers by company name. Each company is listed by an abbreviation of the book’s author and its page number. Coal Merchants who ran wagons are also included. Most of the references include either a photograph or drawing of the wagon. It is not intended to be a comprehensive list of every private owner wagon built, merely of those that have appeared in books since 1969. Where there is only a description of the wagon or notes about the owner, but no photo or drawing, the reference has * next to it. Some of these [IP1/147* & JA/184* particularly] are as little as just a name with no location or any other details. Locations of the companies are included unless it is obvious from the name on the wagon. If there is no location listed, particularly with the Welsh wagons, the name is the location (please check with an atlas). In Bill Hudson’s first two books (BH1 & BH2), his index lists wagons by plate (ie photo) number rather than page. In this index, they are by page number. Wagons shown in the prefaces are listed by Roman numerals, eg BH2/vi. For his third & fourth volumes (BH3 & BH4), there are no page numbers so the references are to plates not pages. Richard Tourret’s books are listed as RT, then RT2. There is no ‘RT1’. Entries are usually by surname or place, for example ‘City of Nottingham’ is under ‘N’ not ‘C’ (but North, South, East or West are under N, S, E or W.) If there is likely to be any uncertainty, the name may be listed twice, eg, Griffith Thomas is under ‘G’ and ‘T’.
    [Show full text]
  • Exploitation Strategic Plan and Business Model - Final
    Exploitation strategic plan and business model - final Deliverable 8.4 © Copyright 2019 The INTMET Consortium Project Funded by the European Commission under the Horizon 2020 Framework Programme. Grant Agreement No 689515 EXPLOITATION PLAN-FINAL D8.4 PROGRAMME H2020 – Environment and Resources GRANT AGREEMENT NUMBER 689515 PROJECT ACRONYM INTMET DOCUMENT Deliverable 8.4 TYPE (DISTRIBUTION LEVEL) ☒ Public ☐ Confidential ☐ Restricted DUE DELIVERY DATE M36 DATE OF DELIVERY January 31 2019 STATUS AND VERSION NUMBER OF PAGES WP / TASK RELATED WP 8, task 8.4, 8.5 WP / TASK RESPONSIBLE MinPol AUTHOR (S) Prof. Dr. Horst Hejny, Dr. Angelika Brechelmacher, Prof. Dr. Günter Tiess PARTNER(S) CONTRIBUTING FILE NAME Exploitation strategic plan and business model - final DOCUMENT HISTORY VERS ISSUE DATE CONTENT AND CHANGES 1.0 30/01/2019 First Revision 1.1 31/01/2019 Small corrections ClC final 31/01/2019 for submission DOCUMENT APPROVERS PARTNER APPROVER CLC Francisco Sánchez 2 | 34 EXPLOITATION PLAN-FINAL D8.4 TABLE OF CONTENTS 1. PURPOSE ............................................................................................................................................................................................... 6 2. BUSINESS MODEL .................................................................................................................................................................................. 7 2.1 BASIC IDEA ...............................................................................................................................................................................................
    [Show full text]
  • Notes Electrochemistry FG Vylechmann, Ph.D
    N O T E S E L E C T R OC H E M I S T R Y . l E HMANN PH . D . F . G v C , y N EW YORK ’ MCGRAW PUBLI SHIN G COMPAN Y 1 906 CHA LE R S H. SEN FF A TO KEN OF EST EEM AN D REGARD P R E F A C E . T HE principal aim kept in view in the preparation o f these notes has been the giving o f a clear and con cise presentation o f the general prin ciples which un derlie electro chemical science . Endeavor has been made to meet the needs of students entering upon the study o f electro chemistry an d o f chemists interested in the application of electrical energy to chemical problems . The literature o f electro chemistry counts as its o wn a ' number of standard works which treat in detail the theories of the scien ce , the methods of electro chemical analysis , and D f e . the applications of el ctro chemistry i fering from these , the present notes aim merely to offer a general survey of the subject , to serve as an introduction to its study and to aid in the securing of a proper understanding and appreciation u of the work along individ al lines . ha s In the chapter on ele ctrote chnolo gy , spe cial endeavor bee n made to secure the most recent and reliable data and full advantage has been taken o f the information given in leading techni cal journals and in the excellent monographs o f s : E m Wasseri er Lo u Foer ter lektro che ie g s ngen , and of : E Wright lectri c Furnaces and their Industrial Applications .
    [Show full text]
  • Electrolytic Reduction Hydrometallurgy
    Metallurgy ,2nd Part C9 ,4th Sem Dr Sukla Chakladar Associate Professor,RNKWC,Midnapopre Electrolytic reduction For more reactive metals like Na,Mg ,Al etc cannot be reduce by carbon reduction process. So they can be reduced by electrolysis and these metals are not obtained by electrolysis from aqueous solution of their salt. So in these cases electrolytes are molten salts. Some e.gs Metal Electrolyte Reaction at the electrodes Na NaOH (Castner’s Process) At Cathode Na++e Na At anode 4OH- 2H2O+O2+4e NaCl(Down’s Process) Na++e Na(at Cathode) - 2Cl Cl2+2e(at Anode) Mg Molten MgO Mg2+ +2e Mg(Cathode) 2- O 1/2O2+e(Anode) 2+ MgCl2 Mg +2e Mg(Cathode) - 2Cl Cl2+2e(Anode) 3+ 2- Al Alumina(Al2O3,Na3AlF6+CaF2) Al2O3 2Al +3O Al3++3e Al(Cathode) 2- - 3O 3/2O2+3e (Anode) Hydrometallurgy Hydrometallurgy involves extraction of metal from ore by preparing an aqueous solution of a salt of the metal and recovering the metal from the solution. The operations usually involved are leaching, or dissolution of the metal or metal compound in water, commonly with additional agents; separation of the waste and purification of the leach solution; and the precipitation of the metal or one of its pure compounds from the leach solution by chemical or electrolytic means. It involves extraction of less electropositive or less reactive metals like gold and silver. Powdered ore is first dissolved in a suitable reagent by complex formation e.g. Ag2S+4NaCN 2Na[Ag(CN)2]+Na2S 4Au+8NaCN+2H2O+O2 4Na[Au(CN)2]+4NaOH Now a strong electropositive metal added to above salt solution from which metal is obtained.
    [Show full text]
  • CHANGING TECHNOLOGY Ln a CHANGING WORLD the CASE of EXTRACTIVE METALLURGY 1
    CHANGING TECHNOLOGY lN A CHANGING WORLD THE CASE OF EXTRACTIVE METALLURGY 1 Fathi Habashi 2 ABSTRACT Smelting of ores for metal extraction is an ancient art in our civilization. New technology is being introduced, but forces of resistance are sometimes so strong to permit a radical change. While the iron and steel, zinc, aluminum, and gold industries are responding to change, the copper and nickel industries seem to be more conservative. Key words: iron, steel, copper, pressure hydrometallurgy, gold, alurninum, zinc, nickel, sulfur dioxide, elemental sulfur, sulfuric acid, pyrite, arsenopyrite. ' XVII Encontro Nacional de Tratamento de Minérios e Metalurgia Extrativa - I Simpósio sobre Química de Colóides- Aguas de Sao Pedro- SP, Brazil , August 23-26. 1998. :· Department of Mining and Metallurgy, Lavai University, Qut:bec City, Canada 49 INTRODUCTION Extractive metallurgy today is usually divided in two sectors: ferrous and nonferrous because of the large scale operations in the ferrous [1). Steel production in one year exceeds that of ali other metais combined in ten years. As a result, metallurgists in the nonferrous sector usually do not participate in the activities of iron and steel makers and vice versa. This is a pity because for sure one can leam from the other. ln fact, the copper industry adopted many technologies used first in iron and steel production. For example, when Bessemer invented the conventer in 1856 it was adopted in the copper industry ten years !ater, and when high grade massive copper sulfide ores were exhausted and metallurgists were obliged to treat low-grade ores, the puddling furnace was adapted in form of a reverberatory furnace to treat the flotation concentrates.
    [Show full text]
  • Tackling Key Engineering Challenges in Liquid Metal Batteries
    Tackling Key Engineering Challenges in Liquid Metal Batteries: Temperature and Mass Transport by Rakan F. Ashour Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Supervised by Professor Douglas H. Kelley Materials Science Program Arts, Sciences and Engineering Edmund A. Hajim School of Engineering and Applied Sciences University of Rochester Rochester, NY 2019 ii Dedication To my daughter Ayah Ashour iii Table of Contents Biographical Sketch vi Acknowledgments vii Abstract viii Contributors and Funding Sources x List of Tables xi List of Figures xii Chapter 1: Introduction 1 1.1 Grid scale energy storage 1 1.2 Electrochemical energy storage 5 1.2.1 Electrochemistry notations and terms 5 1.2.2 Overview of existing technologies 6 Lead-Acid batteries 6 Lithium ion batteries 7 Sodium-Sulfur batteries 8 1.3 The liquid metal battery 9 1.4 Objectives 12 1.4.1 Reducing operating temperature 12 1.4.2 Understanding transport phenomena across scales 13 iv 1.4.3 Linking electrochemistry and magnetohydrodynamics 14 Chapter 2: Low Temperature Sodium Based Liquid Metal Batteries. 16 2.1 Review of Thermodynamics. 16 2.1.1 From the first law to battery voltage. 16 2.2 Previous work on sodium based liquid metal batteries. 21 2.3 Experimental methods 23 2.3.1 Salt Preparation 23 2.3.2 Electrode Preparation 26 2.4 Results and Discussion 26 2.4.1 The Binary NaOH,NaI system 26 2.4.1 The Ternary NaNH2,NaOH,NaI system 30 2.5 Summary 45 Chapter 3: Fluid Dynamics of Liquid Metal Batteries 48 3.1 MHD of liquid metal batteries 48 3.2 Governing Equations 52 3.2.1 Thermal Convection: The Rayleigh- Bénard Instability 53 3.2.2 Electromagnetically Driven Flows 55 3.2.3 Flows Driven by Electromagnetic and Buoyant Forces 58 3.3 Experimental Methods 59 3.4 Results & Discussion 61 3.5 Summary & Engineering Implications 72 Chapter 4: Linking Electrochemistry and Fluid Dynamics 75 v 4.1 Kinetics of mass transport in liquid metal batteries.
    [Show full text]
  • An Evaluation of Ferdinand Hurter's Contribution to the Development of the Nineteenth Century Alkali Industry
    AN EVALUATION OF FERDINAND HURTER'S CONTRIBUTION TO THE DEVELOPMENT OF THE NINETEENTH CENTURY ALKALI INDUSTRY CYRIL ARTHUR TOWNSEND A thesissubmitted in partial fulfilment of the requirementsof Liverpool John Moores University for the degree of Doctor of Philosophy April 1998 FERDINAND 11URTER 1844 - 1898 ABSTRACT Ferdinand Hurter was an industrial chemist and one of the earliest chemical engineers. He was born in Switzerland in 1844 and, after obtaining his Doctorate in chemistry at Heidelberg University, he came to England in 1867. He joined Gaskell Deacon & Co, a major Leblanc alkali manufacturer in Widnes, the leading alkali town in Britain, as Works Chemist. During the next thirty years, the most successful period in the history of the Leblanc alkali industry, he devoted his considerable talents, both practical and theoretical, to developing and improving a wide range of processes. He was the author of a large number of publications and patents, and has been described as the first person to put the British chemical industry on a truly scientific basis. When the British Leblanc alkali manufacturers amalgamated in 1890 to form the United Alkali Company, Hurter was appointed to the prestigious position of Chief Chemist, in which post he served until his early death in 1898. He was a leading figure in a number of learned societies, and also took an interest in technical education. The accusationby certain historians that, in the 1890's,Hurter advised the United Alkali Company not to adopt the electrolytic process for manufacturingalkali, and thus causedthe declineand eventual demise of the Leblancindustry, is fully investigated.It is concludedthat the allegationwas substantiallyunfounded.
    [Show full text]
  • Sodium Carbonate Or Soda Were Well Known in Early Times
    Copyright © Tarek Kakhia. All rights reserved. http://tarek.kakhia.org Sodium Contents 1 Introduction 2 Characteristics o 2.1 Chemical properties o 2.2 Compounds o 2.3 Spectroscopy o 2.4 Isotopes 3 History 4 Occurrence 5 Commercial production 6 Applications 7 Biological role o 7.1 In maintenance of body fluid volume in animals o 7.2 In maintenance of resting electrical potential in excitable tissues in animals 8 Dietary uses 9 Precautions 1 - Introduction : Sodium is a metallic element with a symbol Na ( from Latin natrium or Arabic natrun) and atomic number 11 . It is a soft, silvery - white, highly reactive metal and is a member of the alkali metals within " group 1 " ( formerly known as ‘ group IA ’ ) . It has only one stable isotope , 23Na. Elemental sodium was first isolated by Sir Humphry Davy in 1806 by passing an electric current through molten sodium hydroxide. Elemental sodium does not occur naturally on Earth, but quickly oxidizes in air and is violently reactive with water, so it must be stored in an inert medium, such as a liquid hydro carbon. The free metal is used for some chemical synthesis and heat transfer applications. 1 Copyright © Tarek Kakhia. All rights reserved. http://tarek.kakhia.org Sodium ion is soluble in water in nearly all of its compounds, and is thus present in great quantities in the Earth's oceans and other stagnant bodies of water. In these bodies it is mostly counterbalanced by the chloride ion, causing evaporated ocean water solids to consist mostly of sodium chloride, or common table salt.
    [Show full text]
  • ACNP-62015A MOBILE ENERGY DEPOT Feasibility STUDY
    jiiiY O ' 1 0 4 2 2 '=rvT/i) Volume 1 of II ACNP-62015A AEC Research and Development Report P i 5 MOBILE ENERGY DEPOT FEASiBILITY STUDY - SUMMARY REPORT 13 July 1962 O / tument cogtalns restricted data as 19^ ^ ot the ^S^osure o^W^xon- jMne'rt.o an unauthorized oec- Work performed under Contract AT(30-1)-2931 for the United States Atomic Energy Commission ALLIS-CHALMERS MANUFACTURING COMPANY ATOMIC ENERGY DIVISION M ilw aukee 1, Wisconsin W tun CHMnris _ _ .. 4iirv«r I PISTRIBUTION OF THI IS UNLIMITED DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use wouid not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessariiy constitute or impiy its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessariiy state or reflect those of the United States Government or any agency thereof. DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. • • • • LEGAL NOTICE This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor Allis-Chalmers Manufacturing Company, nor any person acting on behalf of the Comm i ss ion or A lii s-Chaimers Manufacturing C o m p an y: A.
    [Show full text]
  • The Applications of Electrolysis in Chemical Industry
    graphs on Industrial GiiemisJij "' "''™ '*' " ""^"'^'" ^ "^^^"'^'*"^^'''"'^'^'^'^"^^"' n-TTTi"'n[-nnnrimnimn nriiiiiiiiiviiiniiiriiii ii i M ipt wliW^HM****'^')' " """ "'" m -CD PPLICATIONS EMIGAL INDUS! A, J, HALE JUWOPi'JA'OtJS^KSls Handle with EXTREME CARE This volume is damaged or brittle and CANNOT be repaired! • photocopy only if necessary • return to staff • do not put in bookdrop 1 J ^ Gerstein Science Information Centre 1 '''B ' 'i V ; r. %nm^ ru" M^x)u^ym/.^y/e^&^J}V9?vy^^^d^m^ 'j^ £i\ /^jy? X •> a u ^ Digitized by the Internet Archive in 2007 with funding from IVIicrosoft Corporation http://www.archive.org/details/applicationsofelOOhaleuoft n MONOGRAPHS ON INDUSTRIAL CHEMISTRY Edited by Sir Edward Thorpe, C.B., LL.D., F.R.S. Emeritus Professor of General Chemistry in the Imperial College of Science and Technology, South Kensington ; and formerly Principal of the Government Laboratory, London. INTRODUCTION TOURING the last four or five decades the AppU- ^^^ cations of Chemistry have experienced an extra- ordinary development, and there is scarcely an industry that has not benefited, directly or indirectly, from this expansion. Indeed, the Science trenches in greater or less degree upon all departments of human activity. Practically every division of Natural Science has now been linked up with it in the common service of man- kind. So ceaseless and rapid is this expansion that the recondite knowledge of one generation becomes a part of the technology of the next. Thus the conceptions of chemical dynamics of one decade become translated into the current practice of its successor ; the doctrines concerning chemical structure and constitution of one period form the basis of large-scale synthetical processes of another ; an obscure phenomenon like Catalysis is found to be capable of widespread application in manufacturing operations of the most diverse character.
    [Show full text]