Geology of Southwestern Alaska
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Kisaralik River
KISARALIK RIVER A WILD AND SCENIC RIVER ANALYSIS by the · . neritage Conservation & Recreation Service October 1979 Anchor an '. - .. ·.. :~ .• . ~~ ., ·. ARLIS .· .· Alaska Resources Uotary & Information Services AlM INTRODUCTION At the request of the Bureau of Land Management, the Heritage Conservation and Recreation Service made an independent study of the resources of the Kisaralik River area to determine the river's suitability for designation as a component of the National Wild and Scenic River System. In the Wild and Scenic Rivers Act (PL. 90-542) Congress stated: "It is hereby declareq to be the policy of the United States that certain selected rivers of the Nation which with their immediate envi:r:onments, possess outstandingly remarkable scenic, recreational, geologic, fish and wildlife, historic, cultural, or other similar values, shall be preserved in free-flowing condition, and that they and their immediate environments shall be protected for the benefit and enjoyment of present and future generations." Ibis study was made in compliance with ~he Act. An interagency field inspection was conducted of the Kisaralik River in July 1978. Participating in the inspection were: Bureau of Land Management U.s. Fish & Wildlife Service State of AI;aska, Division Heritage Conseravtion & of Parks Recreation Service The following analysis is largel~ based on information obtained during the interagency field inspection; the Kisaralik River Report of August 7-14, 1976, by BLM staff (unpublished); the BOR aerial reconaissance in 1977; and library materials. THE RIVER AND ITS SETTING ~eral Setting The 3,000-4,000 foot high Kuskokwim Mountains run from near the central Yukon River in a southwest direction to the Bering Sea. -
Pamphlet to Accompany Scientific Investigations Map 3131
Bedrock Geologic Map of the Seward Peninsula, Alaska, and Accompanying Conodont Data By Alison B. Till, Julie A. Dumoulin, Melanie B. Werdon, and Heather A. Bleick Pamphlet to accompany Scientific Investigations Map 3131 View of Salmon Lake and the eastern Kigluaik Mountains, central Seward Peninsula 2011 U.S. Department of the Interior U.S. Geological Survey Contents Introduction ....................................................................................................................................................1 Sources of data ....................................................................................................................................1 Components of the map and accompanying materials .................................................................1 Geologic Summary ........................................................................................................................................1 Major geologic components ..............................................................................................................1 York terrane ..................................................................................................................................2 Grantley Harbor Fault Zone and contact between the York terrane and the Nome Complex ..........................................................................................................................3 Nome Complex ............................................................................................................................3 -
Southwest Alaska Salmon Habitat Partnership Strategic Plan (2017)
Southwest Alaska Salmon Habitat Partnership Strategic Conservation Action Plan for Southwest Alaska Watersheds 2017 Update Preface In studying the history of the decline of the salmon runs of the Pacific Coast, it is striking to notice how invariably these declines are blamed on over-fishing. These statements come most often from those least acquainted with the subject and are frequently made to cover up other causes, which may be of their own making. While it is true that over-fishing is responsible for many declines, there is evidence to show that in numerous cases it is of minor or no consequence. The actual reasons are often found to be changes in the environment of the salmon due to natural and unnatural (man-made) conditions. This is especially true of the fresh water stages of its existence. Many examples could be cited. Some of the natural ones are cyclic climatic changes, floods, droughts, freezes, earthquakes, earth slides, beaver dams and increase in predators. On the other hand there are such man-made, or unnatural, causes as deforestation due to logging; hydro-electric, irrigation, flood control, and navigation projects; pollution, especially from pulp mills; soil conservation and reclamation schemes; gravel washing and mining operations; road construction such as stream culverts; insect control using poisonous sprays; and many others. The listing of these does not necessarily mean that all are inimical to the continuation of our salmon fisheries. It does mean, however, that if such projects are improperly and unwisely planned, the results will be disastrous to our fisheries. Alaska needs new industries, but not at the expense of her most important resource, which if properly cared for, will produce year after year. -
Wildlife Protection Guidelines for Alaska
Wildlife Protection Guidelines for Alaska Alaska Regional Response Team, Wildlife Protection Committee Revision 5 – August 2012 2018 Administrative Update Revision 5 – August 2012 Administrative Update: March 2018 1 Table of Contents I. Introduction ........................................................................................................................... G-5 A. Background G-5 B. Objectives ........................................................................................................................... G-5 C. Scope of Wildlife Protection Guidelines for Alaska ............................................................... G-6 1. Geographic Area ............................................................................................................. G-6 2. Wildlife Resources .......................................................................................................... G-8 3. Wildlife Resource Agencies ............................................................................................. G-8 D. Committee Organization and Development of Guidelines ................................................... G-8 1. Committee Organization ................................................................................................. G-8 2. Development of Guidelines ............................................................................................ G-9 E. Relationship to National Planning Requirements and Guidance .......................................... G-9 F. Procedures for Revisions and -
Alaska Park Science 19(1): Arctic Alaska Are Living at the Species’ Northern-Most to Identify Habitats Most Frequented by Bears and 4-9
National Park Service US Department of the Interior Alaska Park Science Region 11, Alaska Below the Surface Fish and Our Changing Underwater World Volume 19, Issue 1 Noatak National Preserve Cape Krusenstern Gates of the Arctic Alaska Park Science National Monument National Park and Preserve Kobuk Valley Volume 19, Issue 1 National Park June 2020 Bering Land Bridge Yukon-Charley Rivers National Preserve National Preserve Denali National Wrangell-St Elias National Editorial Board: Park and Preserve Park and Preserve Leigh Welling Debora Cooper Grant Hilderbrand Klondike Gold Rush Jim Lawler Lake Clark National National Historical Park Jennifer Pederson Weinberger Park and Preserve Guest Editor: Carol Ann Woody Kenai Fjords Managing Editor: Nina Chambers Katmai National Glacier Bay National National Park Design: Nina Chambers Park and Preserve Park and Preserve Sitka National A special thanks to Sarah Apsens for her diligent Historical Park efforts in assembling articles for this issue. Her Aniakchak National efforts helped make this issue possible. Monument and Preserve Alaska Park Science is the semi-annual science journal of the National Park Service Alaska Region. Each issue highlights research and scholarship important to the stewardship of Alaska’s parks. Publication in Alaska Park Science does not signify that the contents reflect the views or policies of the National Park Service, nor does mention of trade names or commercial products constitute National Park Service endorsement or recommendation. Alaska Park Science is found online at https://www.nps.gov/subjects/alaskaparkscience/index.htm Table of Contents Below the Surface: Fish and Our Changing Environmental DNA: An Emerging Tool for Permafrost Carbon in Stream Food Webs of Underwater World Understanding Aquatic Biodiversity Arctic Alaska C. -
NSF 03-021, Arctic Research in the United States
This document has been archived. Home is Where the Habitat is An Ecosystem Foundation for Wildlife Distribution and Behavior This article was prepared The lands and near-shore waters of Alaska remaining from recent geomorphic activities such by Page Spencer, stretch from 48° to 68° north latitude and from 130° as glaciers, floods, and volcanic eruptions.* National Park Service, west to 175° east longitude. The immense size of Ecosystems in Alaska are spread out along Anchorage, Alaska; Alaska is frequently portrayed through its super- three major bioclimatic gradients, represented by Gregory Nowacki, USDA Forest Service; Michael imposition on the continental U.S., stretching from the factors of climate (temperature and precipita- Fleming, U.S. Geological Georgia to California and from Minnesota to tion), vegetation (forested to non-forested), and Survey; Terry Brock, Texas. Within Alaska’s broad geographic extent disturbance regime. When the 32 ecoregions are USDA Forest Service there are widely diverse ecosystems, including arrayed along these gradients, eight large group- (retired); and Torre Arctic deserts, rainforests, boreal forests, alpine ings, or ecological divisions, emerge. In this paper Jorgenson, ABR, Inc. tundra, and impenetrable shrub thickets. This land we describe the eight ecological divisions, with is shaped by storms and waves driven across 8000 details from their component ecoregions and rep- miles of the Pacific Ocean, by huge river systems, resentative photos. by wildfire and permafrost, by volcanoes in the Ecosystem structures and environmental Ring of Fire where the Pacific plate dives beneath processes largely dictate the distribution and the North American plate, by frequent earth- behavior of wildlife species. -
Alaska Range
Alaska Range Introduction The heavily glacierized Alaska Range consists of a number of adjacent and discrete mountain ranges that extend in an arc more than 750 km long (figs. 1, 381). From east to west, named ranges include the Nutzotin, Mentas- ta, Amphitheater, Clearwater, Tokosha, Kichatna, Teocalli, Tordrillo, Terra Cotta, and Revelation Mountains. This arcuate mountain massif spans the area from the White River, just east of the Canadian Border, to Merrill Pass on the western side of Cook Inlet southwest of Anchorage. Many of the indi- Figure 381.—Index map of vidual ranges support glaciers. The total glacier area of the Alaska Range is the Alaska Range showing 2 approximately 13,900 km (Post and Meier, 1980, p. 45). Its several thousand the glacierized areas. Index glaciers range in size from tiny unnamed cirque glaciers with areas of less map modified from Field than 1 km2 to very large valley glaciers with lengths up to 76 km (Denton (1975a). Figure 382.—Enlargement of NOAA Advanced Very High Resolution Radiometer (AVHRR) image mosaic of the Alaska Range in summer 1995. National Oceanic and Atmospheric Administration image mosaic from Mike Fleming, Alaska Science Center, U.S. Geological Survey, Anchorage, Alaska. The numbers 1–5 indicate the seg- ments of the Alaska Range discussed in the text. K406 SATELLITE IMAGE ATLAS OF GLACIERS OF THE WORLD and Field, 1975a, p. 575) and areas of greater than 500 km2. Alaska Range glaciers extend in elevation from above 6,000 m, near the summit of Mount McKinley, to slightly more than 100 m above sea level at Capps and Triumvi- rate Glaciers in the southwestern part of the range. -
Yukon River Nulato Hills Lime Hills Alaska Range Yukon River Lowlands Seward Peninsula Yukon-Kuskokwim Delta Ray Mountains Ahklu
New Allakaket !! er !! iv !! H R k a e Alatna o z e l t r l a y g C k I o y n C e H r r e g k n e r Allakaket e k t Cre r e v r e Asiksa e i u e e C H K R k r P k a a a s C h h R n n s u i K v Kotzebue Sound Lowlands z i k e u k o r P e h r r t r k i r k k Selawik National u e k e i e e R ek u v u e H k il r i re Cr l C i C a u G v n u C n k R t i o s e la n k h a e ha r i k h r t il i i C e S g t C in u nu C Wildlife Refuge e h w H a r K r k S a e e l reek k e e o C e e ltlinkh h k Ta k r e S g r k W e k u e C h e e v o i n e r r e l e e e r C S R m l e k v o i C Deering k k r e L C e d x ! c u C r R r ! i o e C o D a r m Kada e k f R e ina C l f s re K Kobuk Ridges and Valleys e e K ek k i t o l p k s l o k S g e a lat p c ta ht a e n o i C u D k t k E r oha Creek na a r Al C C Cre a r e C e k C k e r r k k t e r e e ek e e l ek e o e i e r r v r k v C k k i C W ugh P ry i e R ar all g Slo C te e e le ic Lon s R r R k y i C C r k e C re M v e k e k r k k e a k e Map Area Extenitr B e e e r u r r D C K a i r B C h l e C o l v u k k c o y k i o H r m k g e A n e e a c e a u g H r R tla o e e e n C i o r k l n r a k a u R C n m e re n e a o k e y C o C c w b k o e r i a t a n C r k i r u a P e s I k Ca v o a H K M n h C C k e N d n i r oo e l Bb uckland C k u n ek it r l a e uk a re l o C h k ! C r e y C C e ! e L C ek a ree e r z na o E C u k e o r it a re h k C e z ol N s C y k N n s y e h K e i n e p e r n e ig k t i e y lo n k h s C G i ree e H ra o d M C k e o r l p K t d e n N O um e h k k o e z k J e ee k a ee e r Cr n K C B r e -
Fishery Management Report for Sport Fisheries in the Yukon Management Area, 2012
Fishery Management Report No. 14-31 Fishery Management Report for Sport Fisheries in the Yukon Management Area, 2012 by John Burr June 2014 Alaska Department of Fish and Game Divisions of Sport Fish and Commercial Fisheries Symbols and Abbreviations The following symbols and abbreviations, and others approved for the Système International d'Unités (SI), are used without definition in the following reports by the Divisions of Sport Fish and of Commercial Fisheries: Fishery Manuscripts, Fishery Data Series Reports, Fishery Management Reports, and Special Publications. All others, including deviations from definitions listed below, are noted in the text at first mention, as well as in the titles or footnotes of tables, and in figure or figure captions. Weights and measures (metric) General Mathematics, statistics centimeter cm Alaska Administrative all standard mathematical deciliter dL Code AAC signs, symbols and gram g all commonly accepted abbreviations hectare ha abbreviations e.g., Mr., Mrs., alternate hypothesis HA kilogram kg AM, PM, etc. base of natural logarithm e kilometer km all commonly accepted catch per unit effort CPUE liter L professional titles e.g., Dr., Ph.D., coefficient of variation CV meter m R.N., etc. common test statistics (F, t, χ2, etc.) milliliter mL at @ confidence interval CI millimeter mm compass directions: correlation coefficient east E (multiple) R Weights and measures (English) north N correlation coefficient cubic feet per second ft3/s south S (simple) r foot ft west W covariance cov gallon gal copyright degree (angular ) ° inch in corporate suffixes: degrees of freedom df mile mi Company Co. expected value E nautical mile nmi Corporation Corp. -
2012 Race Information
IDITAROD HISTORY – GENERAL INFO 2012 RACE INFORMATION 40th Race on 100 Year Old Trail TABLE OF CONTENTS Iditarod Trail Committee Board of Directors and Staff………………………………………………… 3 Introduction…………………..……………………………………………………………………………………... 4 Famous Names………………………………..……………………………………………………………….….. 7 1925 Serum Run To Nome…………………………………………………………………………….………. 8 History of the “Widows Lamp”……………………………………………………………………………….. 9 History of the Red Lantern……..…………………………………………………….…………….………… 9 What Does the Word “Iditarod” Mean?………………………………………………………….………… 9 Animal Welfare……………………………………………………………………………………………….……. 10 Dictionary of Mushing Terms………………………………………………….……………………….…….. 11 Iditarod Insider – GPS Tracking Program.………………………….…………………………….……… 12 Idita-Rider Musher Auction……………………………………..…………………………………….……….. 12 2012 Musher Bib Auction…….………………………………………………………………………….……… 12 Jr. Iditarod…………………....…………………………………………………………………………………….. 13 1978-2011 Jr. Iditarod Winners………………………………………………………………………………. 13 1973-2011 Race Champions & Red Lantern Winners………….…………………………………….. 14 2012 Idita-Facts…………………………………………………………………………………………………… 15 40th Race on 100 Year Old Trail……………………………….……………………………………………. 16 2012 Official Map of the Iditarod Trail…………………………………………………………………… 17 Directions from Downtown Anchorage to Campbell Airstrip/BLM ………….………….……… 18 Official Checkpoint Mileages…………………..…………………………………………………….……... 19 2012 Checkpoint Descriptions……………………………….………………………………………….….. 20 Description of the Iditarod Trail……………………………………………………………….….………. 23 2012 Official Race Rules…….………………………………………………………………………………. -
Geology of West-Central Alaska
UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY GEOLOGY OF WEST-CENTRAL ALASKA W.W. Patton, Jr., S.E. Box, E.J. Moll-Stalcup, and T.P. Miller Opcn-File Report OF 89-554 This reporz is preliminary and has not been reviewed for conformity with U.S. Geological Survcy editorial standards. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. CONTENTS Introduction Pre-mid-Cretaceous lithotectonic terranes Minchumina terrane Definition and distribution Description Telida subterrane East Fork subterrane Interpretation and correlation Nixon Fork terrane Definition and djstrib~ltion Descriptioa P~ecambrian metamorphic rocks Lower Paleozoic carbonate rocks Upper Paleozoic and Mesozoic clastic rocks Interpretation and correlation Innoko terrane Definition and distribution Description Interpretation and correlation Ruby terrane Definition and distribution Description Protolith age Agc of metamorphism Interpretations and correlations Angayucham-Tozitna terrane Definition and distribution Description Thc Slate Creek thrust pancl The Narvak thrust pancl The Kanuti thrust panel Interpretation and correlation Koyukuk terranc Definition and distribution Description Interpretation Overlap assemblages Mid- and Upper Cretaceous terrigenous sedimentary rocks Distribution Graywackc and rnudstonc turbidilcs Fluvial and shallow marine conglomerate, sandstone, and shale Marginal conglomerates Fluvial and shallow marine sandstone and shale Interpretation Mid- and Late Cretaceous -
Geology of the Prince William Sound and Kenai Peninsula Region, Alaska
Geology of the Prince William Sound and Kenai Peninsula Region, Alaska Including the Kenai, Seldovia, Seward, Blying Sound, Cordova, and Middleton Island 1:250,000-scale quadrangles By Frederic H. Wilson and Chad P. Hults Pamphlet to accompany Scientific Investigations Map 3110 View looking east down Harriman Fiord at Serpentine Glacier and Mount Gilbert. (photograph by M.L. Miller) 2012 U.S. Department of the Interior U.S. Geological Survey Contents Abstract ..........................................................................................................................................................1 Introduction ....................................................................................................................................................1 Geographic, Physiographic, and Geologic Framework ..........................................................................1 Description of Map Units .............................................................................................................................3 Unconsolidated deposits ....................................................................................................................3 Surficial deposits ........................................................................................................................3 Rock Units West of the Border Ranges Fault System ....................................................................5 Bedded rocks ...............................................................................................................................5