Comprehensive Phylogeny of Acariform Mites (Acariformes) Provides MARK Insights on the Origin of the Four-Legged Mites (Eriophyoidea), a Long Branch ⁎ Pavel B

Total Page:16

File Type:pdf, Size:1020Kb

Comprehensive Phylogeny of Acariform Mites (Acariformes) Provides MARK Insights on the Origin of the Four-Legged Mites (Eriophyoidea), a Long Branch ⁎ Pavel B Molecular Phylogenetics and Evolution 119 (2018) 105–117 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Comprehensive phylogeny of acariform mites (Acariformes) provides MARK insights on the origin of the four-legged mites (Eriophyoidea), a long branch ⁎ Pavel B. Klimova,b, , Barry M. OConnora, Philipp E. Chetverikovc, Samuel J. Boltond, Amir R. Pepatoe, Abdolazim L. Mortazavia, Andrey V. Tolstikovb, Gary R. Bauchanf, Ronald Ochoag a Department of Ecology and Evolutionary Biology, University of Michigan, 1109 Geddes Ave, Ann Arbor, MI 48109-1079, USA b Tyumen State University, Faculty of Biology, 10 Semakova Str., Tyumen 625003, Russia c Saint-Petersburg State University, Universitetskaya nab., 7/9, 199034 St. Petersburg, Russia d University of Arkansas, Fayetteville, AR 72701, USA e Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil f USDA, ARS, Electron and Confocal Microscopy Unit, Beltsville, MD 20705, USA g USDA, ARS, Systematic Entomology Laboratory, Beltsville, MD 20705, USA ARTICLE INFO ABSTRACT Keywords: Eriophyoid, or four-legged mites, represent a large and ancient radiation of exclusively phytophagous organisms Acariformes known from the Triassic (230 Mya). Hypothesizing phylogenetic relatedness of Eriophyoidea among mites is a Gall mites major challenge due to the absence of unambiguous morphological synapomorphies, resulting in ten published Phylogenetic position hypotheses placing eriophyoids in various places in the acariform tree of life. Here we test the evolutionary Long branch relationships of eriophyoids using six genes and a representative taxonomic sampling of acariform mites. The Massive basal extinction total evidence analysis places eriophyoids as the sister group of the deep soil-dwelling, vermiform family Nematalycidae (Endeostigmata). This arrangement was supported by the rDNA and CO1 partitions. In contrast, the nuclear protein partition (genes EF1-α, SRP54, HSP70) suggests that Eriophyoidea is sister to a lineage including Tydeidae, Ereynetidae, and Eupodidae (Eupodina: Trombidiformes). On both of these alternative topologies, eriophyoids appear as a long branch, probably involving the loss of basal diversity in early evolution. We analyze this result by using phylogenetically explicit hypothesis testing, investigating the phylogenetic signal from individual genes and rDNA stem and loop regions, and removing long branches and rogue taxa. Regardless of the two alternative placements, (i) the cheliceral morphology of eriophyoids, one of the traits deemed phy- logenetically important, was likely derived directly from the plesiomorphic acariform chelicerae rather than from the modified chelicerae of some trombidiform lineages with a reduced fixed digit; and (ii) two potential synapomorphies of Eriophyoidea+Raphignathina (Trombidiformes) related to the reduction of genital papillae and to the terminal position of PS segment can be dismissed as result of convergent evolution. Our analyses substantially narrow the remaining available hypotheses on eriophyoid relationships and provide insights on the early evolution of acariform mites. 1. Introduction cells and sucking up their liquid contents (Lindquist and Amrine, 1996). Feeding activities of many species cause formation of characteristic Eriophyoid mites (3 extant families, over 350 described genera and galls and other plant tissue abnormalities (hence, another vernacular 4400 species) are an exclusively phytophagous lineage representing one name, 'gall mites'). Species that do not form galls are free-living on of the largest chelicerate radiations, with fossils known from the plant surfaces and, less often, live inside plant tissues (Chetverikov, Triassic (Schmidt et al., 2012). Morphologically, eriophyoids are dis- 2015; Chetverikov and Petanović, 2016; Keifer, 1975). The host plants tinguishable from other mites by being vermiform, four-legged organ- include mostly angiosperms (flowering plants) and gymnosperms (e.g., isms (hence, the vernacular name, 'four-legged mites'). The chelicerae conifers). Gymnosperms (Gerson, 1996), paleozoic progymnosperms or of eriophyoids are modified into stylets adapted for insertion into plant early seed ferns have been cited as ancestral host plants (Bagnjuk et al., ⁎ Corresponding author at: Department of Ecology and Evolutionary Biology, University of Michigan, 1109 Geddes Ave, Ann Arbor, MI 48109-1079, USA. E-mail address: [email protected] (P.B. Klimov). https://doi.org/10.1016/j.ympev.2017.10.017 Received 16 April 2017; Received in revised form 13 October 2017; Accepted 22 October 2017 Available online 23 October 2017 1055-7903/ © 2017 Elsevier Inc. All rights reserved. P.B. Klimov et al. Molecular Phylogenetics and Evolution 119 (2018) 105–117 Fig. 1. A member of Eriophyoidea, (A) wheat curl mite, Aceria erecti (female) and representatives of two acariform lineages considered to be closest relatives of eriophyoids: the deep soil mite (B) Cunliffea sp. (Endeostigmata: Nematalycidae) and the citrus yellow mite, (C) Brachytydeus formosa (Trombidiformes: Eupodina: Tydeidae). Photo credit: Gary Bauchan (USDA ARS Electron and Confocal Microscope Unit, Beltsville, Maryland), Ronald Ochoa (USDA ARS Systematic Entomology Laboratory, Beltsville, Maryland). 1998; Schmidt et al., 2012). Secondary associations, resulting from proposing an array of disparate acariform sister groups: Alycidae, recent host shifts from one of the main host lineages, involve modern Nematalycidae (Endeostigmata), tydeoid families Tydeidae horsetails and ferns (Gerson, 1996; Petanović et al., 2015). The eco- +Ereynetidae, Penthaleidae, Tarsonemoidea, Raphignathae, nomic importance of eriophyoid mites is linked to their ability to Demodecidae, Tenuipalpidae, Tetranychoidea (Trombidiformes), or transmit pathogenic viruses among hosts plants (Oldfield and Proeseler, Astigmata (Sarcoptiformes) (reviewed in Lindquist, 1996, 1998). Some 1996) and to the formation of galls (e. g., erineum patches, deformation of these hypotheses were based on a single, conspicuous morphological of buds), and other symptoms (e.g., leaf spotting), which are associated character or ecological characteristic. These include: the reduction of with changes in plant physiology (Westphal and Manson, 1996). The the posterior legs (hence Tarsonemoidea and Tenuipalpidae), vermi- most important pests attack grain, bulb, berry and nut crops as well as form shape (hence Demodecidae and Nematalycidae), the absence of a an array of ornamental plants (Lindquist and Amrine, 1996). tracheal system (hence Astigmata), or obligate phytophagy (hence The general morphology of eriophyoids is highly specialized for Tetranychoidea). Other hypotheses involve more in-depth analyses of plant feeding, especially the mouthparts; eriophyoids also developed a multiple character states and their evolutionary polarities (e.g., En- distinctly vermiform body (Fig. 1A), a feature known for a few other deostigmata and the trombidiform families belonging to Eupodina). specialized mite linages, e.g., those mimicking ant larvae (Perperipes, However, all evidence comes from ambiguous synapomorphies, in- Larvamima), living in mammalian hair follicles or dermal glands (De- cluding characters representing evolutionary transformation series, modecidae), interstitial spaces of deep soil (Nematalycidae) or the hy- where the eriophyoid state is the hypothetical ultimate evolutionary porheic zone of rivers (Pseudowandesia, Stygothrombium). At the same step (e.g., evolutionary “trend” toward elongation of chelicerae in time, the eriophyoid morphology is highly simplified, especially with presumably derived Alycidae), characters where the ancestral state regard to the number of legs (two pairs instead of four) and funda- cannot be determined based on comparison with other lineages (e.g., mental setae/solenidia, probably due to the mites’ remarkably small the absence of a tracheal system), using characters with too broad or size (100–500, although usually 150–250 µm). As a result, eriophyoids perhaps imprecise definitions (suppression of eugenital setae in females display a combination of numerous autapomorphies and plesiomor- but not in males), or ones that may be highly correlated with the ver- phies, some of which may be due to reductive character losses influ- miform body and hence are likely to be homoplastic due to functional enced by extreme miniaturization. There is no unambiguous morpho- constraints (e.g., the presence of opisthosomal annuli). The currently logical synapomorphy allowing placement of Eriophyoidea in a major accepted classification, which suggests that the Eriophyoidea and Ty- acariform lineage, such as Trombidiformes or any monophyletic group deoidea are related superfamilies, places both of these superfamilies of Endeostigmata (Lindquist, 1996, 2017). into Eupodina, a higher-level lineage in Trombidiformes (Lindquist For over a century, phylogenetic placement of Eriophyoidea has et al., 2009; Zhang et al., 2011). been a major challenge and the subject of active debates, with authors Recent molecular studies have presented contradictory evidence on 106 P.B. Klimov et al. Molecular Phylogenetics and Evolution 119 (2018) 105–117 the origin of eriophyoids. Mitochondrial DNA suggested that erio- 28S); three are nuclear protein-coding (EF1-α, SRP54, HSP70); and one phyoids are either a basal divergence from all acariform mites (Xue (CO1) is a mitochondrial, protein-coding
Recommended publications
  • Human Parasitisation with Nymphal Dermacentor Auratus Supino, 1897 (Acari: Ixodoiidea: Ixodidae)
    Veterinary Practitioner Vol. 20 No. 2 December 2019 HUMAN PARASITISATION WITH NYMPHAL DERMACENTOR AURATUS SUPINO, 1897 (ACARI: IXODOIIDEA: IXODIDAE) Saidul Islam1, Prabhat Chandra Sarmah2 and Kanta Bhattacharjee3 Department of Parasitology, College of Veterinary Science Assam Agricultural University, Khanapara, Guwahati- 781 022, Assam, India Received on: 29.09.2019 ABSTRACT Accepted on: 03.11.2019 Human parasitisation with nymphal tick and its morhphology has been described. First author accidentally acquired with three nymphal tick infestation from wilderness. Nymphs were attached in hand and both the arm pits leading to intense itching, oedematous swelling and pinkish skin discolouration at the site of attachment. On sixth day of infestation there was mild pyrexia, the differential leukocytic count showed polymorphs 68%, lymphocytes 27%, monocytes 2% and eosinophils 3%. Though the conditions were ameliorated after steroid therapy, yet, the site of attachment was indurated for 8 months which gradually resolved. A nymph replete with blood meal was put in a desiccator with sufficient humidity at room temperature of 170C for moulting that transformed into adult female in 43 days measuring 5.0 X 5.5 mm in size. Detail morphological study confirmed the species as Dermacentor auratus Supino, 1897. Significance of human tick parasitisation has been reviewed and warranted for transmission of possible vector borne pathogens. Key words: Dermacentor auratus, nymph, human, India Introduction Result and Discussion Ticks form a major group of ectoparasites of animals, Tick species and morphology birds and reptiles to cause different types of direct injuries The partially fed nymphs were brown coloured measuring and transmit infectious diseases. Human parasitisation 2.0 X 2.5 mm in size with deep cervical groove, nearly circular by tick, although not common as compared to the animals, small scutum broadest in the middle and 3/3 dentition in the has been recorded in different parts of the world (Wassef hypostome.
    [Show full text]
  • Lecture Notes: the Mathematics of Phylogenetics
    Lecture Notes: The Mathematics of Phylogenetics Elizabeth S. Allman, John A. Rhodes IAS/Park City Mathematics Institute June-July, 2005 University of Alaska Fairbanks Spring 2009, 2012, 2016 c 2005, Elizabeth S. Allman and John A. Rhodes ii Contents 1 Sequences and Molecular Evolution 3 1.1 DNA structure . .4 1.2 Mutations . .5 1.3 Aligned Orthologous Sequences . .7 2 Combinatorics of Trees I 9 2.1 Graphs and Trees . .9 2.2 Counting Binary Trees . 14 2.3 Metric Trees . 15 2.4 Ultrametric Trees and Molecular Clocks . 17 2.5 Rooting Trees with Outgroups . 18 2.6 Newick Notation . 19 2.7 Exercises . 20 3 Parsimony 25 3.1 The Parsimony Criterion . 25 3.2 The Fitch-Hartigan Algorithm . 28 3.3 Informative Characters . 33 3.4 Complexity . 35 3.5 Weighted Parsimony . 36 3.6 Recovering Minimal Extensions . 38 3.7 Further Issues . 39 3.8 Exercises . 40 4 Combinatorics of Trees II 45 4.1 Splits and Clades . 45 4.2 Refinements and Consensus Trees . 49 4.3 Quartets . 52 4.4 Supertrees . 53 4.5 Final Comments . 54 4.6 Exercises . 55 iii iv CONTENTS 5 Distance Methods 57 5.1 Dissimilarity Measures . 57 5.2 An Algorithmic Construction: UPGMA . 60 5.3 Unequal Branch Lengths . 62 5.4 The Four-point Condition . 66 5.5 The Neighbor Joining Algorithm . 70 5.6 Additional Comments . 72 5.7 Exercises . 73 6 Probabilistic Models of DNA Mutation 81 6.1 A first example . 81 6.2 Markov Models on Trees . 87 6.3 Jukes-Cantor and Kimura Models .
    [Show full text]
  • The Predatory Mite (Acari, Parasitiformes: Mesostigmata (Gamasina); Acariformes: Prostigmata) Community in Strawberry Agrocenosis
    Acta Universitatis Latviensis, Biology, 2004, Vol. 676, pp. 87–95 The predatory mite (Acari, Parasitiformes: Mesostigmata (Gamasina); Acariformes: Prostigmata) community in strawberry agrocenosis Valentîna Petrova*, Ineta Salmane, Zigrîda Çudare Institute of Biology, University of Latvia, Miera 3, Salaspils LV-2169, Latvia *Corresponding author, E-mail: [email protected]. Abstract Altogether 37 predatory mite species from 14 families (Parasitiformes and Acariformes) were collected using leaf sampling and pit-fall trapping in strawberry fi elds (1997 - 2001). Thirty- six were recorded on strawberries for the fi rst time in Latvia. Two species, Paragarmania mali (Oud.) (Aceosejidae) and Eugamasus crassitarsis (Hal.) (Parasitidae) were new for the fauna of Latvia. The most abundant predatory mite families (species) collected from strawberry leaves were Phytoseiidae (Amblyseius cucumeris Oud., A. aurescens A.-H., A. bicaudus Wainst., A. herbarius Wainst.) and Anystidae (Anystis baccarum L.); from pit-fall traps – Parasitidae (Poecilochirus necrophori Vitz. and Parasitus lunaris Berl.), Aceosejidae (Leioseius semiscissus Berl.) and Macrochelidae (Macrocheles glaber Müll). Key words: agrocenosis, diversity, predatory mites, strawberry. Introduction Predatory mites play an important ecological role in terrestrial ecosystems and they are increasingly being used in management for biocontrol of pest mites, thrips and nematodes (Easterbrook 1992; Wright, Chambers 1994; Croft et al. 1998; Cuthbertson et al. 2003). Many of these mites have a major infl uence on nutrient cycling, as they are predators on other arthropods (Santos 1985; Karg 1993; Koehler 1999). In total, investigations of mite fauna in Latvia were made by Grube (1859), who found 28 species, Eglītis (1954) – 50 species, Kuznetsov and Petrov (1984) – 85 species, Lapiņa (1988) – 207 species, and Salmane (2001) – 247 species.
    [Show full text]
  • Habitat Associations of Ixodes Scapularis (Acari: Ixodidae) in Syracuse, New York
    SUNY College of Environmental Science and Forestry Digital Commons @ ESF Honors Theses 5-2016 Habitat Associations of Ixodes Scapularis (Acari: Ixodidae) in Syracuse, New York Brigitte Wierzbicki Follow this and additional works at: https://digitalcommons.esf.edu/honors Part of the Entomology Commons Recommended Citation Wierzbicki, Brigitte, "Habitat Associations of Ixodes Scapularis (Acari: Ixodidae) in Syracuse, New York" (2016). Honors Theses. 106. https://digitalcommons.esf.edu/honors/106 This Thesis is brought to you for free and open access by Digital Commons @ ESF. It has been accepted for inclusion in Honors Theses by an authorized administrator of Digital Commons @ ESF. For more information, please contact [email protected], [email protected]. HABITAT ASSOCIATIONS OF IXODES SCAPULARIS (ACARI: IXODIDAE) IN SYRACUSE, NEW YORK By Brigitte Wierzbicki Candidate for Bachelor of Science Environmental and Forest Biology With Honors May,2016 APPROVED Thesis Project Advisor: Af ak Ck M issa K. Fierke, Ph.D. Second Reader: ~~ Nicholas Piedmonte, M.S. Honors Director: w44~~d. William M. Shields, Ph.D. Date: ~ / b / I & r I II © 2016 Copyright B. R. K. Wierzbicki All rights reserved. 111 ABSTRACT Habitat associations of Jxodes scapularis Say were described at six public­ use sites within Syracuse, New York. Adult, host-seeking blacklegged ticks were collected using tick flags in October and November, 2015 along two 264 m transects at each site, each within a distinct forest patch. We examined the association of basal area, leaf litter depth, and percent understory cover with tick abundance using negative binomial regression models. Models indicated tick abundance was negatively associated with percent understory cover, but was not associated with particular canopy or understory species.
    [Show full text]
  • Influence of Parasites on Fitness Parameters of the European Hedgehog (Erinaceus Europaeus)
    Influence of parasites on fitness parameters of the European hedgehog (Erinaceus europaeus ) Zur Erlangung des akademischen Grades eines DOKTORS DER NATURWISSENSCHAFTEN (Dr. rer. nat.) Fakultät für Chemie und Biowissenschaften Karlsruher Institut für Technologie (KIT) – Universitätsbereich vorgelegte DISSERTATION von Miriam Pamina Pfäffle aus Heilbronn Dekan: Prof. Dr. Stefan Bräse Referent: Prof. Dr. Horst Taraschewski Korreferent: Prof. Dr. Agustin Estrada-Peña Tag der mündlichen Prüfung: 19.10.2010 For my mother and my sister – the strongest influences in my life “Nose-to-nose with a hedgehog, you get a chance to look into its eyes and glimpse a spark of truly wildlife.” (H UGH WARWICK , 2008) „Madame Michel besitzt die Eleganz des Igels: außen mit Stacheln gepanzert, eine echte Festung, aber ich ahne vage, dass sie innen auf genauso einfache Art raffiniert ist wie die Igel, diese kleinen Tiere, die nur scheinbar träge, entschieden ungesellig und schrecklich elegant sind.“ (M URIEL BARBERY , 2008) Index of contents Index of contents ABSTRACT 13 ZUSAMMENFASSUNG 15 I. INTRODUCTION 17 1. Parasitism 17 2. The European hedgehog ( Erinaceus europaeus LINNAEUS 1758) 19 2.1 Taxonomy and distribution 19 2.2 Ecology 22 2.3 Hedgehog populations 25 2.4 Parasites of the hedgehog 27 2.4.1 Ectoparasites 27 2.4.2 Endoparasites 32 3. Study aims 39 II. MATERIALS , ANIMALS AND METHODS 41 1. The experimental hedgehog population 41 1.1 Hedgehogs 41 1.2 Ticks 43 1.3 Blood sampling 43 1.4 Blood parameters 45 1.5 Regeneration 47 1.6 Climate parameters 47 2. Hedgehog dissections 48 2.1 Hedgehog samples 48 2.2 Biometrical data 48 2.3 Organs 49 2.4 Parasites 50 3.
    [Show full text]
  • Trampling, Litter Removal, and Variations in the Composition And
    Zoological Studies 48(2): 162-173 (2009) Trampling, Litter Removal, and Variations in the Composition and Relative Abundance of Soil Arthropods in a Subtropical Hardwood Forest Ya-Fu Lee1,2, Yen-Min Kuo1,2, Sheng-Shan Lu2, Duen-Yuh Chen1, Hao-Jiang Jean1, and Jung-Tai Chao2,* 1Department of Life Sciences and Institute of Biodiversity, National Cheng Kung University, Tainan 701, Taiwan 2Division of Forest Protection, Taiwan Forest Research Institute, Taipei 100, Taiwan (Accepted July 8, 2008) Ya-Fu Lee, Yen-Min Kuo, Sheng-Shan Lu, Duen-Yuh Chen, Hao-Jiang Jean, and Jung-Tai Chao (2009) Trampling, litter removal, and variations in the composition and relative abundance of soil arthropods in a subtropical hardwood forest. Zoological Studies 48(2): 162-173. Relationships of human trampling and litter removal with physicochemical properties and arthropod diversity of forest soils were studied in a secondary hardwood forest in northern Taiwan. In 4 sampling sessions, 360 soil cores were extracted from 24 randomly chosen replicate plots, representing soil samples from (1) densely vegetated areas, (2) bare trails as a result of non-mechanical trampling, and (3) ground underneath nylon-mesh litter traps set up on trails. We collected 7 classes and at least 17 orders of arthropods, with an estimated mean density of 13,982 ind./m2. The Collembola and Acari were the most common groups. The former dominated in abundance, comprising 8 families (2.5 ± 0.1 per core), followed by the Acari (e.g., oribatids) with at least 37 families (2.2 ± 0.1 per core). The density and number of taxa of arthropod overall, as well as the density and number of families of springtails and oribatids in particular, were highest in soil samples from vegetated areas.
    [Show full text]
  • Information to Users
    INFORMATION TO USERS The most advanced technology has been used to photograph and reproduce this manuscript from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. University Microfilms International A Bell & Howell Information Company 300 North Zeeb Road. Ann Arbor, Ml 48106-1346 USA 313/761-4700 800/521-0600 Order Number 9111799 Evolutionary morphology of the locomotor apparatus in Arachnida Shultz, Jeffrey Walden, Ph.D.
    [Show full text]
  • Cystoidosoma Hermaphroditus Sp. N., the First Representative of the Quill
    © Institute of Parasitology, Biology Centre CAS Folia Parasitologica 2015, 62: 037 doi: 10.14411/fp.2015.037 http://folia.paru.cas.cz Research Article Cystoidosoma hermaphroditus [ of the quill mite family Ascouracaridae (Acari: Astigmata: Fabio Akashi Hernandes1 and Barry M. OConnor2 1 Departamento de Zoologia, Universidade Estadual Paulista, Rio Claro, São Paulo, Brazil; 2 Department of Ecology and Evolutionary Biology, Museum of Zoology, University of Michigan, Ann Arbor, Michigan, USA Abstract: The mite family Ascouracaridae Gaud et Atyeo, 1976 contains large-sized mites (mostly > 1 mm) which live inside the quills of birds of several orders. To date, no representative of this family has been found associated with the order Strigiformes (owls). In this paper, a new species of this family, Cystoidosoma hermaphroditus sp. n., is described from the tropical screech owl, Megascops choliba (Vieillot) (Aves: Strigiformes) from Brazil. This species is unique in having an external spermaduct, a primary duct and a rudimentary bursa copulatrix[ to adults of the genus Cystoidosoma Gaud et Atyeo, 1976 of the world is presented. Keywords: feather mites, Megascops choliba, [ The family Ascouracaridae Gaud et Atyeo, 1976 (Acari: from Brazil (Valim et al. 2011): Ascouracarus chordeili Astigmata) contains large-sized mites (> 1 mm) that inhab- Mironov et Fain, 2003 from Chordeiles rupestris (Spix) it the quills of several bird orders (Gaud and Atyeo 1996, (Caprimulgiformes), Cystoidosoma psittacivorae Dabert !"##$%&[ et Ehrnsberger, 1992 from Aratinga aurea (Gmelin), and a subfamily of the Syringobiidae Trouessart, 1897 by Gaud Cystoidosoma aratingae Mironov et Fain, 2003 from Arat- and Atyeo (1976) and later was elevated to family by Gaud inga jandaya (Gmelin) (Psittaciformes).
    [Show full text]
  • Community Structure of Mites (Acari: Acariformes and Parasitiformes) in Nests of the Semi-Collared Flycatcher (Ficedula Semitorquata) R
    International Research Journal of Natural Sciences Vol.3, No.3, pp.48-53, December 2015 ___Published by European Centre for Research Training and Development UK (www.eajournals.org) COMMUNITY STRUCTURE OF MITES (ACARI: ACARIFORMES AND PARASITIFORMES) IN NESTS OF THE SEMI-COLLARED FLYCATCHER (FICEDULA SEMITORQUATA) R. Davidova, V. Vasilev, N. Ali, J. Bakalova Konstantin Preslavsky University of Shumen, 115, Universitetska Str., Shumen, 9700, Bulgaria. ABSTRACT: The aims of the present paper are to establish the specific structure of communities of prostigmatic and mesostigmatic mites in nests of the semi-collared flycatcher (Ficedula semitorquata) and to compare the fauna with the mites in nests of two other European flycatchers. For analysis of community structure of mites were used the indices: prevalence, relative density, mean intensity and dominance. Mite communities are strongly dominated by the species Dermanyssus gallinae and Ornithonyssus sylviarum, which were found with the highest frequency and dominance. The mite communities are characterized by a large number of subrecedent species. KEYWORDS: Acariformes, Parasitiformes, Nest of Bird, Community Structure INTRODUCTION The nests of different species of birds are an example of a fairly unstable and isolated habitat, with its own dependent on it specific fauna which involves different groups of invertebrate animals. One of the components of this fauna which demonstrates particular abundance is the arthropods, and more specifically, the mites. The studies of Parasitiformes show that mesostigmatic mites living in birds' nests vary both in terms of their species affiliation and the structure of their communities [4, 8]. Highly important with respect to veterinary science and medicine are a number of species, such as Ornithonyssus bursa, Ornithonyssus sylviarum, Dermanyssus gallinae harboured by birds, Ornithonyssus bacoti, harboured by rodents, etc.
    [Show full text]
  • Arachnida, Solifugae) with Special Focus on Functional Analyses and Phylogenetic Interpretations
    HISTOLOGY AND ULTRASTRUCTURE OF SOLIFUGES Comparative studies of organ systems of solifuges (Arachnida, Solifugae) with special focus on functional analyses and phylogenetic interpretations HISTOLOGIE UND ULTRASTRUKTUR DER SOLIFUGEN Vergleichende Studien an Organsystemen der Solifugen (Arachnida, Solifugae) mit Schwerpunkt auf funktionellen Analysen und phylogenetischen Interpretationen I N A U G U R A L D I S S E R T A T I O N zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) an der Mathematisch-Naturwissenschaftlichen Fakultät der Ernst-Moritz-Arndt-Universität Greifswald vorgelegt von Anja Elisabeth Klann geboren am 28.November 1976 in Bremen Greifswald, den 04.06.2009 Dekan ........................................................................................................Prof. Dr. Klaus Fesser Prof. Dr. Dr. h.c. Gerd Alberti Erster Gutachter .......................................................................................... Zweiter Gutachter ........................................................................................Prof. Dr. Romano Dallai Tag der Promotion ........................................................................................15.09.2009 Content Summary ..........................................................................................1 Zusammenfassung ..........................................................................5 Acknowledgments ..........................................................................9 1. Introduction ............................................................................
    [Show full text]
  • Phylogeny Codon Models • Last Lecture: Poor Man’S Way of Calculating Dn/Ds (Ka/Ks) • Tabulate Synonymous/Non-Synonymous Substitutions • Normalize by the Possibilities
    Phylogeny Codon models • Last lecture: poor man’s way of calculating dN/dS (Ka/Ks) • Tabulate synonymous/non-synonymous substitutions • Normalize by the possibilities • Transform to genetic distance KJC or Kk2p • In reality we use codon model • Amino acid substitution rates meet nucleotide models • Codon(nucleotide triplet) Codon model parameterization Stop codons are not allowed, reducing the matrix from 64x64 to 61x61 The entire codon matrix can be parameterized using: κ kappa, the transition/transversionratio ω omega, the dN/dS ratio – optimizing this parameter gives the an estimate of selection force πj the equilibrium codon frequency of codon j (Goldman and Yang. MBE 1994) Empirical codon substitution matrix Observations: Instantaneous rates of double nucleotide changes seem to be non-zero There should be a mechanism for mutating 2 adjacent nucleotides at once! (Kosiol and Goldman) • • Phylogeny • • Last lecture: Inferring distance from Phylogenetic trees given an alignment How to infer trees and distance distance How do we infer trees given an alignment • • Branch length Topology d 6-p E 6'B o F P Edo 3 vvi"oH!.- !fi*+nYolF r66HiH- .) Od-:oXP m a^--'*A ]9; E F: i ts X o Q I E itl Fl xo_-+,<Po r! UoaQrj*l.AP-^PA NJ o - +p-5 H .lXei:i'tH 'i,x+<ox;+x"'o 4 + = '" I = 9o FF^' ^X i! .poxHo dF*x€;. lqEgrE x< f <QrDGYa u5l =.ID * c 3 < 6+6_ y+ltl+5<->-^Hry ni F.O+O* E 3E E-f e= FaFO;o E rH y hl o < H ! E Y P /-)^\-B 91 X-6p-a' 6J.
    [Show full text]
  • New Species of Fossil Oribatid Mites (Acariformes, Oribatida), from the Lower Cretaceous Amber of Spain
    Cretaceous Research 63 (2016) 68e76 Contents lists available at ScienceDirect Cretaceous Research journal homepage: www.elsevier.com/locate/CretRes New species of fossil oribatid mites (Acariformes, Oribatida), from the Lower Cretaceous amber of Spain * Antonio Arillo a, , Luis S. Subías a, Alba Sanchez-García b a Departamento de Zoología y Antropología Física, Facultad de Biología, Universidad Complutense, E-28040 Madrid, Spain b Departament de Dinamica de la Terra i de l'Ocea and Institut de Recerca de la Biodiversitat (IRBio), Facultat de Geologia, Universitat de Barcelona, E- 08028 Barcelona, Spain article info abstract Article history: Mites are relatively common and diverse in fossiliferous ambers, but remain essentially unstudied. Here, Received 12 November 2015 we report on five new oribatid fossil species from Lower Cretaceous Spanish amber, including repre- Received in revised form sentatives of three superfamilies, and five families of the Oribatida. Hypovertex hispanicus sp. nov. and 8 February 2016 Tenuelamellarea estefaniae sp. nov. are described from amber pieces discovered in the San Just outcrop Accepted in revised form 22 February 2016 (Teruel Province). This is the first time fossil oribatid mites have been discovered in the El Soplao outcrop Available online 3 March 2016 (Cantabria Province) and, here, we describe the following new species: Afronothrus ornosae sp. nov., Nothrus vazquezae sp. nov., and Platyliodes sellnicki sp. nov. The taxa are discussed in relation to other Keywords: Lamellareidae fossil lineages of Oribatida as well as in relation to their modern counterparts. Some of the inclusions Neoliodidae were imaged using confocal laser scanning microscopy, demonstrating the potential of this technique for Nothridae studying fossil mites in amber.
    [Show full text]