SOME STABILITY RELATIONS in the SYSTEM Mn-Oz-Hzo at 25" and ONE ATMOSPHERE TOTAL PRESSURE Ownrc Bnrcrnn, H Art:Ard,U N'irtersity, Cambridge, M Assachwsetts
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Metamorphism of Sedimentary Manganese Deposits
Acta Mineralogica-Petrographica, Szeged, XX/2, 325—336, 1972. METAMORPHISM OF SEDIMENTARY MANGANESE DEPOSITS SUPRIYA ROY ABSTRACT: Metamorphosed sedimentary deposits of manganese occur extensively in India, Brazil, U. S. A., Australia, New Zealand, U. S. S. R., West and South West Africa, Madagascar and Japan. Different mineral-assemblages have been recorded from these deposits which may be classi- fied into oxide, carbonate, silicate and silicate-carbonate formations. The oxide formations are represented by lower oxides (braunite, bixbyite, hollandite, hausmannite, jacobsite, vredenburgite •etc.), the carbonate formations by rhodochrosite, kutnahorite, manganoan calcite etc., the silicate formations by spessartite, rhodonite, manganiferous amphiboles and pyroxenes, manganophyllite, piedmontite etc. and the silicate-carbonate formations by rhodochrosite, rhodonite, tephroite, spessartite etc. Pétrographie and phase-equilibia data indicate that the original bulk composition in the sediments, the reactions during metamorphism (contact and regional and the variations and effect of 02, C02, etc. with rise of temperature, control the mineralogy of the metamorphosed manga- nese formations. The general trend of formation and transformation of mineral phases in oxide, carbonate, silicate and silicate-carbonate formations during regional and contact metamorphism has, thus, been established. Sedimentary manganese formations, later modified by regional or contact metamorphism, have been reported from different parts of the world. The most important among such deposits occur in India, Brazil, U.S.A., U.S.S.R., Ghana, South and South West Africa, Madagascar, Australia, New Zealand, Great Britain, Japan etc. An attempt will be made to summarize the pertinent data on these metamorphosed sedimentary formations so as to establish the role of original bulk composition of the sediments, transformation and reaction of phases at ele- vated temperature and varying oxygen and carbon dioxide fugacities in determin- ing the mineral assemblages in these deposits. -
JAN Iia 20U T6T1/V
IN REPLY REFER TO: UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY WASHINGTON 25. D.C. November 19, 1956 AEC-193/7 Mr. Robert D. Nininger Assistant Director for Exploration Division of Bav Materials U* S. Atomic Energy Commission Washington 25, D. C, Dear Bobs Transmitted herewith are three copies of TEI-622, "The crystal chemistry and mineralogy of vanadium," by Ho-ward T. Evans, Jr. Me are asking Mr. Hosted to approve our plan to publish this report as a chapter of a Geological Survey professional paper on miner alogy and geochemistry of the ores of the Colorado Plateau. Aelrnovledg- ment of AEC sponsorship will be made in the introductory chapter* Sincerely yours, r ^ O U—— TV , Z^*i—w«__ ™~ W. H. Bradley Chief Geoldigist .JAN iia 20U T6T1/V Geology and 8$i:aeralQgy This document consists of k-2 pages* Series A» Howard T. Erans, Jr, Trace Elements Investigations Report 622 This preliminary report is distributed without editorial and technical review for conformity with official standards and nomenclature. It is not for public inspection or quotation* *This report concerns work done on behalf of the Division of Raw Materials of the U. S« Atomic Energy Commission* - TEI-622 AHD MIHERALQ6T Distribution (Series A) Ro. of copies Atomic Energy Commission, Washington .»**«»..*»..«*»..««..*... 2 Division of Rs¥ Materials, Albuquerque ,...****.*.«.»*.....*.. 1 Division of Raw Materials, Austin »«,..«.»...»*.»...*«..*...«» 1 Diylsion of Raw Materials, Butte *«*,.»».*..,*...».»......*.*. 1 Division of Raw Materials, Casper ............a............... 1 Division of Raw Ifeterials, Denver ,........»...».....«.,.*..... 1 Division of Raw Materials, Ishpeming .................a....... 1 Division of Raw Materials, Pnoenix ...a.....,....*........*... 1 Division of Eaw Materials, Rapid City ....................... -
Mineral Processing
Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19 -
Compositional Characteristics of Kinoshitatite from the Sausar Group
American Mineralogist, Volume 74, pages 200-202, 1989 Compositionalcharacteristics of kinoshitatite from the SausarGroup, India SoNrN,q.rHD,c.scuprA., Slun Crr,cxRAnonrr, Puul.r SnNcurra, P. K. BnarrAcHARyA! H. BlNrn"rnn Centre of Advanced Study in Economic Geology, Department of Geological Sciences,Jadavpur University, Calcutta-700 032, India M. Furuoxe Department of Geology, Kyushu University, Fukuoka, Japan Anstnlcr Ba-rich and Ba-poor micas with varying Mn and Mg content in octahedralsites coexist in isolated pockets in braunite-bixbyite-hausmanniteores that have been invaded by late silicic pegmatite and carbonateveins in the SausarGroup, India. The micas are secondary in nature and are pseudomorphsafter carbonatesand alkali feldspars.One of the micas approachesclosely synthetic end-memberkinoshitalite, BaMgrAlrSirO,o(OH)..The present study shows a complete solid solution between the K (phlogopite) and Ba (kinoshitalite) end-members.Compositional diversities in these micas are attributable to the different minerals that the micas replaced. INlnolucrroN lites. Micas havedeveloped in manganeseoxide-rich rocks Krnoshitalite, BaMg.AlrSirOr0(OH)r, was defined by wherethe latter have beeninvaded by late silicic pegmatite Yoshii et al. (1973a)as the Ba and Mg trioctahedralbrit- and carbonateveins. In thesepockets, the manganeseox- tle mica. As an end-member, it is known only as a syn- ide-rich rocks exhibit the following mineral assemblage: thetic phase obtained hydrothermally at 600 "C and 2 braunite * hausmannite + bixbyite * Ba-bearingmica kbar (Frondel and Ito, 1967). Naturally occurring ki- + alkali feldspar + hematite * calcite + dolomite + noshitalite has been reported with considerableamounts qtrartz. The oxides collectively account for over 800/oof of K and Mn (Yoshii et al., l9l3b; Yoshii and Maeda, the rock. -
Leucophoenicite Mn (Sio4)3(OH)2
2+ Leucophoenicite Mn7 (SiO4)3(OH)2 c 2001 Mineral Data Publishing, version 1.2 ° Crystal Data: Monoclinic. Point Group: 2=m: Crystals rare, typically slender, prismatic, elongated and striated [010], to 8 mm; in isolated grains or granular massive. Twinning: On k 001 , common, contact or interpenetrant twins, lamellar. f g Physical Properties: Cleavage: 001 , imperfect. Tenacity: Brittle. Hardness = 5.5{6 f g D(meas.) = 3.848 D(calc.) = [4.01] Optical Properties: Transparent to translucent. Color: Brown to light purple-red, raspberry-red, deep pink to light pink; rose-red to colorless in thin section. Luster: Vitreous. Optical Class: Biaxial ({). Pleochroism: Faint; rose-red 001 ; colorless 001 . Orientation: k f g ? f g X 001 cleavage. Dispersion: r > v; slight. ® = 1.751(3) ¯ = 1.771(3) ° = 1.782(3) ? f g 2V(meas.) = 74(5)± Cell Data: Space Group: P 21=a: a = 10.842(19) b = 4.826(6) c = 11.324(9) ¯ = 103:93(9)± Z = [2] X-ray Powder Pattern: Franklin, New Jersey, USA. 1.8063 (10), 2.877 (9), 2.684 (8), 4.36 (5), 3.612 (5), 2.365 (5), 2.620 (4) Chemistry: (1) (2) (3) (1) (2) (3) SiO2 26.36 26.7 26.7 CaO 5.67 2.4 2.8 FeO trace 0.3 0.3 Na2O 0.39 MnO 60.63 62.8 64.7 K2O 0.24 ZnO 3.87 0.0 0.0 H2O 2.64 [2.3] [2.8] MgO 0.21 5.5 2.7 Total 100.01 [100.0] [100.0] (1) Franklin, New Jersey, USA; composite of two analyses, corresponding to (Mn5:89Ca0:70Zn0:32 Na0:04Mg0:03K0:01)§=6:99(Si1:01O4)3(OH)2: (2) Kombat mine, Namibia; by electron microprobe, H2O by di®erence; corresponding to (Mn5:98Mg0:92Ca0:29Fe0:02)§=7:21(SiO4)3(OH)1:72: (3) Valsesia-Valtournanche area, Italy; by electron microprobe, H2O by di®erence; corresponding to (Mn6:16Mg0:45Ca0:34Fe0:03)§=6:98(SiO4)3(OH)2:10: Mineral Group: Leucophoenicite group. -
Galaxite (Mn , Fe , Mg)(Al, Fe )2O4 C 2001-2005 Mineral Data Publishing, Version 1
2+ 2+ 3+ Galaxite (Mn , Fe , Mg)(Al, Fe )2O4 c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Cubic. Point Group: 4/m32/m. As octahedra and rounded grains, to 0.5 mm; as exsolution blebs. Twinning: On {111} as both twin and composition plane, the spinel law, probable. Physical Properties: Fracture: Conchoidal. Hardness = 7.5 D(meas.) = 4.234 D(calc.) = [4.22] Optical Properties: Opaque; may be translucent in thin section. Color: Black, red-brown, red to yellow; in transmitted light, golden yellow, brownish orange, mahogany-red, deep red to reddish black. Streak: Red-brown. Luster: Vitreous. Optical Class: Isotropic. n = 1.923 Cell Data: Space Group: Fd3m. a = 8.258 Z = 8 X-ray Powder Pattern: Synthetic MnAl2O4. 2.492 (100), 2.921 (60), 1.4600 (45), 1.5896 (40), 0.8429 (30), 2.065 (25), 1.0749 (25) Chemistry: (1) (2) (3) (1) (2) (3) SiO2 0.96 0.30 MnO 34.03 39.1 39.9 TiO2 trace < 0.05 0.13 CoO 0.25 Al2O3 45.71 56.3 48.0 ZnO trace 0.43 Fe2O3 4.6 8.9 MgO 1.50 0.83 1.79 V2O3 0.14 CaO trace FeO 16.36 0.0 Total 98.56 101.7 99.0 (1) Bald Knob, North Carolina, USA; total Fe as FeO. (2) Do.; by electron microprobe, 2+ 3+ 2+ Fe :Fe calculated from stoichiometry; corresponds to (Mn0.95Mg0.04Zn0.01)Σ=1.00 3+ (Al1.90Fe0.10)Σ=2.00O4. (3) Bonneval-sur-Arc, France; by electron microprobe, total Fe as Fe2O3; 2+ 3+ 3+ corresponds to (Mn0.92Mg0.08)Σ=1.00(Al1.70Fe0.20Mn0.09Si0.01)Σ=2.00O4. -
Bulletin of the Mineral Research and Exploration
Bull. Min. Res. Exp. (2018) 156: 137-150 BULLETIN OF THE MINERAL RESEARCH AND EXPLORATION Foreign Edition 2018 156 ISSN: 0026-4563 CONTENTS Holocene activity of the Orhaneli Fault based on palaoseismological data, Bursa, NW Anatolia Bulletin of the Mineral .......................Volkan ÖZAKSOY, Hasan ELMACI, Selim ÖZALP, Meryem KARA and Tamer Y. DUMAN / Research Article 1 The neotectonics of NE Gaziantep: The Bozova and Halfeti strike-slip faults and their relationships with blind thrusts, Turkey ......................................................................................................... Nuray ùAHBAZ and Gürol SEYøTOöLU / Research Article 17 Neotectonic and morphotectonic characteristics of the Elmali basin and near vicinities .............................................................................................................ùule GÜRBOöA and Özgür AKTÜRK / Research Article 43 Syn-sedimentary deformation structures in the Early Miocene lacustrine deposits, the basal limestone unit, Bigadiç basin (BalÕkesir, Turkey) ..................................................... Calibe KOÇ-TAùGIN, øbrahim TÜRKMEN and Cansu DøNøZ-AKARCA / Research Article 69 The effect of submarine thermal springs of Do÷anbey Cape (Seferihisar - øzmir) on foraminifer, ostracod and mollusc assemblages .................................. Engin MERøÇ, øpek F. BARUT, Atike NAZøK, Niyazi AVùAR, M. Baki YOKEù, Mustafa ERYILMAZ, ........................................ Fulya YÜCESOY-ERYILMAZ, Erol KAM, Bora SONUVAR and Feyza DøNÇER / Research Article -
Mineralogy of Cobalt-Rich Ferromanganese Crusts from the Perth Abyssal Plain (E Indian Ocean)
Article Mineralogy of Cobalt-Rich Ferromanganese Crusts from the Perth Abyssal Plain (E Indian Ocean) Łukasz Maciąg 1,*, Dominik Zawadzki 1, Gabriela A. Kozub-Budzyń 2, Adam Piestrzyński 2, Ryszard A. Kotliński 1 and Rafał J. Wróbel 3 1 Faculty of Geosciences, Institute of Marine and Coastal Sciences, University of Szczecin, Mickiewicza 16A, 70383 Szczecin, Poland; [email protected] (Ł.M); [email protected] (D.Z.); [email protected] (R.A.K.) 2 Faculty of Geology, Geophysics and Environmental Protection, Department of Economic Geology, AGH University of Science and Technology, Mickiewicza 30, 30059 Kraków, Poland; [email protected] (G.A.K.-B.); [email protected] (A.P.) 3 Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology Szczecin, Pułaskiego 10, 70322 Szczecin, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-91-444-2371 Received: 26 December 2018; Accepted: 27 January 2019; Published: 29 January 2019 Abstract: Mineralogy of phosphatized and zeolitized hydrogenous cobalt-rich ferromanganese crusts from Dirck Hartog Ridge (DHR), the Perth Abyssal Plain (PAP), formed on an altered basaltic substrate, is described. Detail studies of crusts were conducted using optical transmitted light microscopy, X-ray Powder Diffraction (XRD) and Energy Dispersive X-ray Fluorescence (EDXRF), Differential Thermal Analysis (DTA) and Electron Probe Microanalysis (EPMA). The major Fe-Mn mineral phases that form DHR crusts are low-crystalline vernadite, asbolane and a feroxyhyte-ferrihydrite mixture. Accessory minerals are Ca-hydroxyapatite, zeolites (Na-phillipsite, chabazite, heulandite-clinoptilolite), glauconite and several clay minerals (Fe-smectite, nontronite, celadonite) are identified in the basalt-crust border zone. -
A Specific Gravity Index for Minerats
A SPECIFICGRAVITY INDEX FOR MINERATS c. A. MURSKyI ern R. M. THOMPSON, Un'fuersityof Bri.ti,sh Col,umb,in,Voncouver, Canad,a This work was undertaken in order to provide a practical, and as far as possible,a complete list of specific gravities of minerals. An accurate speciflc cravity determination can usually be made quickly and this information when combined with other physical properties commonly leads to rapid mineral identification. Early complete but now outdated specific gravity lists are those of Miers given in his mineralogy textbook (1902),and Spencer(M,i,n. Mag.,2!, pp. 382-865,I}ZZ). A more recent list by Hurlbut (Dana's Manuatr of M,i,neral,ogy,LgE2) is incomplete and others are limited to rock forming minerals,Trdger (Tabel,l,enntr-optischen Best'i,mmungd,er geste,i,nsb.ildend,en M,ineral,e, 1952) and Morey (Encycto- ped,iaof Cherni,cal,Technol,ogy, Vol. 12, 19b4). In his mineral identification tables, smith (rd,entifi,cati,onand. qual,itatioe cherai,cal,anal,ys'i,s of mineral,s,second edition, New york, 19bB) groups minerals on the basis of specificgravity but in each of the twelve groups the minerals are listed in order of decreasinghardness. The present work should not be regarded as an index of all known minerals as the specificgravities of many minerals are unknown or known only approximately and are omitted from the current list. The list, in order of increasing specific gravity, includes all minerals without regard to other physical properties or to chemical composition. The designation I or II after the name indicates that the mineral falls in the classesof minerals describedin Dana Systemof M'ineralogyEdition 7, volume I (Native elements, sulphides, oxides, etc.) or II (Halides, carbonates, etc.) (L944 and 1951). -
Bulletin 65, the Minerals of Franklin and Sterling Hill, New Jersey, 1962
THEMINERALSOF FRANKLINAND STERLINGHILL NEWJERSEY BULLETIN 65 NEW JERSEYGEOLOGICALSURVEY DEPARTMENTOF CONSERVATIONAND ECONOMICDEVELOPMENT NEW JERSEY GEOLOGICAL SURVEY BULLETIN 65 THE MINERALS OF FRANKLIN AND STERLING HILL, NEW JERSEY bY ALBERT S. WILKERSON Professor of Geology Rutgers, The State University of New Jersey STATE OF NEw JERSEY Department of Conservation and Economic Development H. MAT ADAMS, Commissioner Division of Resource Development KE_rr_ H. CR_V_LINCDirector, Bureau of Geology and Topography KEMBLEWIDX_, State Geologist TRENTON, NEW JERSEY --1962-- NEW JERSEY GEOLOGICAL SURVEY NEW JERSEY GEOLOGICAL SURVEY CONTENTS PAGE Introduction ......................................... 5 History of Area ................................... 7 General Geology ................................... 9 Origin of the Ore Deposits .......................... 10 The Rowe Collection ................................ 11 List of 42 Mineral Species and Varieties First Found at Franklin or Sterling Hill .......................... 13 Other Mineral Species and Varieties at Franklin or Sterling Hill ............................................ 14 Tabular Summary of Mineral Discoveries ................. 17 The Luminescent Minerals ............................ 22 Corrections to Franklln-Sterling Hill Mineral List of Dis- credited Species, Incorrect Names, Usages, Spelling and Identification .................................... 23 Description of Minerals: Bementite ......................................... 25 Cahnite .......................................... -
Shigaite Namn Al3(SO4)
2+ • Shigaite NaMn6 Al3(SO4)2(OH)18 12H2O c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Hexagonal. Point Group: 3. Hexagonal tabular crystals, to 2 cm, may be in groups; as thin films and fracture coatings. Twinning: On {0001}. Physical Properties: Cleavage: On {0001}, perfect. Tenacity: Moderately flexible. Hardness = ∼2 D(meas.) = 2.32 D(calc.) = 2.35 Optical Properties: Semitransparent. Color: Pale yellow, bright yellow, golden yellow, burnt orange; brownish yellow if included, brown to black if altered. Streak: Very pale yellow to white. Luster: Vitreous to dull. Optical Class: Uniaxial (–). Pleochroism: Distinct; O = yellow; E = very pale yellow. Absorption: O > E. ω = 1.546 = n.d. Cell Data: Space Group: R3. a = 9.51–9.52 c = 32.83–33.074 Z = 3 X-ray Powder Pattern: Ioi mine, Japan. 10.89 (100), 5.47 (90), 2.457 (90), 3.664 (80), 2.198 (60), 1.944 (60), 4.36 (40) Chemistry: (1) (2) (3) SO3 13.6 12.75 13.95 Al2O3 15.3 11.8 13.32 Fe2O3 0.9 2.6 MnO 41.7 42.1 37.08 MgO 0.25 Na2O n.d. n.d. 2.70 H2O 28.0 [30.5] 32.95 Total 99.5 [100.0] 100.00 (1) Ioi mine,Japan; by electron microprobe, total Fe as Fe2O3, total Mn as MnO, H2Oby TGA-EGA. (2) Iron Monarch quarry, Australia; by electron microprobe, average of two analyses, • total Fe as Fe2O3, total Mn as MnO, H2O by difference. (3) NaMn6Al3(SO4)2(OH)18 12H2O. Occurrence: A rare secondary mineral in metamorphosed manganese ore deposits. -
Carroll Ann Hodges, Dennis P. Cox, Donald A. Singer, James E. Case, Byron R
UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY U.S. GEOLOGICAL SURVEY-INGEOMINAS MINERAL RESOURCE ASSESSMENT OF COLOMBIA By Carroll Ann Hodges, Dennis P. Cox, Donald A. Singer, James E. Case, Byron R. Berger, and John P. Albers U.S. Geological Survey and Francisco Zambrano-Ortiz, Fernando Etayo-Serna, Dario Barrero Lozano, Hernando Lozano Quiroga, Armando Espinosa Baquero, Humberto Gonzalez Iregui, Abigail Orrego Lopez, Alfonso Arias Tauta, Carlos Cedeno Ochoa, Oscar Pulido Ulloa, Alvaro Murillo Rodriquez, Manuel Jose Diaz, Hermann Duque-Caro, Rodrigo Vargas Higuera, Alberto Nunez Tello, Jairo Alvarez Agudelo, Clemente Ropain Ulloa, Joaquin Buenaventura Arango, Hernando Mendoza Forero, Gloria Rodriquez Sierra, and Luis Jaramillo Cortes Institute Nacional de Investigaciones Geologico-Mineras Open-File Report 84-345 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards. Menlo Park, California 1984 Contents Summary 1 Introduction 2 Geologic framework of Colombia 5 Selected deposit types (classification number in Appendices A and B) 48 Podiform chromite (1.1) 7 Porphyry copper molybdenum-rich; gold-rich (2.1, 2.2) 9 Molybdenum porphyry climax type; low fluorine type (2.3, 2.4) 12 Copper skarn (2.6) 14 Lead-zinc skarn (2.7) 14 Massive sulfide, Cyprus type (3.1) 16 Massive sulfide in felsic and intermediate rocks (3.2) 18 Redbed-greenbed copper (4.1) 20 Volcanic native copper (4.2) 22 Sandstone (sedimentary) uranium (4.4) 24 Sediment-hosted submarine exhalative zinc-lead (4.5) 26 Sandstone-hosted lead-zinc deposits (4.8) 28 Epithermal gold, quartz-adularia type (5.4) 30 Hot springs gold-silver deposits (5.6) 32 Emerald veins (5.10) 34 Volcanic-hosted massive replacement (5.15) 36 Sedimentary manganese (6.5) 38 Bauxite (7.1) 41 Nickel laterite (7.2) 43 Contents (Supplement) Page References 44 Table 1.