2005-05 R&C Newsletter
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Species of Sand Crabs in the Genus Lepidopa (Decadopa: Albuneidae) by I W E
Zool. Anz., Leipzig 186 (1971) 1/2, S. 59-102 The Species of Sand Crabs in the Genus Lepidopa (Decadopa: Albuneidae) By I w E. Ei Foai)1 Willi 12 Figures (Kingegangen am 10. bebruar 1970) This [taper eonlains a review of liie species in (fie genus Lepidopa and descriptions of six new species. The evolutionary relationship between the species is discussed with particular reference to geographical distribution and to the closure of the sea connection across Central America in the late Pliocene. 1 Prof. Dr. Ian E. Efford, Institute of Animal Resource Ecology, Department of Zoo- logy, University of British Columbia, Vancouver 8, British Columbia (Canada). 60 I. K. h]f'l'ord, The Species of Sand Crabs in llie Genus Lepidopa TIOT.THUIS (19G.1, 19G2) has recently reviewed the eighteenth and early nineleenlli century literature dealing with the genus Lepidopa and he concluded that EAUIUCUTS (1793) and DKSMAREST (1825) in their descriptions of Albunca scutellala were dealing with llie hrachyuran crah, Th'ui scutellala and not with a species [hat other authors have assigned to the genus Lepidopa. Thus the first published description of a crab that can definilelv be assigned to the genus Lepidopa is II. MII.NI: EDWAIIDS' (1837) description of Albunca scu- 1 dial a. IIOLTIIUIS (1961) suggested that tliis was probably a specimen of T.epidopa rich- niondi but recently I examined an individual of Lepidopa hcnedicli in the Paris Museum that is probably MILNE EDWARDS' original specimen. The label reads 'Lepidopa sciitellata type?' and, according to Dr. J. FOREST, was written by BOCVIKR; however, the specimen is much older than this label and agrees closely wilh \ 111 \i KDWAHDS' original figure. -
Nansei Islands Biological Diversity Evaluation Project Report 1 Chapter 1
Introduction WWF Japan’s involvement with the Nansei Islands can be traced back to a request in 1982 by Prince Phillip, Duke of Edinburgh. The “World Conservation Strategy”, which was drafted at the time through a collaborative effort by the WWF’s network, the International Union for Conservation of Nature (IUCN), and the United Nations Environment Programme (UNEP), posed the notion that the problems affecting environments were problems that had global implications. Furthermore, the findings presented offered information on precious environments extant throughout the globe and where they were distributed, thereby providing an impetus for people to think about issues relevant to humankind’s harmonious existence with the rest of nature. One of the precious natural environments for Japan given in the “World Conservation Strategy” was the Nansei Islands. The Duke of Edinburgh, who was the President of the WWF at the time (now President Emeritus), naturally sought to promote acts of conservation by those who could see them through most effectively, i.e. pertinent conservation parties in the area, a mandate which naturally fell on the shoulders of WWF Japan with regard to nature conservation activities concerning the Nansei Islands. This marked the beginning of the Nansei Islands initiative of WWF Japan, and ever since, WWF Japan has not only consistently performed globally-relevant environmental studies of particular areas within the Nansei Islands during the 1980’s and 1990’s, but has put pressure on the national and local governments to use the findings of those studies in public policy. Unfortunately, like many other places throughout the world, the deterioration of the natural environments in the Nansei Islands has yet to stop. -
Short Note Records of Hippa Strigillata (Stimpson, 1860) (Crustacea: Decapoda: Hippidae) in the SE Gulf of California, Mexico
Nauplius 22(1): 63-65, 2014 63 Short Note Records of Hippa strigillata (Stimpson, 1860) (Crustacea: Decapoda: Hippidae) in the SE Gulf of California, Mexico Daniela Ríos-Elósegui and Michel E. Hendrickx* (DRE) Posgrado en Ciencias del Mar y Limnología, Unidad Académica Mazatlán, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, P.O. Box 811, Mazatlán, Sinaloa 82000, Mexico. E-mail: [email protected] (DRE, MEH) Laboratorio de Invertebrados Bentónicos, Unidad Académica Mazatlán, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, P.O. Box 811, Mazatlán, Sinaloa 82000, Mexico. E-mail: [email protected]; *Corresponding author ABSTRACT - This paper presents details regarding the collections and records of H. strigillata in the Bay of Mazatlán, SE Gulf of California, Mexico. Samples of H. strigillata were obtained in this bay and suroundings area during different periods and deposited in the collection of UNAM, Mazatlán. Morphometric data, distribution, biological and ecological data were furnished. Key words: Distribution, Gulf of California, Hippa, mole crab Because they represent a very dynamic synonym of Remipes pacificus Dana, 1852) environment, often with high energy wave (Boyko, 2002, Boyko and McLaughlin, action, sandy beaches are considered low 2010) and H. strigillata (Stimpson, 1860) diversity habitats for macro and mega fauna (Hendrickx, 1995; Hendrickx and Harvey, (Tait, 1972). This is particularly true along the 1999). Hippa marmorata occurs from the west coast of Mexico (Dexter, 1976; Hendrickx, central Gulf of California to Colombia, 1996). The intertidal habitat is mostly including several oceanic islands of the eastern dominated by species of bivalve mollusks and Pacific (Revillagigedo, del Coco, Galapagos, small (Amphipoda, Isopoda) to medium size and Clipperton) (Hendrickx, 2005). -
Benthic Habitats and Biodiversity of Dampier and Montebello Marine
CSIRO OCEANS & ATMOSPHERE Benthic habitats and biodiversity of the Dampier and Montebello Australian Marine Parks Edited by: John Keesing, CSIRO Oceans and Atmosphere Research March 2019 ISBN 978-1-4863-1225-2 Print 978-1-4863-1226-9 On-line Contributors The following people contributed to this study. Affiliation is CSIRO unless otherwise stated. WAM = Western Australia Museum, MV = Museum of Victoria, DPIRD = Department of Primary Industries and Regional Development Study design and operational execution: John Keesing, Nick Mortimer, Stephen Newman (DPIRD), Roland Pitcher, Keith Sainsbury (SainsSolutions), Joanna Strzelecki, Corey Wakefield (DPIRD), John Wakeford (Fishing Untangled), Alan Williams Field work: Belinda Alvarez, Dion Boddington (DPIRD), Monika Bryce, Susan Cheers, Brett Chrisafulli (DPIRD), Frances Cooke, Frank Coman, Christopher Dowling (DPIRD), Gary Fry, Cristiano Giordani (Universidad de Antioquia, Medellín, Colombia), Alastair Graham, Mark Green, Qingxi Han (Ningbo University, China), John Keesing, Peter Karuso (Macquarie University), Matt Lansdell, Maylene Loo, Hector Lozano‐Montes, Huabin Mao (Chinese Academy of Sciences), Margaret Miller, Nick Mortimer, James McLaughlin, Amy Nau, Kate Naughton (MV), Tracee Nguyen, Camilla Novaglio, John Pogonoski, Keith Sainsbury (SainsSolutions), Craig Skepper (DPIRD), Joanna Strzelecki, Tonya Van Der Velde, Alan Williams Taxonomy and contributions to Chapter 4: Belinda Alvarez, Sharon Appleyard, Monika Bryce, Alastair Graham, Qingxi Han (Ningbo University, China), Glad Hansen (WAM), -
An Illustrated Key to the Malacostraca (Crustacea) of the Northern Arabian Sea. Part VI: Decapoda Anomura
An illustrated key to the Malacostraca (Crustacea) of the northern Arabian Sea. Part 6: Decapoda anomura Item Type article Authors Kazmi, Q.B.; Siddiqui, F.A. Download date 04/10/2021 12:44:02 Link to Item http://hdl.handle.net/1834/34318 Pakistan Journal of Marine Sciences, Vol. 15(1), 11-79, 2006. AN ILLUSTRATED KEY TO THE MALACOSTRACA (CRUSTACEA) OF THE NORTHERN ARABIAN SEA PART VI: DECAPODA ANOMURA Quddusi B. Kazmi and Feroz A. Siddiqui Marine Reference Collection and Resource Centre, University of Karachi, Karachi-75270, Pakistan. E-mails: [email protected] (QBK); safianadeem200 [email protected] .in (FAS). ABSTRACT: The key deals with the Decapoda, Anomura of the northern Arabian Sea, belonging to 3 superfamilies, 10 families, 32 genera and 104 species. With few exceptions, each species is accompanied by illustrations of taxonomic importance; its first reporter is referenced, supplemented by a subsequent record from the area. Necessary schematic diagrams explaining terminologies are also included. KEY WORDS: Malacostraca, Decapoda, Anomura, Arabian Sea - key. INTRODUCTION The Infraorder Anomura is well represented in Northern Arabian Sea (Paldstan) (see Tirmizi and Kazmi, 1993). Some important investigations and documentations on the diversity of anomurans belonging to families Hippidae, Albuneidae, Lithodidae, Coenobitidae, Paguridae, Parapaguridae, Diogenidae, Porcellanidae, Chirostylidae and Galatheidae are as follows: Alcock, 1905; Henderson, 1893; Miyake, 1953, 1978; Tirmizi, 1964, 1966; Lewinsohn, 1969; Mustaquim, 1972; Haig, 1966, 1974; Tirmizi and Siddiqui, 1981, 1982; Tirmizi, et al., 1982, 1989; Hogarth, 1988; Tirmizi and Javed, 1993; and Siddiqui and Kazmi, 2003, however these informations are scattered and fragmentary. In 1983 McLaughlin suppressed the old superfamily Coenobitoidea and combined it with the superfamily Paguroidea and placed all hermit crab families under the superfamily Paguroidea. -
Southeastern Regional Taxonomic Center South Carolina Department of Natural Resources
Southeastern Regional Taxonomic Center South Carolina Department of Natural Resources http://www.dnr.sc.gov/marine/sertc/ Southeastern Regional Taxonomic Center Invertebrate Literature Library (updated 9 May 2012, 4056 entries) (1958-1959). Proceedings of the salt marsh conference held at the Marine Institute of the University of Georgia, Apollo Island, Georgia March 25-28, 1958. Salt Marsh Conference, The Marine Institute, University of Georgia, Sapelo Island, Georgia, Marine Institute of the University of Georgia. (1975). Phylum Arthropoda: Crustacea, Amphipoda: Caprellidea. Light's Manual: Intertidal Invertebrates of the Central California Coast. R. I. Smith and J. T. Carlton, University of California Press. (1975). Phylum Arthropoda: Crustacea, Amphipoda: Gammaridea. Light's Manual: Intertidal Invertebrates of the Central California Coast. R. I. Smith and J. T. Carlton, University of California Press. (1981). Stomatopods. FAO species identification sheets for fishery purposes. Eastern Central Atlantic; fishing areas 34,47 (in part).Canada Funds-in Trust. Ottawa, Department of Fisheries and Oceans Canada, by arrangement with the Food and Agriculture Organization of the United Nations, vols. 1-7. W. Fischer, G. Bianchi and W. B. Scott. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico. Volume II. Final report to the Minerals Management Service. J. M. Uebelacker and P. G. Johnson. Mobile, AL, Barry A. Vittor & Associates, Inc. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico. Volume III. Final report to the Minerals Management Service. J. M. Uebelacker and P. G. Johnson. Mobile, AL, Barry A. Vittor & Associates, Inc. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico. -
The Marine Crustacea Decapoda of Sicily (Central Mediterranean Sea
Ital. J. Zool., 70. 69-78 (2003) The marine Crustacea Decapoda of Sicily INTRODUCTION (central Mediterranean Sea): a checklist The location of Sicily in the middle of the Mediter with remarks on their distribution ranean Sea, between the western and eastern basins, gives the island utmost importance for faunistic studies. Furthermore, the diversity of geomorphologic aspects, substratum types and hydrological features along its CARLO PIPITONE shores account for many different habitats in the coastal CNR-IRMA, Laboratorio di Biologia Marina, waters, and more generally on the continental shelf. Via Giovanni da Verrazzano 17, 1-91014 Castellammare del Golfo (TP) (Italy) E-mail: [email protected] Such diversity of habitats has already been pointed out by Arculeo et al. (1991) for the Sicilian fish fauna. MARCO ARCULEO Crustacea Decapoda include benthic, nektobenthic Dipartimento di Biologia Animate, Universita degli Studi di Palermo, and pelagic species (some of which targeted by artisan Via Archirafi 18, 1-90123 Palermo (Italy) and industrial fisheries) living over an area from the in- tertidal rocks and sands to the abyssal mud flats (Brusca & Brusca, 1996). Occurrence, distribution and ecology of Sicilian decapods have been the subject of a number of papers in recent decades (Torchio, 1967, 1968; Ariani & Serra, 1969; Guglielmo et al, 1973; Cavaliere & Berdar, 1975; Grippa, 1976; Andaloro et al, 1979; Ragonese et al, 1990, Abstract in 53° congr. U.Z.I.: 21- -22; Pipitone & Tumbiolo, 1993; Pastore, 1995; Gia- cobbe & Spano, 1996; Giacobbe et al, 1996; Pipitone, 1998; Ragonese & Giusto, 1998; Rinelli et al, 1998b, 1999; Spano, 1998; Spano et al, 1999; Relini et al, 2000; Pipitone et al, 2001; Mori & Vacchi, 2003). -
The First Record of Albuneid Crabs (Crustacea, Decapoda) from the Cretaceous
Bulletin of the Mizunami Fossil Museum, no. 29 (2002), p. 69-72. 2 figs. The first record of albuneid crabs (Crustacea, Decapoda) from the Cretaceous R. H. B. Fraaije Oertijdmuseum De Groene Poort, Bosscheweg 80, NL-5283 WB Boxtel, The Netherlands <[email protected]> Abstract A recently collected new member of the Albuneidae from the type Maastrichtian of the Netherlands extends the range of the family from the Eocene down to the Cretaceous. Praealbunea rickorum new genus and species is yet another example of the major crustacean radiation in the Maastrichtian. It appears to represent the rootstock for the basal albuneid clade comprising Albunea cuisiana, A. hahnae, and A. speciosa. Key words: Crustacea, Decapoda, Albuneidae, new genus, Maastrichtian, the Netherlands Introduction paleoecological and evolutionary trends through time discussed by Fraaye (1996). Jagt et al. (2000) listed no To date the Albuneidae is represented in the fossil fewer than 12 anomurans and 27 brachyurans from the record by five species only. Four of these are of Eocene Maastrichtian type area, as well as several species of age, two from the U. S. A. (Blow and Manning, 1996; astacid and palinuroid lobsters. Currently, decapod Schweitzer and Boyko, 2000) and two from Italy (Beschin crustacean diversity in the Maastrichtian type area and De Angeli, 1984; De Angeli, 1998). A single species surpasses that of other Mesozoic localities worldwide. has been described from the Miocene of Hungary (Müller, Not only are anomurans, brachyurans and lobsters 1979). This first Cretaceous record of sand crabs from the characterized by high diversities in the type Maastrichtian type area throws new light on their Maastrichtian, but other crustacean groups such as evolution. -
Decapoda (Crustacea) of the Gulf of Mexico, with Comments on the Amphionidacea
•59 Decapoda (Crustacea) of the Gulf of Mexico, with Comments on the Amphionidacea Darryl L. Felder, Fernando Álvarez, Joseph W. Goy, and Rafael Lemaitre The decapod crustaceans are primarily marine in terms of abundance and diversity, although they include a variety of well- known freshwater and even some semiterrestrial forms. Some species move between marine and freshwater environments, and large populations thrive in oligohaline estuaries of the Gulf of Mexico (GMx). Yet the group also ranges in abundance onto continental shelves, slopes, and even the deepest basin floors in this and other ocean envi- ronments. Especially diverse are the decapod crustacean assemblages of tropical shallow waters, including those of seagrass beds, shell or rubble substrates, and hard sub- strates such as coral reefs. They may live burrowed within varied substrates, wander over the surfaces, or live in some Decapoda. After Faxon 1895. special association with diverse bottom features and host biota. Yet others specialize in exploiting the water column ment in the closely related order Euphausiacea, treated in a itself. Commonly known as the shrimps, hermit crabs, separate chapter of this volume, in which the overall body mole crabs, porcelain crabs, squat lobsters, mud shrimps, plan is otherwise also very shrimplike and all 8 pairs of lobsters, crayfish, and true crabs, this group encompasses thoracic legs are pretty much alike in general shape. It also a number of familiar large or commercially important differs from a peculiar arrangement in the monospecific species, though these are markedly outnumbered by small order Amphionidacea, in which an expanded, semimem- cryptic forms. branous carapace extends to totally enclose the compara- The name “deca- poda” (= 10 legs) originates from the tively small thoracic legs, but one of several features sepa- usually conspicuously differentiated posteriormost 5 pairs rating this group from decapods (Williamson 1973). -
The Phenology of Sand Crabs, Lepidopa Benedicti (Decapoda: Albuneidae) Zen Faulkes the University of Texas Rio Grande Valley, [email protected]
University of Texas Rio Grande Valley ScholarWorks @ UTRGV Biology Faculty Publications and Presentations College of Sciences Spring 3-29-2017 The phenology of sand crabs, Lepidopa benedicti (Decapoda: Albuneidae) Zen Faulkes The University of Texas Rio Grande Valley, [email protected] Follow this and additional works at: https://scholarworks.utrgv.edu/bio_fac Part of the Biology Commons, Ecology and Evolutionary Biology Commons, Marine Biology Commons, and the Zoology Commons Recommended Citation Faulkes Z. 2017. The hep nology of sand crabs, Lepidopa benedicti (Decapoda: Albuneidae). Journal of Coastal Research 33(5): 1095-1101. https://doi.org/10.2112/JCOASTRES-D-16-00125.1 This Article is brought to you for free and open access by the College of Sciences at ScholarWorks @ UTRGV. It has been accepted for inclusion in Biology Faculty Publications and Presentations by an authorized administrator of ScholarWorks @ UTRGV. For more information, please contact [email protected], [email protected]. Journal of Coastal Research 33 5 1095–1101 Coconut Creek, Florida September 2017 The Phenology of Sand Crabs, Lepidopa benedicti (Decapoda: Albuneidae) Zen Faulkes Department of Biology The University of Texas Rio Grande Valley Edinburg, TX 78539, U.S.A. [email protected] ABSTRACT Faulkes, Z., 2017. The phenology of sand crabs, Lepidopa benedicti (Decapoda: Albuneidae). Journal of Coastal Research, 33(5), 1095–1101. Coconut Creek (Florida), ISSN 0749-0208. Albuneid sand crabs are widespread on sandy beaches around the world, but because they conceal themselves by digging in sand and are often found at low densities, little is known about their basic biology. Lepidopa species were collected from the beaches of South Padre Island, Texas, on the western coast of Gulf of Mexico, a location that had previously been suggested to act as a population sink. -
Albunea Turritellacola, a New Sand Crab (Anomura, Albuneidae) from the Lower Miocene of Southwest France
Bulletin of the Mizunami Fossil Museum, no. 34 (2008), p. 17–22, 1 pl., 2 figs., 1 table. © 2008, Mizunami Fossil Museum Albunea turritellacola, a new sand crab (Anomura, Albuneidae) from the lower Miocene of southwest France René H. B. Fraaije1), Barry W. M. van Bakel1), and John W. M. Jagt 2) 1) Oertijdmuseum De Groene Poort, Bosscheweg 80, NL-5283 WB Boxtel, the Netherlands< [email protected]> 2) Natuurhistorisch Museum Maastricht, de Bosquetplein 6-7, NL-6211 KJ Maastricht, the Netherlands< [email protected]> Abstract A new albuneid crab, Albunea turritellacola, collected from the sediment infill of a large-sized turritellid gastropod from the so-called ‘Falun de Léognan’ of early Miocene age, as exposed at Pas-de-Barreau (Martillac, département Gironde, southwest France), is described. It constitutes the eighth fossil member of the subfamily Albuneinae Stimpson, 1858, and the second species of Miocene age known to date. Albunea turritellacola sp. nov. appears to be closely related to A. asymmetrica (Müller, 1979) from the middle Miocene of Budapest (Hungary), and probably is part of the lineage which led to the extant A. carabus (Linnaeus, 1758). Key words: Crustacea, Decapoda, Anomura, Albuneidae, Miocene, France, new species. Introduction Table 1. Fossil representatives of the subfamily Albuneinae known to date, arranged according to stratigraphic age and holotype data (compiled from Müller, 1979; Beschin & De Angeli, 1984; Blow & The most comprehensive revision of both fossil and extant sand Manning, 1996; De Angeli, 1998; De Angeli & Beschin, 2001; De crabs of the families Albuneidae and Blepharipodidae is that of Angeli & Marangon, 2001, 2003a, b; Fraaije, 2002; Boyko, 2002, Boyko (2002). -
Phylogenetic Systematics of the Reptantian Decapoda (Crustacea, Malacostraca)
Zoological Journal of the Linnean Society (1995), 113: 289–328. With 21 figures Phylogenetic systematics of the reptantian Decapoda (Crustacea, Malacostraca) GERHARD SCHOLTZ AND STEFAN RICHTER Freie Universita¨t Berlin, Institut fu¨r Zoologie, Ko¨nigin-Luise-Str. 1-3, D-14195 Berlin, Germany Received June 1993; accepted for publication January 1994 Although the biology of the reptantian Decapoda has been much studied, the last comprehensive review of reptantian systematics was published more than 80 years ago. We have used cladistic methods to reconstruct the phylogenetic system of the reptantian Decapoda. We can show that the Reptantia represent a monophyletic taxon. The classical groups, the ‘Palinura’, ‘Astacura’ and ‘Anomura’ are paraphyletic assemblages. The Polychelida is the sister-group of all other reptantians. The Astacida is not closely related to the Homarida, but is part of a large monophyletic taxon which also includes the Thalassinida, Anomala and Brachyura. The Anomala and Brachyura are sister-groups and the Thalassinida is the sister-group of both of them. Based on our reconstruction of the sister-group relationships within the Reptantia, we discuss alternative hypotheses of reptantian interrelationships, the systematic position of the Reptantia within the decapods, and draw some conclusions concerning the habits and appearance of the reptantian stem species. ADDITIONAL KEY WORDS:—Palinura – Astacura – Anomura – Brachyura – monophyletic – paraphyletic – cladistics. CONTENTS Introduction . 289 Material and methods . 290 Techniques and animals . 290 Outgroup comparison . 291 Taxon names and classification . 292 Results . 292 The phylogenetic system of the reptantian Decapoda . 292 Characters and taxa . 293 Conclusions . 317 ‘Palinura’ is not a monophyletic taxon . 317 ‘Astacura’ and the unresolved relationships of the Astacida .