Chlorophyll, Carotenoid, and Visual Color Rating of Japanese-Cedar

Total Page:16

File Type:pdf, Size:1020Kb

Chlorophyll, Carotenoid, and Visual Color Rating of Japanese-Cedar HORTSCIENCE 48(12):1452–1456. 2013. ephemeraeformis Haworth) (Lemke et al., 2005), fungal cankers caused by Seiridium Nees ex Link spp. and Botryosphaeria dothi- Chlorophyll, Carotenoid, and Visual dea (Moug.) Ces. et De Not., and cercospora needle blight (Cercosporidium sequoiae Ellis Color Rating of Japanese-cedar Grown and Everh.) (Martinez et al., 2009). Japanese- cedars exhibit less susceptibility to bagworm in the Southeastern United States infestations, and cultivars are available that have reduced interior branch death (Tripp Ryan N. Contreras1,4 and Raulston, 1992); however, the species is Department of Horticulture, Oregon State University, 4017 Agricultural and not problem-free. Redfire (Phyllosticta aurea Life Sciences Building, Corvallis, OR 97331 C.Z. Wang) is a fungal pathogen that can attack stressed japanese-cedars and cause John M. Ruter2 stem death, particularly on older foliage (Cox Allan Armitage Professor of Horticulture, Department of Horticulture, and Ruter, 2013; Tripp, 2005). Also, as Dirr (2009) notes, there is not a fast-growing, tree- University of Georgia, 221 Hoke Smith, Athens, GA 30602 like cultivar that remains green during winter. James S. Owen, Jr.1 Winter browning in japanese-cedar is often unsightly and undesirable to consumers, which Department of Horticulture, Virginia Polytechnic Institute and State may have contributed to why it has remained University, Hampton Roads Agricultural Research and Extension Center, underused in landscapes. 1444 Diamond Springs Road, Virginia Beach, VA 23455 Winter browning in japanese-cedar oc- 3 curs through the conversion of chloroplasts to Andy Hoegh chromoplasts during winter (Ida, 1981). This Laboratory for Interdisciplinary Statistical Analysis, Department of Statistics, transition takes place only in sun-exposed Virginia Polytechnic Institute and State University, 406-A Hutcheson Hall, leaves during periods of low temperature, Blacksburg, VA 24061 indicating that photoinhibition likely plays a role (Han and Mukai, 1999; Ida, 1981). Plants Additional index words. Cryptomeria japonica, photoinhibition, pigments, winter-browning have several mechanisms to cope with excess light during periods of low temperature when Abstract. Japanese-cedar has been underused in landscapes of the United States until Calvin cycle activity is limiting, including recent years. There are now over 100 cultivars, many of which are grown in the southeast reduction of chlorophyll, pH-dependent xan- of the United States. Performance of cultivars has been described from U.S. Department thophyll cycle, increased levels of carotenoids, of Agriculture (USDA) Zone 6b to USDA Zone 7b; however, there are no reports on how and production of antioxidants or reactive cultivars perform in USDA Zone 8. The current study was conducted to measure oxygen species (ROS) scavenging enzymes. chlorophyll a, chlorophyll b, total chlorophyll, and carotenoid content and assign visual During winter, japanese-cedar has been shown color ratings to determine if there was a relationship between pigment values and to demonstrate two principle mechanisms to perceived greenness, which generally is regarded as a desirable and potentially heritable deal with excess light energy. The amount of trait. Total chlorophyll (P = 0.0051), carotenoids (P = 0.0266), and the ratio of total chlorophyll decreases during winter (Han chlorophyll to carotenoids (P = 0.0188) exhibited a positive relationship with greenness and Mukai, 1999; Ida, 1981) in both sun- after accounting for season and tree effects. In contrast, the ratio of chlorophyll a to and shade-exposed leaves (Han et al., 2004). chlorophyll b did not have an effect on greenness. There was a linear relationship This occurs in both wild-type and non- between total chlorophyll and carotenoid regardless of season (summer R2 = 0.94; winter 2 browning mutants (Han et al., 2003), thus R = 0.88) when pooled across 2 years. The observed correlation between chlorophyll and reducing the amount of energy absorbed. carotenoid content suggests they could be used interchangeably as predictors of The other mechanism is the conversion of greenness. There were large differences in rainfall between the 2 years that may have chloroplasts in sun-exposed leaves to resulted in additional variation. Furthermore, the climate in which the evaluation was rhodoxanthin-containing chromoplasts dur- conducted differs greatly from the native distribution of japanese-cedar occurring in ing winter to dissipate excess light energy China and Japan. as heat (Ida, 1981). In a study on 15-year-old japanese-cedar trees in Shizuoka Prefecture, Japan, Han et al. Japanese-cedar [Cryptomeria japonica diverse landscape situations. There are esti- (2004) reported accumulation of rhodoxan- (L.f.) D. Don] is a variable conifer that grows mates of over 100 different ornamental culti- thin in sun-exposed leaves beginning in up to 60 m tall in its native range. Wild-type vars (R. Determann, personal communication; January, reaching maximum levels in Febru- specimens are conical when young and be- Erhardt, 2005) with 45 of these grown in ary, decreasing significantly in March, and come cylindrical with age (Eckenwalder, 2009). the eastern United States (Rouse et al., 2000). falling to zero by April. However, timing of Japanese-cedar traditionally has been used as Japanese-cedars are native to the warm- discoloring in winter and restoration in spring screening or specimen plantings; however, temperate zones of south China and Japan. is highly variable and location-specific (per- there are a large number of cultivars display- In Japan, they generally are limited to north- sonal observation). Han et al. (2003) demon- ing varying forms and growth rates (Rouse facing slopes that receive 180 to 300 cm of strated that wild-type leaves that accumulated et al., 2000; Tripp, 1993) that may be used in rainfall per year (Tsukada, 1967). Japanese- rhodoxanthin maintained higher levels of pho- cedars perform well under a number of tosynthesis with lower levels of zeaxanthin- and environmental and soil conditions including antheraxanthin-dependent thermal dissipa- Received for publication 16 Sept. 2013. Accepted the hot, humid summers and heavy clay soils tion than mutants that remained green all for publication 28 Oct. 2013. of the southeast United States (Tripp and winter. The proposed role of rhodoxanthin is We thank Nancy Hand, Bruce Tucker, and Zhibing Raulston, 1992). As a result of this fact, to intercept a portion of incident light to help Xu for their technical assistance. japanese-cedars have been promoted as an 1Assistant Professor. maintain an appropriate balance among light 2Professor. alternative to Leyland cypress [·Cuprocyparis absorption, thermal dissipation, and photo- 3PhD Candidate. leylandii (A.B.Jacks. & Dallim.) Farjon (Farjon synthesis (Han et al., 2003). Japanese-cedar 4To whom reprint requests should be addressed; et al., 2002)], on which numerous problems also accumulated substantial levels of xan- e-mail [email protected]. now occur including bagworms (Thyridopteryx thophyll cycle pigments and lutein during 1452 HORTSCIENCE VOL. 48(12) DECEMBER 2013 winter (Han et al., 2003; Han and Mukai, the duration of the study was collected from collected to determine mean MC for each 1999). the same branches. Leaves were collected 8 individual (replicate) for each harvest date The overarching objective of the current Feb. 2008, 17 Aug. 2008, 9 Feb. 2009, and 5 using the formula {MC = [(initial weight – study was to identify an early predictor of May 2009 and frozen at –80 °C until analysis. dry weight)/initial weight] · 100}. winter foliage color (resistance to leaf brown- Temperature and precipitation data at the Color rating. Plants were observed within ing) in japanese-cedar as a screening tool for Tifton Campus for the duration of the study 1 week of the four leaf collection dates. Five identifying superior selections. Specifically, are included in Table 1. Supplemental irriga- evaluators assigned color ratings from 1 we assessed if quantitating pigments such as tion was used only at the time of new plant (very brown/yellow; off color) to 5 (very total chlorophyll (Ca+b), ratio of chlorophyll establishment within plots. green). Ratings of 3.5 to 4 would be consid- a (Ca):chlorophyll b (Cb), total carotenoids Chlorophyll and carotenoid extraction, ered acceptable for landscape use. All plants (Cx+c), and ratio of (Ca+b):(Cx+c) exhibited analysis, and calculations. Three subsamples were addressed from the southeast side, di- a strong relationship with greenness as mea- of leaf tissue were collected from the 12 rectly in front of flagged branches. Mean sured by visual color rating at the University individuals and Ca+b and Cx+c were extracted rating for each individual was calculated and of Georgia Tifton Campus (USDA Zone 8b; by grinding 85 mg leaf tissue three times used for statistical analysis. USDA-ARS, 2012). in 3.33 mL 80% aqueous acetone and the Design and statistical analysis. The ex- extract was transferred to a test tube and perimental design used repeated measure- Materials and Methods brought to a final volume of 10 mL. After the ments across winter and summer on each third grind in acetone, the leaf material re- individual with subsamples taken on the in- Plant material and growing conditions. maining was transferred to the test tube dividual branches. Relevant covariate informa- Single plants of the following 12 taxa of containing the extract and maintained in tion, chlorophyll and
Recommended publications
  • Phototrophic Pigment Production with Microalgae
    Phototrophic pigment production with microalgae Kim J. M. Mulders Thesis committee Promotor Prof. Dr R.H. Wijffels Professor of Bioprocess Engineering Wageningen University Co-promotors Dr D.E. Martens Assistant professor, Bioprocess Engineering Group Wageningen University Dr P.P. Lamers Assistant professor, Bioprocess Engineering Group Wageningen University Other members Prof. Dr H. van Amerongen, Wageningen University Prof. Dr M.J.E.C. van der Maarel, University of Groningen Prof. Dr C. Vilchez Lobato, University of Huelva, Spain Dr S. Verseck, BASF Personal Care and Nutrition GmbH, Düsseldorf, Germany This research was conducted under the auspices of the Graduate School VLAG (Advanced studies in Food Technology, Agrobiotechnology, Nutrition and Health Sciences). Phototrophic pigment production with microalgae Kim J. M. Mulders Thesis submitted in fulfilment of the requirement for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. Dr M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Friday 5 December 2014 at 11 p.m. in the Aula. K. J. M. Mulders Phototrophic pigment production with microalgae, 192 pages. PhD thesis, Wageningen University, Wageningen, NL (2014) With propositions, references and summaries in Dutch and English ISBN 978-94-6257-145-7 Abstract Microalgal pigments are regarded as natural alternatives for food colourants. To facilitate optimization of microalgae-based pigment production, this thesis aimed to obtain key insights in the pigment metabolism of phototrophic microalgae, with the main focus on secondary carotenoids. Different microalgal groups each possess their own set of primary pigments. Besides, a selected group of green algae (Chlorophytes) accumulate secondary pigments (secondary carotenoids) when exposed to oversaturating light conditions.
    [Show full text]
  • I Topic - Algal Pigments and Algal Classification(ALGAE) Prepared by –Prof.(Dr.)Jainendra Kumar Coordinated By: Prof.(Dr) Shyam Nandan Prasad
    Course- M.Sc. Botany Part -I Paper -I Topic - Algal Pigments and algal Classification(ALGAE) Prepared by –Prof.(Dr.)Jainendra Kumar Coordinated by: Prof.(Dr) Shyam Nandan Prasad The algae were broadly divided by F.F.Fritsch (1935) into eleven classes according to their colour - 1. Chlorophyceae or green algae 2. Xanthophyceae or yellow-green algae 3. Chrysophyceae 4. Bacillariophyceae or golden-brown algae 5. Cryptophyceae 6. Dinophyceae 7. Chloromonadineae 8. Eugleninae 9. Phaeophyceae or brown algae 10. Rhodophyceae or red algae, and 11. Myxophyceae or blue-green algae Normally, classification of algae is based on - 1. Nuclear Organization 2. Nature of Cell Wall Components 3. Pigmentation and Photosynthetic Apparatus The pigment is one of the most important criteria used in differentiation of classes in algae. The pigments in algae can be chlorophylls, carotenoids and biloproteins. These pigments are present in sac like structures called thylakoids. The thylakoids are arranged in stacks in the granum of the chloroplasts. Different groups of algae have different types of pigments and organization of thylakoids in chloroplast. The chlorophylls in algae are chlorophyll a, b, c, d and e types. Chlorophyll a is present in all classes of algae. Chlorophyll b is primary pigment of Chlorophyceae and Euglenineae. Chlorophyll c is found in Phaeophyceae and Cryptophyceae. Chlorophyll d is found in Rhodophyceae. Chlorophyll e is confined to Tribonema of Xanthophyceae. Pigments are chemical compounds which reflect only certain wavelengths of visible light. This makes them appear colourful. More important than their reflection of light is the ability of pigments to absorb certain wavelengths. Since each pigment reacts with only a narrow range of the spectrum, it is important for algae to produce pigments of different colours to capture more of the sun's energy.
    [Show full text]
  • Quantify Chlorophyll a and Chlorophyll B with a Custom Method
    APPLICATION NOTE NanoDrop One/OneC No. T141 Quantify chlorophyll a and chlorophyll b with a custom method Using the NanoDrop One Spectrophotometer Abstract Scientists can accurately quantify chlorophyll a and chlorophyll b on the Thermo Scientific™ NanoDrop™ One/OneC Microvolume UV-Vis Spectrophotometer using a user-defined custom method. Introduction Chlorophyll a is the principal pigment that converts light energy to chemical energy, and chlorophyll b is the accessory photosynthetic pigment that transfers light it absorbs to chlorophyll a. Chlorophyll a is found in all plants, green algae, and cyanobacteria, and chlorophyll b is found in plants and green algae. Chlorophyll quantitation is valuable in a vast array of disciplines including but not limited to plant biology, environmental science, ecotoxicology, disease prevention, and medical drug discovery. Spectrophotometry is a common method used to measure the absorbance of light by the chlorophyll molecules. The NanoDrop One/OneC UV-Vis Spectrophotometer can be used to measure the absorbance of chlorophyll. Chlorophyll a and chlorophyll b absorb light at slightly different wavelengths. peaks (Figure 1). With this information, a user-defined Chlorophyll a absorbs light at 433 nm and 666 nm custom method including user-defined formulas can be and chlorophyll b absorbs light at 462 nm and 650 created to measure the absorbance and determine the nm. The NanoDrop One/OneC UV-Vis application can concentration of chlorophyll. be used to observe the spectrum of each chlorophyll a and chlorophyll b and identify major absorbance chlorophyll a Figure 2. Chlorophyll Content custom method created to quantify chlorophyll a and chlorophyll b samples suspended in 100% DMSO.
    [Show full text]
  • Chlorophyll a Synthesis by an Animal Using Transferred Algal Nuclear Genes
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/226053724 Chlorophyll a synthesis by an animal using transferred algal nuclear genes. Symbiosis Article in Symbiosis · December 2010 Impact Factor: 1.44 · DOI: 10.1007/s13199-009-0044-8 CITATIONS READS 26 167 3 authors, including: Nicholas E Curtis Julie Schwartz Ave Maria University 11 PUBLICATIONS 215 CITATIONS 24 PUBLICATIONS 369 CITATIONS SEE PROFILE SEE PROFILE All in-text references underlined in blue are linked to publications on ResearchGate, Available from: Nicholas E Curtis letting you access and read them immediately. Retrieved on: 24 May 2016 SYMBIOSIS (2009) 49, 121–131 DOI 10.1007/s13199-009-0044-8 ©Springer Science+Business Media B.V. 2009 ISSN 0334-5114 Chlorophyll a synthesis by an animal using transferred algal nuclear genes Sidney K. Pierce*, Nicholas E. Curtis, and Julie A. Schwartz Department of Integrative Biology, SCA 110, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620, USA, Email. [email protected] (Received September 22, 2009; Accepted October 13, 2009) Abstract Chlorophyll synthesis is an ongoing requirement for photosynthesis and a ubiquitous, diagnostic characteristic of plants and algae amongst eukaryotes. However, we have discovered that chlorophyll a (Chla) is synthesized in the symbiotic chloroplasts of the sea slug, Elysia chlorotica, for at least 6 months after the slugs have been deprived of the algal source of the plastids, Vaucheria litorea. In addition, using transcriptome analysis and PCR with genomic DNA, we found 4 expressed genes for nuclear-encoded enzymes of the Chla synthesis pathway that have been horizontally transferred from the alga to the genomic DNA of the sea slug.
    [Show full text]
  • Color Additive Monographs
    Copper Complexes of Chlorophylls and Chlorophyllins Molecular formula: C55H72Cu N4O5 (Copper chlorophyll a) C55H70Cu N4O6 (Copper chlorophyll b) C34H32Cu N4O5 (Copper chlorophyllin a (acid form)) C34H30Cu N4O6 (Copper chlorphyllin b (acid form)) Molecular mass: 932.75 (Copper chlorophyll a) 946.73 (Copper chlorophyll b) 640.20 (Copper chlorophyllin a) 654.18 (Copper chlorophyllin b) Each may be increased by a 18 Daltons if the cyclopentenyl ring is cleaved. CAS Registry Number 65963-40-8 (Chlorophylls, copper complexes) Chemical name: Copper chlorophyll a: [Phytl (132R,17S,18S)-3-(8-ethyl-132-methoxycarbonyl- 2,7,12,18-tetramethyl-131-oxo-3-vinyl-131-132-17,18-tetra-hydrocyclopenta[at]- prophyrin-17-yl)propionate]copper (II) Copper chlorophyll b: [Phytl (132R,17S,18S)-3-(8-ethyl-7-formyl-132- methoxycarbonyl-2,12,18-trimethyl-131-oxo-3-vinyl-131-132-17,18-tetrahydro- cyclopenta[at]-prophyrin-17-yl)propionate]copper (II) The major coloring principles in their acid forms are 3-(10-Carboxylato-4-ethyl- 1,3,5,8-tetramethyl-9-oxo-2-vinylphorbin-7-yl)propionate, copper complex (Copper chlorophyllin a) and 3-(10-carboxylato-4-ethyl-3-formyl-1,5,8-trimethyl-9-oxo-2-vinylphorbin-7- yl)propionate, copper complex (Copper chlorophyllin b) Depending on the degree of hydrolysis the cyclopentenyl ring may be cleaved with the resultant production of a third carboxyl function. EINECS Number 239-830-5 (Copper chlorophyll a) 246-020-5 (Copper chlorophyll b) Synonyms/Identifiers: Copper complexes of chlorophylls -CI Natural Green 3 -Copper Chlorophyll -Copper Phaeophytin -CI No 75810 -E 141 (i) -INS No.
    [Show full text]
  • Catabolism of Tetrapyrroles As the Final Product of Heme Catabolism (Cf Scheme 1)
    CHEMIE IN FREIBURG/CHIMIE A FRIBOURG 352 CHIMIA 48 (199~) Nr. 9 (Scl'lcmhcr) ns itu Chimia 48 (/994) 352-36/ heme (1), at the a-methene bridge (C(5)) €> Neue Sclnveizerische Chemische Gesellschaft producing CO and an unstable Felli com- /SSN 0009-4293 plex. The latter loses the metal ion to yield the green pigment protobiliverdin IXa (usually abbreviated to biliverdin (2)), which is excreted by birds and amphibia, Catabolism of Tetrapyrroles as the final product of heme catabolism (cf Scheme 1). The iron is recovered in the protein called ferritin and can be reutilized Albert Gossauer* for the biosynthesis of new heme mole- cules. As biliverdin (2) has been recog- nized to be a precursor in the biosynthesis of phycobilins [9], a similar pathway is Abstract. The enzymatic degradation of naturally occurring tetrapyrrolic pigments probably followed for the biosynthesis of (heme, chlorophylls, and vitamin B 12) is shortly reviewed. this class oflight-harvesting chromophores 1. Introduction pounds known so far are synthesized, have Scheme I. Catabolism (!{ Heme ill Mammals been already elucidated, it may be antici- In contrast to the enormous amount of pated that the study of catabolic processes work accomplished by chemists in the will attract the interest of more chemists elucidation of biosynthetic pathways of and biochemists in the near future. secondary metabolites (terpenes, steroids, alkaloids, among others), only a few at- tempts have been made until now to un- 2. Heme Catabolism derstand the mechanisms oftheirdegrada- tion in living organisms. A possible rea- It has been known for over half a cen- son for this fact is the irrational association tury that heme, the oxygen-carrier mole- of degradation (catabolism: greek Kara= cule associated with the blood pigment down) with decay and, thus, with unattrac- hemoglobin, is converted in animal cells tive dirty colors and unpleasant odors.
    [Show full text]
  • 1801.Full.Pdf
    Proc. Natl. Acad. Sci. USA Vol. 75, No. 4, pp. 1801-1804, April 1978 Botany Photosynthetic characteristics and organization of chlorophyll in marine dinoflagellates (photosynthesis/chlorophyll-proteins/photosynthetic unit/algae/light-harvesting) BARBARA B. PREZELIN* AND RANDALL S. ALBERTEO * Department of Biological Sciences and Marine Science Institute, University of California, Santa Barbara, California 93106; and t Department of Biology, Barnes Laboratory, The University of Chicago, Chicago, Illinois 60637 Communicated by Paul J. Kramer, February 2,1978 ABSTRACT- The photosystem I reaction center complex, unrelated to pigmentation (3) and undergo photosynthetic the P-700-chlorophyll a-protein, has been isolated from the photoadaptive responses characterized by increased pigmen- photosynthetic membranes of two marine dinoflagellates, tation and a Gonyaulax polyedra and Glenodinium sp., by detergent solu- maintenance of photosynthetic capacity at lower bilization with Triton X-100. The complexes isolated from the light levels (1, 2). two species were indistinguishable, exhibiting identical ab- In the present study we asked specifically how is chlorophyll sorption properties (400-700 nm) at both room (300 K) and low functionally organized in the photosynthetic unit in these algae (77 K) temperature. The room temperature, red wavelength and is this organization related to the ability of these dino- maximum was at 675 nm. The absorption properties, kinetics flagellates to light-adapt, to and to out of photobleaching, sodium dodecyl sulfate
    [Show full text]
  • Glyphosate-Based Herbicide Toxicophenomics in Marine Diatoms: Impacts on Primary Production and Physiological Fitness
    applied sciences Article Glyphosate-Based Herbicide Toxicophenomics in Marine Diatoms: Impacts on Primary Production and Physiological Fitness Ricardo Cruz de Carvalho 1,2,* , Eduardo Feijão 1, Ana Rita Matos 3,4 , Maria Teresa Cabrita 5, Sara C. Novais 6, Marco F. L. Lemos 6 , Isabel Caçador 1,4, João Carlos Marques 7, Patrick Reis-Santos 1,8 , Vanessa F. Fonseca 1,9 and Bernardo Duarte 1,4 1 MARE—Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; [email protected] (E.F.); [email protected] (I.C.); [email protected] (P.R.-S.); vff[email protected] (V.F.F.); [email protected] (B.D.) 2 cE3c, Centre for Ecology, Evolution and Environmental Changes, Faculty of Sciences, University of Lisbon, Campo Grande, Edifício C2, Piso 5, 1749-016 Lisbon, Portugal 3 BioISI—Biosystems and Integrative Sciences Institute, Plant Functional Genomics Group, Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; [email protected] 4 Departamento de Biologia Vegetal da Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal 5 Centro de Estudos Geográficos (CEG), Instituto de Geografia e Ordenamento do Território (IGOT) da Universidade de Lisboa, Rua Branca Edmée Marques, 1600-276 Lisboa, Portugal; [email protected] 6 MARE—Marine and Environmental Sciences Centre, ESTM, Polytechnic of Leiria, 2411-901 Leiria, Portugal; [email protected] (S.C.N.); [email protected] (M.F.L.L.)
    [Show full text]
  • The Function of PROTOPORPHYRINOGEN IX OXIDASE in Chlorophyll Biosynthesis Requires Oxidised Plastoquinone in Chlamydomonas Reinh
    The function of PROTOPORPHYRINOGEN IX OXIDASE in chlorophyll biosynthesis requires oxidised plastoquinone in Chlamydomonas reinhardtii Pawel Brzezowski, Brigitte Ksas, Michel Havaux, Bernhard Grimm, Marie Chazaux, Gilles Peltier, Xenie Johnson, Jean Alric To cite this version: Pawel Brzezowski, Brigitte Ksas, Michel Havaux, Bernhard Grimm, Marie Chazaux, et al.. The function of PROTOPORPHYRINOGEN IX OXIDASE in chlorophyll biosynthesis requires oxidised plastoquinone in Chlamydomonas reinhardtii. Communications Biology, Nature Publishing Group, 2019, 2, pp.159. 10.1038/s42003-019-0395-5. cea-02149191 HAL Id: cea-02149191 https://hal-cea.archives-ouvertes.fr/cea-02149191 Submitted on 6 Jun 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License ARTICLE https://doi.org/10.1038/s42003-019-0395-5 OPEN The function of PROTOPORPHYRINOGEN IX OXIDASE in chlorophyll biosynthesis requires oxidised plastoquinone in Chlamydomonas reinhardtii 1234567890():,; Pawel Brzezowski 1,2, Brigitte Ksas3, Michel Havaux3, Bernhard Grimm2, Marie Chazaux1, Gilles Peltier1, Xenie Johnson 1 & Jean Alric 1 In the last common enzymatic step of tetrapyrrole biosynthesis, prior to the branching point leading to the biosynthesis of heme and chlorophyll, protoporphyrinogen IX (Protogen) is oxidised to protoporphyrin IX (Proto) by protoporphyrinogen IX oxidase (PPX).
    [Show full text]
  • Hemin and Chlorophyll— the Two Most Important Pigments for Life on Earth1
    THE OHIO JOURNAL OF SCIENCE VOL. LVI JULY, 1956 No. 4 HEMIN AND CHLOROPHYLL— THE TWO MOST IMPORTANT PIGMENTS FOR LIFE ON EARTH1 PAUL ROTHEMUND The Ohio State University, Columbus, 10, and Muskingum College, New Concord, Ohio Two chemical processes are the prerequisites for all life on earth: the absorption of some of the energy from the sun in the green plants and its transformation into carbon compounds on one hand, and the use of the chemical energy of these compounds by animals in controlled decomposition reactions on the other. From the chemist's point of view the green leaf is a veritable chemical labora- tory: carbon dioxide from the air, and water and inorganic salts from the soil are the raw material, the visible portion of the sun radiation furnishes the energy, and the numerous complex constituents of the plant represent the manufactured products. Some of the substances synthesized are structural matter, like cellulose in the wood, or cork in the bark, others are food reserves, as starch in the grains of corn or wheat, or in potatoes. Of the many other materials produced in the green plant only a few may be enumerated here, sugars, fats, oils and waxes, proteins and nucleic acids, fibers like cotton or hemp, vitamins, hormones, indigo and other dyes, latex for producing rubber, alkaloids like the nicotin in tobacco leaves, valuable medicinally used compounds, such as quinine, cocaine, and morphine, and—most important—the green pigment chlorophyll. "Photo- synthesis", or the "assimilation of carbon dioxide" is the biochemical process, in which simply constructed and relatively inert inorganic compounds are built up into the highly complex, reactive and sensitive organic compounds, which characterize living matter.
    [Show full text]
  • Toxicity of Epoxiconazole to the Marine Diatom Chaetoceros Calcitrans
    Water, Air, & Soil Pollution Archimer January 2013, Volume 224, Issue 1417, Pages 1-9 http://archimer.ifremer.fr http://dx.doi.org/10.1007/s11270-012-1417-9 © Springer Science+Business Media Dordrecht 2013 The original publication is available at http://www.springerlink.com is available on the publisher Web site Webpublisher the on available is Toxicity of epoxiconazole to the marine diatom Chaetoceros calcitrans : influence of growth conditions and algal development stage Anis Amaraa, b, d, * , Françoise Quinioub, Gaël Durandc, Monia El Bourd, Abdellatif Boudabouse and Annick Hourmanta authenticated version authenticated - a Lab. de Toxicologie Alimentaire et Cellulaire, UFR Sciences et Techniques, C.S. 93837, 29238 Brest, Cedex 3, France. Université Européenne de Bretagne. b Ifremer, Department of Biogeochemistry and Ecotoxicology, 29280 Plouzané, France c IDHESA, B.P. 52, 29280 Plouzané, France initive publisher d INSTM, Lab. de Pathologie des Organismes Aquatiques, Salammbô, Tunis e Lab. de Microorganismes et Biomolécules Actives, Fac. des Sc. de Tunis, 2092 Tunis *: Corresponding author : Anis Amara, email address : [email protected] Abstract: The triazole fungicide epoxiconazole is extensively used to control fungi on crops and may present some potential risk from runoff on coastal ecosystems located close to agricultural areas. Phytotoxicity assessments were conducted on the marine diatom Chaetoceros calcitrans using both the active ingredient and its formulated product (Opus). The 3-day EC50 using cell count was 2.31 mg/L for epoxiconazole active ingredient and 2.9 μg/L for epoxiconazole-formulated. The fungicide produced an increase of cellular volume, pigment (chlorophylls a, c, and carotenoids) content, ATP synthesis, and rates of photosynthesis and respiration.
    [Show full text]
  • And Formation
    J Med Genet: first published as 10.1136/jmg.17.1.1 on 1 February 1980. Downloaded from Review article Journal of Medical Genetics, 1980, 17, 1-14 Haems and chlorophylls: comparison of function and formation G A F HENDRY AND 0 T G JONES From the Department ofBiochemistry, The Medical School, University ofBristol, Bristol BS8 ITD In 1844 Verdeill reported that acid treatment of at the same time by McMunn3 of cytochromes, chlorophyll or haem yielded apparently similar red another group of haem proteins. compounds; he even postulated that chlorophylls It was the demonstration by Nencki and co- would contain iron. Hoppe-Seyler2 confirmed the workers 45 that the degradation of both chlorophylls apparent similarity of acid derivatives of haems and and haems yielded monopyrroles that led them, in chlorophylls from their light absorption charac- true neo-Darwinian fashion, to postulate a common teristics, a point rather overshadowing the discovery origin for animals and plants. 0 0-'I CH2 II copyright. CH CH3 COOH CIH2 CH2 C-O CH2 http://jmg.bmj.com/ NH2 ( CH3' 'CH3 ® 5- Aminolaevulinic acid a CH2 2 1 12 2 CH2 )H COOH CD FIG 1 Structures ofprotohaem and Protoporphyrin IX chlorophyll a and two of their precursors, acid and 5-aminolaevulinic on September 30, 2021 by guest. Protected protoporphyrin IX (with substituent numbering positions). CH2 CH CH.--,j CH2 CH2 COOCH3 Protohoem (haem- b) CooC20H39 Chlorophyll a 1 J Med Genet: first published as 10.1136/jmg.17.1.1 on 1 February 1980. Downloaded from 2 G A F Hendry and 0 T G Jones Following the work ofWillstatter6 and Fischer and particularly those of avian egg shells, have no Stern,7 the structure of most natural and many central complexed metal.
    [Show full text]