Assessing the Effects of Rainfall Intensity and Hydraulic Conductivity on Riverbank Stability

Total Page:16

File Type:pdf, Size:1020Kb

Assessing the Effects of Rainfall Intensity and Hydraulic Conductivity on Riverbank Stability water Article Assessing the Effects of Rainfall Intensity and Hydraulic Conductivity on Riverbank Stability Toan Thi Duong 1,*, Duc Minh Do 1 and Kazuya Yasuhara 2 1 Department of Geotechnics and Infrastructure Development, VNU University of Science, Vietnam National University, Hanoi 100000, Vietnam; [email protected] 2 Institute for Global Change Adaptation Scienceicas (ICAS), Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan; [email protected] * Correspondence: [email protected]; Tel.: +84-093-454-3261 Received: 15 March 2019; Accepted: 3 April 2019; Published: 10 April 2019 Abstract: Riverbank failure often occurs in the rainy season, with effects from some main processes such as rainfall infiltration, the fluctuation of the river water level and groundwater table, and the deformation of transient seepage. This paper has the objective of clarifying the effects of soil hydraulic conductivity and rainfall intensity on riverbank stability using numerical analysis with the GeoSlope program. The initial saturation condition is first indicated as the main factor affecting riverbank stability. Analyzing high-saturation conditions, the obtained result can be used to build an understanding of the mechanics of riverbank stability and the effect of both the rainfall intensity and soil hydraulic conductivity. Firstly, the rainfall intensity is lower than the soil hydraulic conductivity; the factor of safety (FOS) reduces with changes in the groundwater table, which is a result of rainwater infiltration and unsteady state flow through the unsaturated soil. Secondly, the rainfall intensity is slightly higher than the soil hydraulic conductivity, the groundwater table rises slowly, and the FOS decreases with both changes in the wetting front and groundwater table. Thirdly, the rainfall intensity is much higher than the soil hydraulic conductivity, and the FOS decreases dominantly by the wetting front and pond loading area. Finally, in cases with no pond, the FOS reduces when the rainfall intensity is lower than hydraulic conductivity. With low hydraulic conductivity, the wetting front is on a shallow surface and descends very slowly. The decreasing of FOS is only due to transient seepage changes of the unsaturated soil properties by losing soil suction and shear strength. These obtained results not only build a clearer understanding of the filtration mechanics but also provide a helpful reference for riverbank protection. Keywords: riverbank stability; rainfall intensity; hydraulic conductivity 1. Introduction Rainfall is one of the main factors causing slope failure in tropical areas. The effects of rainfall properties on slopes have been studied in large amounts of research that have analyzed slope stability by both investigation and simulated models. By the simulation of different conditions of slopes and rainfall boundaries, previous research has indicated the changes of soil unsaturated properties, such as the reduction of suction, shear strength, and the increasing of hydraulic conductivity and pore-water pressure [1–20]. Finally, these changes cause slope failure. Before rain, the slope area above the groundwater table is considered as being in a partly unsaturated and dry state near the surface [1–4]. The unsaturated area reduces by rainfall water infiltration during and after the rainfall event. The change of the area from unsaturated to saturated is caused by the advancement of the wetting front from the surface [4,5,9,13,21–23] and groundwater table from depth [6–8,10–20]. Those processes were found to be the primary factors controlling the instability of slopes due to Water 2019, 11, 741; doi:10.3390/w11040741 www.mdpi.com/journal/water Water 2019, 11, 741 2 of 16 rainfall and were greatly affected by rainfall intensity (RI) and soil properties, especially by unsaturated soil hydraulic conductivity [4,17–36]. The unsaturated soil hydraulic conductivity (HC) controls the transient seepage, the depth of rainfall infiltration, the changes in pore pressure during the rainfall event, and finally, affects the FOS. The effects of soil hydraulic conductivity on slope stability in the rainy season are usually assessed from the point of view of three topics: (1) the effects of changes in the value of soil hydraulic conductivity and rainfall intensity [17–30]; (2) the soil anisotropic HC and hydraulic hysteresis [31–35]; (3) the failure delay phenomenon due to the defense of HC and RI [36]. This research focuses on the overview and analysis of the first of these topics. The effects of the HC on the FOS were specifically simulated by [25,26]. Those research works reported that high hydraulic conductivity led to rapid saturation. Additionally, infiltration causes the wetting front to quickly shift downward. This shift causes water to contact the underlying impermeable soil, leading to a rapid rise in pore-water pressure and the formation of a perched water table. The slope reaches full saturation and experiences a reduction in soil resistance. Consequently, the factor of safety rapidly decreases [26]. High-intensity rainfall has large effects on the slope if the soil slope has high hydraulic conductivity (Ks ≥ 10−4 m/s) and when the slope has poorly drained soils (i.e., Ks ≤ 10−6 m/s) [25]. The simulated analyses were also carried out with different boundaries of rainfall. When building the relationship of rainfall intensity and unsaturated hydraulic conductivity by the ratio of RI/HC, the previous research analyzed the RI = HC [5], RI ≥ HC [19,22]; and RI < HC [8,17,21,23,26,29] cases. Setting up a boundary with RI = HC or RI ≥ HC and no pond [5,19,22], the development of a wetting front from the crest of the slope and the reduction of soil suction during rainfall were found to dominantly affect the slope stability. The development of the defense of the wetting front under increased rainfall intensity shortens the time required for the wetting front to reach the pore-water pressure and moisture content sensors. The growing of groundwater has not been mentioned much. The same trend was also found in [17,21,23], which had the boundary of RI < HC. The larger the coefficient of permeability is, the greater the depth of the wetting front is. The opposite mechanism is seen in [8,29] with a boundary of small RI and high initial saturation and hydraulic conductivity, and the pore-water pressure increases gradually from the deep part to the crest of the slope [8,29]. For a slope with a larger HC, the slope failures possibly take place under rainfall with a shorter duration and a greater intensity [8]. Those research works also concluded that when the rainfall intensity is greater than the saturated hydraulic conductivity of the surface soils, a runoff occurs along the slope surface [8,22]. Although those previous research works had unobvious objectives focusing on building the effects of hydraulic conductivity, the results clearly showed that the slope stability was significantly affected by the soil hydraulic conductivity and the rainfall intensity boundary. The ratios of RI/HC were divided into three cases; however, each previous research work only concentrated on one of those cases. Moreover, there was a difference regarding the development of the pore-water pressure by the rising groundwater table [8,29] or by a wetting front from the surface [21,23] when those analyses had the same initial conditions. Further research should cover all three cases of different RI/HC ratios. A riverbank is a special slope that relates closely to hydraulic dynamics, not only from rainfall infiltration from the surface concerning the space above the slope, but also significantly from the fluctuation of the river water level and groundwater table [27,37–43]. Past research works assessed the effects of rainfall on riverbank stability using the indirect process of transient seepage due to water level changes and assumed that rainfall has no effect on the riverbank surface. By reviewing previous papers, it was obvious that the hydraulic conductivity has great effects on slope stability during rainfall events. However, some limitations were found in the reviewed research. The effects of the different RI/HC values were not specific to a researcher, and there was a difference in the previous discussion on seepage mechanics, such as the changes in the wetting front and the groundwater table. Moreover, research on the effects of hydraulic conductivity on riverbank slope stability was performed in only a few papers. Therefore, the objective of this paper is to build Water 2019, 11, 741 3 of 16 Water 2019, 11, x FOR PEER REVIEW 3 of 16 the mechanics of riverbank failure with different rainfall infiltration and soil hydraulic conductivity models.models. The The numerical numerical analyses analyses by by the the GeoSlope GeoSlope program with both SEEP/WSEEP/W and and SLOPE/W SLOPE/W moduli moduli areare applied applied in in this this study. study. 2. Materials and Methods 2. Materials and Methods The case study is a riverbank area in the Red River in Hanoi city, Vietnam. The Red River The case study is a riverbank area in the Red River in Hanoi city, Vietnam. The Red River originatesoriginates in Yun-nan, China,China, and and flows flows through throug northwesth northwest Vietnam. Vietnam. The The total total length length of the of Red the RiverRed Riverin Hanoi in Hanoi is about is about 90 km 90 with km with about about 40 km 40 ofkm riverbank of riverbank inside inside the the urban urban area area of Hanoi,of Hanoi, where where the thepopulation population density density and and density density of of houses houses built built near near the the natural natural riverbankriverbank areare highest. These These areas areas areare located located in in high high river river terraces, terraces, outside outside the the river river dike, dike, and and near near natural natural banks.
Recommended publications
  • Hydraulic Conductivity and Shear Strength of Dune Sand–Bentonite Mixtures
    Hydraulic Conductivity and Shear Strength of Dune Sand–Bentonite Mixtures M. K. Gueddouda Department of Civil Engineering, University Amar Teledji Laghouat Algeria [email protected] [email protected] Md. Lamara Department of Civil Engineering, University Amar Teledji Laghouat Algeria [email protected] Nabil Aboubaker Department of Civil Engineering, University Aboubaker Belkaid, Tlemcen Algeria [email protected] Said Taibi Laboratoire Ondes et Milieux Complexes, CNRS FRE 3102, Univ. Le Havre, France [email protected] [email protected] ABSTRACT Compacted layers of sand-bentonite mixtures have been proposed and used in a variety of geotechnical structures as engineered barriers for the enhancement of impervious landfill liners, cores of zoned earth dams and radioactive waste repository systems. In the practice we will try to get an economical mixture that satisfies the hydraulic and mechanical requirements. The effects of the bentonite additions are reflected in lower water permeability, and acceptable shear strength. In order to get an adequate dune sand bentonite mixtures, an investigation relative to the hydraulic and mechanical behaviour is carried out in this study for different mixtures. According to the result obtained, the adequate percentage of bentonite should be between 12% and 15 %, which result in a hydraulic conductivity less than 10–6 cm/s, and good shear strength. KEYWORDS: Dune sand, Bentonite, Hydraulic conductivity, shear strength, insulation barriers INTRODUCTION Rapid technological advances and population needs lead to the generation of increasingly hazardous wastes. The society should face two fundamental issues, the environment protection and the pollution risk control.
    [Show full text]
  • Hydraulic Conductivity of Composite Soils
    This is a repository copy of Hydraulic conductivity of composite soils. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/119981/ Version: Accepted Version Proceedings Paper: Al-Moadhen, M orcid.org/0000-0003-2404-5724, Clarke, BG orcid.org/0000-0001-9493-9200 and Chen, X orcid.org/0000-0002-2053-2448 (2017) Hydraulic conductivity of composite soils. In: Proceedings of the 2nd Symposium on Coupled Phenomena in Environmental Geotechnics (CPEG2). 2nd Symposium on Coupled Phenomena in Environmental Geotechnics (CPEG2), 06-07 Sep 2017, Leeds, UK. This is an author produced version of a paper presented at the 2nd Symposium on Coupled Phenomena in Environmental Geotechnics (CPEG2), Leeds, UK 2017. Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Proceedings of the 2nd Symposium on Coupled Phenomena in Environmental Geotechnics (CPEG2), Leeds, UK 2017 Hydraulic conductivity of composite soils Muataz Al-Moadhen, Barry G.
    [Show full text]
  • Vertical Hydraulic Conductivity of Soil and Potentiometric Surface of The
    Vertical Hydraulic Conductivity of Soil and Potentiometric Surface of the Missouri River Alluvial Aquifer at Kansas City, Missouri and Kansas August 1992 and January 1993 By Brian P. Kelly and Dale W. Blevins__________ U.S. GEOLOGICAL SURVEY Open-File Report 95-322 Prepared in cooperation with the MID-AMERICA REGIONAL COUNCIL Rolla, Missouri 1995 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director For additional information Copies of this report may be write to: purchased from: U.S. Geological Survey District Chief Earth Science Information Center U.S. Geological Survey Open-File Reports Section 1400 Independence Road Box 25286, MS 517 Mail Stop 200 Denver Federal Center Rolla, Missouri 65401 Denver, Colorado 80225 II Geohydrologic Characteristics of the Missouri River Alluvial Aquifer at Kansas City, Missouri and Kansas CONTENTS Glossary................................................................................................................~^ V Abstract.................................................................................................................................................................................. 1 Introduction ................................................................................................................................................................^ 1 Study Area..................................................................................................................................................................
    [Show full text]
  • Transmissivity, Hydraulic Conductivity, and Storativity of the Carrizo-Wilcox Aquifer in Texas
    Technical Report Transmissivity, Hydraulic Conductivity, and Storativity of the Carrizo-Wilcox Aquifer in Texas by Robert E. Mace Rebecca C. Smyth Liying Xu Jinhuo Liang Robert E. Mace Principal Investigator prepared for Texas Water Development Board under TWDB Contract No. 99-483-279, Part 1 Bureau of Economic Geology Scott W. Tinker, Director The University of Texas at Austin Austin, Texas 78713-8924 March 2000 Contents Abstract ................................................................................................................................. 1 Introduction ...................................................................................................................... 2 Study Area ......................................................................................................................... 5 HYDROGEOLOGY....................................................................................................................... 5 Methods .............................................................................................................................. 13 LITERATURE REVIEW ................................................................................................... 14 DATA COMPILATION ...................................................................................................... 14 EVALUATION OF HYDRAULIC PROPERTIES FROM THE TEST DATA ................. 19 Estimating Transmissivity from Specific Capacity Data.......................................... 19 STATISTICAL DESCRIPTION ........................................................................................
    [Show full text]
  • Method 9100: Saturated Hydraulic Conductivity, Saturated Leachate
    METHOD 9100 SATURATED HYDRAULIC CONDUCTIVITY, SATURATED LEACHATE CONDUCTIVITY, AND INTRINSIC PERMEABILITY 1.0 INTRODUCTION 1.1 Scope and Application: This section presents methods available to hydrogeologists and and geotechnical engineers for determining the saturated hydraulic conductivity of earth materials and conductivity of soil liners to leachate, as outlined by the Part 264 permitting rules for hazardous-waste disposal facilities. In addition, a general technique to determine intrinsic permeability is provided. A cross reference between the applicable part of the RCRA Guidance Documents and associated Part 264 Standards and these test methods is provided by Table A. 1.1.1 Part 264 Subpart F establishes standards for ground water quality monitoring and environmental performance. To demonstrate compliance with these standards, a permit applicant must have knowledge of certain aspects of the hydrogeology at the disposal facility, such as hydraulic conductivity, in order to determine the compliance point and monitoring well locations and in order to develop remedial action plans when necessary. 1.1.2 In this report, the laboratory and field methods that are considered the most appropriate to meeting the requirements of Part 264 are given in sufficient detail to provide an experienced hydrogeologist or geotechnical engineer with the methodology required to conduct the tests. Additional laboratory and field methods that may be applicable under certain conditions are included by providing references to standard texts and scientific journals. 1.1.3 Included in this report are descriptions of field methods considered appropriate for estimating saturated hydraulic conductivity by single well or borehole tests. The determination of hydraulic conductivity by pumping or injection tests is not included because the latter are considered appropriate for well field design purposes but may not be appropriate for economically evaluating hydraulic conductivity for the purposes set forth in Part 264 Subpart F.
    [Show full text]
  • Comparison of Hydraulic Conductivities for a Sand and Gravel Aquifer in Southeastern Massachusetts, Estimated by Three Methods by LINDA P
    Comparison of Hydraulic Conductivities for a Sand and Gravel Aquifer in Southeastern Massachusetts, Estimated by Three Methods By LINDA P. WARREN, PETER E. CHURCH, and MICHAEL TURTORA U.S. Geological Survey Water-Resources Investigations Report 95-4160 Prepared in cooperation with the MASSACHUSETTS HIGHWAY DEPARTMENT, RESEARCH AND MATERIALS DIVISION Marlborough, Massachusetts 1996 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director For additional information write to: Copies of this report can be purchased from: Chief, Massachusetts-Rhode Island District U.S. Geological Survey U.S. Geological Survey Earth Science Information Center Water Resources Division Open-File Reports Section 28 Lord Road, Suite 280 Box 25286, MS 517 Marlborough, MA 01752 Denver Federal Center Denver, CO 80225 CONTENTS Abstract.......................................................................................................................^ 1 Introduction ..............................................................................................................................................................^ 1 Hydraulic Conductivities Estimated by Three Methods.................................................................................................... 3 PenneameterTest.............................................................^ 3 Grain-Size Analysis with the Hazen Approximation............................................................................................. 8 SlugTest...................................................^
    [Show full text]
  • The Influence of Horizontal Variability of Hydraulic Conductivity on Slope
    water Article The Influence of Horizontal Variability of Hydraulic Conductivity on Slope Stability under Heavy Rainfall Tongchun Han 1,2,* , Liqiao Liu 1 and Gen Li 1 1 Research Center of Costal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China; [email protected] (L.L.); [email protected] (G.L.) 2 Key Laboratory of Soft Soils and Geoenvironmental Engineering, Ministry of Education, Zhejiang University, Hangzhou 310058, China * Correspondence: [email protected] Received: 5 August 2020; Accepted: 10 September 2020; Published: 15 September 2020 Abstract: Due to the natural variability of the soil, hydraulic conductivity has significant spatial variability. In the paper, the variability of the hydraulic conductivity is described by assuming that it follows a lognormal distribution. Based on the improved Green–Ampt (GA) model of rainwater infiltration, the analytical expressions of rainwater infiltration into soil with depth and time under heavy rainfall conditions is obtained. The theoretical derivation of rainfall infiltration is verified by numerical simulation, and is used to quantitatively analyze the effect of horizontal variability of the hydraulic conductivity on slope stability. The results show that the variability of the hydraulic conductivity has a significant impact on rainwater infiltration and slope stability. The smaller the coefficient of variation, the more concentrated is the rainwater infiltration at the beginning of rainfall. Accordingly, the wetting front is more obvious, and the safety factor is smaller. At the same time, the higher coefficient of variation has a negative impact on the cumulative infiltration of rainwater. The larger the coefficient of variation, the lower the cumulative rainwater infiltration.
    [Show full text]
  • Negative Correlation Between Porosity and Hydraulic Conductivity in Sand-And-Gravel Aquifers at Cape Cod, Massachusetts, USA
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DigitalCommons@University of Nebraska University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USGS Staff -- Published Research US Geological Survey 2005 Negative correlation between porosity and hydraulic conductivity in sand-and-gravel aquifers at Cape Cod, Massachusetts, USA Roger H. Morin Denver Federal Center, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/usgsstaffpub Part of the Earth Sciences Commons Morin, Roger H., "Negative correlation between porosity and hydraulic conductivity in sand-and-gravel aquifers at Cape Cod, Massachusetts, USA" (2005). USGS Staff -- Published Research. 358. https://digitalcommons.unl.edu/usgsstaffpub/358 This Article is brought to you for free and open access by the US Geological Survey at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USGS Staff -- Published Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Journal of Hydrology 316 (2006) 43–52 www.elsevier.com/locate/jhydrol Negative correlation between porosity and hydraulic conductivity in sand-and-gravel aquifers at Cape Cod, Massachusetts, USA Roger H. Morin* United States Geological Survey, Denver, CO 80225, USA Received 3 March 2004; revised 8 April 2005; accepted 14 April 2005 Abstract Although it may be intuitive to think of the hydraulic conductivity K of unconsolidated, coarse-grained sediments as increasing monotonically with increasing porosity F, studies have documented a negative correlation between these two parameters under certain grain-size distributions and packing arrangements. This is confirmed at two sites on Cape Cod, Massachusetts, USA, where groundwater investigations were conducted in sand-and-gravel aquifers specifically to examine the interdependency of several aquifer properties using measurements from four geophysical well logs.
    [Show full text]
  • Empirical Excess Pore Pressure Dissipation Model for Liquefiable Sands
    6th International Conference on Earthquake Geotechnical Engineering 1-4 November 2015 Christchurch, New Zealand Empirical Excess Pore Pressure Dissipation Model for Liquefiable Sands S.C. Chian1 ABSTRACT In the early phase of excess pore pressure dissipation, the excess pore pressure in a liquefied homogeneous soil stratum reduces most significantly at the base, leading to a curvature at the lower part of the initial isochrone while the upper half remains fairly unchanged. In the later phase, the curvature leaves the initial isochrone completely and progresses until excess pore pressure is fully dissipated. In this paper, a simplified exponential equation is introduced to capture the excess pore pressure dissipation over time. This equation is applied to several dynamic centrifuge tests and shown to depict a suitable fit to the dissipation time history over a wide range of hydraulic conductivity of sands. Introduction Soil liquefaction has been studied extensively over the past several decades since its field observation following the 1964 Niigata Earthquake. However, it still poses serious threats to infrastructure in earthquake prone areas to date, where liquefiable soil layers are present. This is evident in recent earthquakes such as the Christchurch Earthquake and the Great East Japan Earthquake in 2011. Numerous researchers have taken notice of the loss of shear strength due to generation of excess pore pressure during earthquake shaking, however not many have investigated the impact of dissipation of excess pore pressure as thoroughly. Severe ground displacement/settlement can occur during the dissipation of excess pore water pressure. This can lead to tilting of buildings, sliding/lowering of dam crest, lateral spreading of bridge abutment wall, etc.
    [Show full text]
  • Performance-Based Hydraulic Conductivity Models for Unbound Granular Materials
    Performance-Based Hydraulic Conductivity Models for Unbound Granular Materials Haithem Soliman, Ph.D. Assistant Professor Department of Civil & Geological Engineering University of Saskatchewan Email: [email protected] Ahmed Shalaby, P.Eng. Professor and Head Department of Civil Engineering University of Manitoba E-mail: [email protected] Paper prepared for presentation at the “Advanced Testing and Modeling of Road and Embankment Materials” Session of the 2016 Annual Conference of the Transportation Association of Canada Toronto, Ontario. 1 Abstract Specifications for unbound granular materials (UGM) must be based on the function of the unbound layer (drainable layer, high stiffness, or both). Using performance-based specifications that are based on laboratory performance of UGM (resilient modulus, permanent deformation, and permeability) provides durable and longer lasting unbound layers. This paper investigates the effect of fines content variation on the permeability (hydraulic conductivity) of two types of UGM, gravel and 100% crushed limestone. Hydraulic conductivity tests were conducted on compacted gravel UGM with 4.0% fines, 9.0% fines, and 14.5% fines. For 100% crushed limestone, hydraulic conductivity tests were conducted on compacted samples with 4.5% fines, 10.5% fines, and 16.0% fines. For gravel, the hydraulic conductivity decreased by 84% due to increasing fines content from 4.0% to 14.5%. For Limestone, the hydraulic conductivity decreased by 81% due to increasing fines content from 4.5% to 16.0%. For gradations with comparable fines content, limestone material showed higher hydraulic conductivity than that for gravel. The laboratory measured hydraulic conductivity was compared to Level 2 design inputs in the Mechanistic-Empirical Pavement Design Guide (Pavement ME).
    [Show full text]
  • Forecasting of Landslides Using Rainfall Severity and Soil Wetness: a Probabilistic Approach for Darjeeling Himalayas
    water Article Forecasting of Landslides Using Rainfall Severity and Soil Wetness: A Probabilistic Approach for Darjeeling Himalayas Minu Treesa Abraham 1 , Neelima Satyam 1 , Biswajeet Pradhan 1,2,3,* and Abdullah M. Alamri 4 1 Discipline of Civil Engineering, Indian Institute of Technology Indore, Madhya Pradesh 452020, India; [email protected] (M.T.A.); [email protected] (N.S.) 2 Centre for Advanced Modelling and Geospatial Information Systems (CAMGIS), Faculty of Engineering and Information Technology, University of Technology Sydney, Broadway, Sydney P.O. Box 123, Australia 3 Department of Energy and Mineral Resources Engineering, Sejong University, Choongmu-gwan, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Korea 4 Department of Geology & Geophysics, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; [email protected] * Correspondence: [email protected] Received: 18 February 2020; Accepted: 9 March 2020; Published: 13 March 2020 Abstract: Rainfall induced landslides are creating havoc in hilly areas and have become an important concern for the stakeholders and public. Many approaches have been proposed to derive rainfall thresholds to identify the critical conditions that can initiate landslides. Most of the empirical methods are defined in such a way that it does not depend upon any of the in situ conditions. Soil moisture plays a key role in the initiation of landslides as the pore pressure increase and loss in shear strength of soil result in sliding of soil mass, which in turn are termed as landslides. Hence this study focuses on a Bayesian analysis, to calculate the probability of occurrence of landslides, based on different combinations of severity of rainfall and antecedent soil moisture content.
    [Show full text]
  • Determining the Unsaturated Hydraulic Conductivity of a Compacted Sand-Bentonite Mixture Under Constant Volume and Free-Swell Conditions
    Determining the unsaturated hydraulic conductivity of a compacted sand-bentonite mixture under constant volume and free-swell conditions Y.J. Cui, A.M. Tang, C. Loiseau, P. Delage Université Paris Est, Ecole des ponts, I. Navier Corresponding author Prof. Yu-Jun Cui ENPC/CERMES 6 et 8 avenue Blaise Pascal, Cité Descartes, Champs-sur-Marne, 77455 MARNE-LA-VALLEE CEDEX 2, France. Tel: 33 1 64 15 35 50 Fax: 33 1 64 15 35 62 E-mail: [email protected] 1 Abstract Highly compacted sand-bentonite mixtures are often considered as possible engineered barriers in deep high-level radioactive waste disposals. In-situ, the saturation of these barriers from their initially unsaturated state is a complex hydro-mechanical coupled process in which temperature effects also play a role. The key parameter of this process is the unsaturated hydraulic conductivity of the barrier. In this paper, isothermal infiltration experiments were conducted to determine the unsaturated hydraulic conductivity according to the instantaneous profile method. To do so, total suction changes were monitored at different locations along the soil specimen by using resistivity relative humidity probes. Three constant volume infiltration tests were conducted showing, unexpectedly, a decrease of the hydraulic conductivity during infiltration. One test performed under free-swell conditions showed the opposite and standard trend. These observations were interpreted in terms of microstructure changes during wetting, both under constant volume and free swell conditions. Key-Words: Compacted sand/bentonite mixture, infiltration, instantaneous profile method, relative humidity, constant volume, free-swell, unsaturated hydraulic conductivity 2 Introduction In radioactive waste disposal at great depth, compacted expansive soils are sometimes considered as possible engineered barrier to be placed between the radioactive waste and the host rock.
    [Show full text]