These De Doctorat De

Total Page:16

File Type:pdf, Size:1020Kb

These De Doctorat De THESE DE DOCTORAT DE L'UNIVERSITE DE NANTES COMUE UNIVERSITE BRETAGNE LOIRE ECOLE DOCTORALE N° 600 Ecole doctorale Ecologie, Géosciences, Agronomie et Alimentation Spécialité : Sciences de la Terre et des Planètes Par Chloé LARRE H2O and S behaviors in martian magmatic system: An experimental and spectroscopic approach Thèse présentée et soutenue à Nantes, le 25 Novembre 2019 Unité de recherche : UMR CNRS 6112 LPG Rapporteurs avant soutenance : Gaëlle PROUTEAU Maître de Conférence (HDR), Institut des Sciences de la Terre d’Orléans Fleurice PARAT Maître de Conférence (HDR), Géosciences Montpellier Composition du Jury : Président : Olivier GRASSET Professeur, LPG Nantes Examinateurs : Violaine SAUTTER Directrice de recherche, MNHN Sorbonne Université Bruno REYNARD Directeur de recherche, ENS Lyon Sylvestre MAURICE Astronome 1ère classe, IRAP Toulouse Dir. de thèse : Yann MORIZET Maître de Conférence (HDR), LPG Nantes Co-dir. de thèse : Nicolas MANGOLD Directeur de recherche, LPG Nantes 1 H2O and S behaviors in martian magmatic system: An experimental and spectroscopic approach. 2 3 Remerciements Je pense que la première personne à remercier doit forcément être mon directeur de stage, et de thèse, Yann Morizet. Merci de m’avoir donné ma chance, il y a 5 ans, en acceptant de m’apprendre les bases de la pétrologie expérimentale et de m’y avoir donné goût (en même temps la géologie de terrain ce n’était pas vraiment mon truc). Tu as montré beaucoup de patience, en particulier au début du stage, de la thèse et peut être sur la fin aussi (enfin bref, tout du long quoi). Tu as prouvé à Nicolas Mangold que je pouvais être une bonne candidate pour ce sujet de thèse. Je te remercie à présent Nicolas d’avoir écouté Yann et d’avoir accepté le rôle de Directeur en premier lieu puis Co-directeur. Lorsque les résultats n’arrivaient pas, tu étais là pour remettre les choses à plat et calmer le stress grandissant. La complémentarité de mes deux directeurs de thèse m’a permis de réaliser jusqu’au bout ce travail de thèse. Par la même occasion je remercie les membres de mon jury pour leur participation à ma soutenance, et en particulier mes deux rapportrices Gaëlle Prouteau et Fleurice Parat. Mon moral tout au long de ces trois ans n’aurait pas pu être aussi bon sans mes collègues, que dis-je, mes amis du laboratoire. Ludivine, Maï, Maxime, Kémi, Kévin, Mathilde. Les parties de saboteurs, puis de Molky, étaient de bons moyens de décompresser à midi. Merci de m’avoir supporté, surtout pendant les pauses de 16h (et de midi aussi finalement). Merci pour les soirées en pleine semaine et le retour difficile au labo le matin. Merci de votre entraide. Un remerciement plus particulier à mes co-bureau qui ont enduré un tout petit plus mes sauts d’humeur/crise de nerfs, merci Sneha et Anthony pour votre soutien ! Enfin, je remercie tous les membres du LPG, notamment Christèle Guivel, Carole La, Antoine Bézos et Philippe Navarro pour m’avoir accompagné dans les différentes manipes au laboratoire et accompagné dans mes recherches. Malgré leurs difficultés à comprendre mon sujet d’étude (et mes études universitaires en général), ma famille m’a soutenue tout du long, et je les en remercie. Avoir un ovni (c’est plutôt approprié avec le sujet) comme fille parmi un professeur d’histoire et des juristes, je compatis ! Je ne peux pas remercier ma famille sans avoir une pensée pour petite mamie, mamie chignon et papi René. Ils ont toujours cru en moi. Je fninirais ces remerciements par un membre de ma famille plus particulier, Vincent. Ces trois années ont été mouvementées, et je te remercie de ta patience. Merci de m’avoir soutenue tout du long, ça ne devait pas être facile. Tu as toujours été là. Et je compte sur toi pour continuer ainsi sur les 50 à 60 prochaines années à venir. 4 Résumé étendu Mars est la planète la plus étudiée de notre système solaire. De par sa position au sein du système solaire, plus particulièrement parmi les planètes telluriques, Mars est une planète attractive pour les missions spatiales. En effet, aujourd’hui, plus de 40 missions spatiales ont été menées sur Mars. Comprendre son évolution, caractériser sa structure interne et comprendre son passé permettra de mieux comprendre comment les planètes telluriques, plus particulièrement la Terre, se sont formées. Mars possède une taille 2 fois plus petite que celle de la Terre avec un rayon moyen de 3389 km. Actuellement, l’atmosphère martienne est riche en CO2 et la pression atmosphérique très basse, de l’ordre de 6 mbar. Cependant, plusieurs indices obtenus à la surface impliquent la présence d’une atmosphère passée plus épaisse et riche en éléments volatils. De par l’absence apparente de plaques tectoniques, la surface de Mars a pu conserver les traces géologiques de son passé. Grâce aux missions spatiales orbitales telle que Mars Global Surveyor (en orbite depuis 2005), la minéralogie et géologie de surface ont pu être mieux contraintes. Ainsi, la surface de Mars est recouverte en majorité de roches volcaniques, de composition basaltique. Ces roches proviennent d’une activité volcanique accrue pendant les temps primitifs de Mars, soit pendant le Noachien et l’Hespérien principalement (< 3 Ga). Cette activité a permis l’édification du volcan le plus important de tout le système solaire, Olympus Mons, avec un diamètre basal atteignant les 500 km et 25 km de hauteur. Suite à cette intense activité volcanique martienne, la présence de minéraux mafiques tels qu’olivine, pyroxènes, plagioclase ont été détectés à la surface. Ces minéraux se retrouvent liés à des roches sédimentaires, recouvrant aussi la surface de Mars. Parmi les minéraux secondaires formés par altération, des sulfates, carbonates, phyllosilicates et oxydes de fer prédominent sur Mars. Ces minéraux mafiques et sédimentaires ont aussi été observés dans les météorites martiennes obtenues sur Terre. Ainsi, l’histoire géologique de Mars a pu être découpée en plusieurs ères : l’ère des phyllosilicates au Noachien (< 3.5 Ga), des sulfates fin Noachien et Hespérien (< 3 Ga), puis l’ère des oxydes de fer à l’Amazonien (3 Ga et aujourd’hui). Ces trois ères caractéristiques traduisent l’évolution climatique de la surface de Mars. La présence de phyllosicilates et sulfates est une preuve indéniable de la présence passée d’eau liquide sur Mars. De plus, différentes structures géologiques traduisant des traversées de fluides aqueux impliquent que de l’eau liquide était présente pendant les temps primitifs de la planète. Cependant, pour maintenir de l’eau liquide, l’atmosphère martienne doit être épaisse, et donc riches en espèces volatiles tels que CO2, H2O, S, CH4. La présence de sulfates, chlorures, carbonates, fluorures et apatites impliquent l’existence des éléments volatils S, C, O, Cl, F et P. Ces éléments volatils ont une origine volcanique et ont dû contribuer à l’élaboration d’une atmosphère primitive dense lors de leur dégazage. En premier lieu, les objectifs principaux des missions martiennes étaient de déterminer si la surface de Mars contenait de la vie. Les échecs de ces missions ont permis de redéfinir les objectifs pour envisager des signes de vies microscopiques passés, lorsque de l’eau liquide était présente à la surface. La future mission spatiale Mars 2020 est un rover qui comportera à la fois d’anciens instruments similaires au rover Curiosity déjà présent sur Mars ; mais aussi de 5 nouveaux outils pour mieux caractériser la surface. Parmi ces nouveaux outils, l’instrument SuperCam comportera un spectromètre Raman. Cette thèse est articulée autour de l’étude des matériaux analogues aux roches volcaniques martiennes par spectroscopie Raman pour définir une base de données pour la future mission spatiale Mars 2020. Couplée à l’élaboration de cette base de données spectrales, le comportement des éléments volatils H, O et S a été étudié dans des analogues aux basaltes martiens synthétisés à hautes pressions et températures. Comprendre le comportement de ces éléments dans un milieu atypique que sont les magmas basaltiques de Mars, contribue à établir le budget des éléménets volatils liés au transfert de ces magmas vers la surface. Ces budgets permettront de comprendre comment a pu se former une atmosphère dense ayant maintenue de l’eau liquide. Cette thèse comporte trois sujets de recherche. Un premier chapitre permet l’introduction et description des différentes méthodes expérimentales et analytiques employées. Une étude expérimentale sur le comportement de H2O et du S dans des verres basaltiques de compositions similaires aux basaltes martiens, a été réalisée et détaillée dans deux chapitres (Chapitre II et III). Le troisième sujet de recherche, et quatrième chapitre, développe la réalisation d’une quantification de S dans des mélanges de minéraux mafiques et sulfates, que nous pouvons retrouver à la surface de Mars via la spectroscopie Raman. Ces minéraux sont issus de l’altération de roches volcaniques. Chapitre I La pétrologie expérimentale est un outil de plus en plus utilisé par les géologues afin de modéliser le comportement des magmas en profondeur. En effet, les roches volcaniques récoltées aux pieds des volcans ont très souvent perdu de l’information, notamment sur la quantité d’éléments volatils présents dans les magmas. Ainsi, synthétiser des analogues aux roches volcaniques naturelles permet de comprendre quelles étaient les conditions de pression, température, d’oxydo-réduction et la teneur en éléments volatils du magma avant son ascension et dégazage. Pour réaliser ces synthèses, plusieurs outils sont mis à disposition permettant d’échantillonner différentes gammes de pressions et températures. Pour des basses pressions, l’autoclave à chauffage interne permet de synthétiser des roches à moins de 15 - 20 km de profondeur sur Terre. Au contraire, l’enclume multi-diamant va permettre de réaliser des expériences correspondant au manteau voire jusqu’au noyau externe sur Terre.
Recommended publications
  • Of 13 Human Mars Mission Design – the Ultimate Systems Challenge
    Human Mars Mission Design – The Ultimate Systems Challenge John F. Connolly a, B. Kent Joostenb, Bret Drakec, Steve Hoffmanc, Tara Polsgroved, Michelle Ruckera, Alida Andrewsc, Nehemiah Williamsa a NASA Johnson Space Center, 2101 NASA Parkway, Houston, Texas 77058, john.connolly- [email protected], [email protected], [email protected] b Consultant,2383 York Harbour Ct., League City, TX 77573, [email protected] c The Aerospace Corporation, 2310 E El Segundo Blvd, El Segundo, California 90245, [email protected], [email protected], [email protected] d NASA Marshall Space Flight Center, Redstone Arsenal, Huntsville, Alabama 35812, [email protected] Abstract A human mission to Mars will occur at some time in the coming decades. When it does, it will be the end result of a complex network of interconnected design choices, systems analyses, technical optimizations, and non-technical compromises. This mission will extend the technologies, engineering design, and systems analyses to new limits, and may very well be the most complex undertaking in human history. It can be illustrated as a large menu, or as a large decision tree. Whatever the visualization tool, there are numerous design decisions required to assemble a human Mars mission, and many of these interconnect with one another. This paper examines these many decisions and further details a number of choices that are highly interwoven throughout the mission design. The large quantity of variables and their interconnectedness results in a highly complex systems challenge, and the paper illustrates how a change in one variable results in ripples (sometimes unintended) throughout many other facets of the design.
    [Show full text]
  • Human Mars Architecture
    National Aeronautics and Space Administration Human Mars Architecture Tara Polsgrove NASA Human Mars Study Team 15th International Planetary Probe Workshop June 11, 2018 Space Policy Directive-1 “Lead an innovative and sustainable program of exploration with commercial and international partners to enable human expansion across the solar system and to bring back to Earth new knowledge and opportunities. Beginning with missions beyond low-Earth orbit, the United States will lead the return of humans to the Moon for long-term exploration and utilization, followed by human missions to Mars and other destinations.” 2 EXPLORATION CAMPAIGN Gateway Initial ConfigurationLunar Orbital Platform-Gateway (Notional) Orion 4 5 A Brief History of Human Exploration Beyond LEO America at DPT / NEXT NASA Case the Threshold Constellation National Studies Program Lunar Review of Commission First Lunar Architecture U.S. Human on Space Outpost Team Spaceflight Plans Committee Pathways to Exploration Columbia Challenger 1980 1990 2000 2010 Bush 41 Bush 43 7kObama HAT/EMC MSC Speech Speech Speech Report of the 90-Day Study on Human Exploration of the Moon and Mars NASA’s Journey to National Aeronautics and November 1989 Global Leadership Space Administration Mars Exploration and 90-Day Study Mars Design Mars Design Roadmap America’s Reference Mars Design Reference Future in Reference Mission 1.0 Exploration Architecture Space Mission 3.0 System 5.0 Exploration Architecture Blueprint Study 6 Exploring the Mars Mission Design Tradespace • A myriad of choices define
    [Show full text]
  • Mars, the Nearest Habitable World – a Comprehensive Program for Future Mars Exploration
    Mars, the Nearest Habitable World – A Comprehensive Program for Future Mars Exploration Report by the NASA Mars Architecture Strategy Working Group (MASWG) November 2020 Front Cover: Artist Concepts Top (Artist concepts, left to right): Early Mars1; Molecules in Space2; Astronaut and Rover on Mars1; Exo-Planet System1. Bottom: Pillinger Point, Endeavour Crater, as imaged by the Opportunity rover1. Credits: 1NASA; 2Discovery Magazine Citation: Mars Architecture Strategy Working Group (MASWG), Jakosky, B. M., et al. (2020). Mars, the Nearest Habitable World—A Comprehensive Program for Future Mars Exploration. MASWG Members • Bruce Jakosky, University of Colorado (chair) • Richard Zurek, Mars Program Office, JPL (co-chair) • Shane Byrne, University of Arizona • Wendy Calvin, University of Nevada, Reno • Shannon Curry, University of California, Berkeley • Bethany Ehlmann, California Institute of Technology • Jennifer Eigenbrode, NASA/Goddard Space Flight Center • Tori Hoehler, NASA/Ames Research Center • Briony Horgan, Purdue University • Scott Hubbard, Stanford University • Tom McCollom, University of Colorado • John Mustard, Brown University • Nathaniel Putzig, Planetary Science Institute • Michelle Rucker, NASA/JSC • Michael Wolff, Space Science Institute • Robin Wordsworth, Harvard University Ex Officio • Michael Meyer, NASA Headquarters ii Mars, the Nearest Habitable World October 2020 MASWG Table of Contents Mars, the Nearest Habitable World – A Comprehensive Program for Future Mars Exploration Table of Contents EXECUTIVE SUMMARY ..........................................................................................................................
    [Show full text]
  • Resource Utilization and Site Selection for a Self-Sufficient Martian Outpost
    NASA/TM-98-206538 Resource Utilization and Site Selection for a Self-Sufficient Martian Outpost G. James, Ph.D. G. Chamitoff, Ph.D. D. Barker, M.S., M.A. April 1998 The NASA STI Program Office... in Profile Since its founding, NASA has been dedicated to CONTRACTOR REPORT. Scientific and the advancement of aeronautics and space technical findings by NASA-sponsored science. The NASA Scientific and Technical contractors and grantees. Information (STI) Program Office plays a key part in helping NASA maintain this important CONFERENCE PUBLICATION. Collected role. papers from scientific and technical confer- ences, symposia, seminars, or other meetings The NASA STI Program Office is operated by sponsored or cosponsored by NASA. Langley Research Center, the lead center for NASA's scientific and technical information. SPECIAL PUBLICATION. Scientific, The NASA STI Program Office provides access technical, or historical information from to the NASA STI Database, the largest NASA programs, projects, and mission, often collection of aeronautical and space science STI concerned with subjects having substantial in the word. The Program Office is also public interest. NASA's institutional mechanism for disseminating the results of its research and • TECHNICAL TRANSLATION. development activities. These results are English-language translations of foreign scientific published by NASA in the NASA STI Report and technical material pertinent to NASA's Series, which includes the following report mission. types: Specialized services that complement the STI TECHNICAL PUBLICATION. Reports of Program Office's diverse offerings include completed research or a major significant creating custom thesauri, building customized phase of research that present the results of databases, organizing and publishing research NASA programs and include extensive results.., even providing videos.
    [Show full text]
  • March 21–25, 2016
    FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk,
    [Show full text]
  • Orbital Evidence for More Widespread Carbonate- 10.1002/2015JE004972 Bearing Rocks on Mars Key Point: James J
    PUBLICATIONS Journal of Geophysical Research: Planets RESEARCH ARTICLE Orbital evidence for more widespread carbonate- 10.1002/2015JE004972 bearing rocks on Mars Key Point: James J. Wray1, Scott L. Murchie2, Janice L. Bishop3, Bethany L. Ehlmann4, Ralph E. Milliken5, • Carbonates coexist with phyllosili- 1 2 6 cates in exhumed Noachian rocks in Mary Beth Wilhelm , Kimberly D. Seelos , and Matthew Chojnacki several regions of Mars 1School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA, 2The Johns Hopkins University/Applied Physics Laboratory, Laurel, Maryland, USA, 3SETI Institute, Mountain View, California, USA, 4Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA, 5Department of Geological Sciences, Brown Correspondence to: University, Providence, Rhode Island, USA, 6Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona, USA J. J. Wray, [email protected] Abstract Carbonates are key minerals for understanding ancient Martian environments because they Citation: are indicators of potentially habitable, neutral-to-alkaline water and may be an important reservoir for Wray, J. J., S. L. Murchie, J. L. Bishop, paleoatmospheric CO2. Previous remote sensing studies have identified mostly Mg-rich carbonates, both in B. L. Ehlmann, R. E. Milliken, M. B. Wilhelm, Martian dust and in a Late Noachian rock unit circumferential to the Isidis basin. Here we report evidence for older K. D. Seelos, and M. Chojnacki (2016), Orbital evidence for more widespread Fe- and/or Ca-rich carbonates exposed from the subsurface by impact craters and troughs. These carbonates carbonate-bearing rocks on Mars, are found in and around the Huygens basin northwest of Hellas, in western Noachis Terra between the Argyre – J.
    [Show full text]
  • Geochemistry Constrains Global Hydrology on Early Mars ∗ Edwin S
    Earth and Planetary Science Letters 524 (2019) 115718 Contents lists available at ScienceDirect Earth and Planetary Science Letters www.elsevier.com/locate/epsl Geochemistry constrains global hydrology on Early Mars ∗ Edwin S. Kite , Mohit Melwani Daswani 1 University of Chicago, Chicago, IL, USA a r t i c l e i n f o a b s t r a c t Article history: Ancient hydrology is recorded by sedimentary rocks on Mars. The most voluminous sedimentary rocks Received 28 December 2018 that formed during Mars’ Hesperian period are sulfate-rich rocks, explored by the Opportunity rover from Received in revised form 17 July 2019 2004–2012 and soon to be investigated by the Curiosity rover at Gale crater. A leading hypothesis for the Accepted 18 July 2019 origin of these sulfates is that the cations were derived from evaporation of deep-sourced groundwater, Available online xxxx as part of a global circulation of groundwater. Global groundwater circulation would imply sustained Editor: W.B. McKinnon warm Earthlike conditions on Early Mars. Global circulation of groundwater including infiltration of water Keywords: initially in equilibrium with Mars’ CO2 atmosphere implies subsurface formation of carbonate. We find Mars that the CO2 sequestration implied by the global groundwater hypothesis for the origin of sulfate-rich geochemistry rocks on Mars is 30–5000 bars if the Opportunity data are representative of Hesperian sulfate-rich rocks, hydrology which is so large that (even accounting for volcanic outgassing) it would bury the atmosphere. This planetary science disfavors the hypothesis that the cations for Mars’ Hesperian sulfates were derived from upwelling of deep-sourced groundwater.
    [Show full text]
  • Radar Imager for Mars' Subsurface Experiment—RIMFAX
    Space Sci Rev (2020) 216:128 https://doi.org/10.1007/s11214-020-00740-4 Radar Imager for Mars’ Subsurface Experiment—RIMFAX Svein-Erik Hamran1 · David A. Paige2 · Hans E.F. Amundsen3 · Tor Berger 4 · Sverre Brovoll4 · Lynn Carter5 · Leif Damsgård4 · Henning Dypvik1 · Jo Eide6 · Sigurd Eide1 · Rebecca Ghent7 · Øystein Helleren4 · Jack Kohler8 · Mike Mellon9 · Daniel C. Nunes10 · Dirk Plettemeier11 · Kathryn Rowe2 · Patrick Russell2 · Mats Jørgen Øyan4 Received: 15 May 2020 / Accepted: 25 September 2020 © The Author(s) 2020 Abstract The Radar Imager for Mars’ Subsurface Experiment (RIMFAX) is a Ground Pen- etrating Radar on the Mars 2020 mission’s Perseverance rover, which is planned to land near a deltaic landform in Jezero crater. RIMFAX will add a new dimension to rover investiga- tions of Mars by providing the capability to image the shallow subsurface beneath the rover. The principal goals of the RIMFAX investigation are to image subsurface structure, and to provide information regarding subsurface composition. Data provided by RIMFAX will aid Perseverance’s mission to explore the ancient habitability of its field area and to select a set of promising geologic samples for analysis, caching, and eventual return to Earth. RIM- FAX is a Frequency Modulated Continuous Wave (FMCW) radar, which transmits a signal swept through a range of frequencies, rather than a single wide-band pulse. The operating frequency range of 150–1200 MHz covers the typical frequencies of GPR used in geology. In general, the full bandwidth (with effective center frequency of 675 MHz) will be used for The Mars 2020 Mission Edited by Kenneth A.
    [Show full text]
  • Human Exploration of Mars Design Reference Architecture 5.0
    July 2009 “We are all . children of this universe. Not just Earth, or Mars, or this System, but the whole grand fireworks. And if we are interested in Mars at all, it is only because we wonder over our past and worry terribly about our possible future.” — Ray Bradbury, 'Mars and the Mind of Man,' 1973 Cover Art: An artist’s concept depicting one of many potential Mars exploration strategies. In this approach, the strengths of combining a central habitat with small pressurized rovers that could extend the exploration range of the crew from the outpost are assessed. Rawlings 2007. NASA/SP–2009–566 Human Exploration of Mars Design Reference Architecture 5.0 Mars Architecture Steering Group NASA Headquarters Bret G. Drake, editor NASA Johnson Space Center, Houston, Texas July 2009 ACKNOWLEDGEMENTS The individuals listed in the appendix assisted in the generation of the concepts as well as the descriptions, images, and data described in this report. Specific contributions to this document were provided by Dave Beaty, Stan Borowski, Bob Cataldo, John Charles, Cassie Conley, Doug Craig, Bret Drake, John Elliot, Chad Edwards, Walt Engelund, Dean Eppler, Stewart Feldman, Jim Garvin, Steve Hoffman, Jeff Jones, Frank Jordan, Sheri Klug, Joel Levine, Jack Mulqueen, Gary Noreen, Hoppy Price, Shawn Quinn, Jerry Sanders, Jim Schier, Lisa Simonsen, George Tahu, and Abhi Tripathi. Available from: NASA Center for AeroSpace Information National Technical Information Service 7115 Standard Drive 5285 Port Royal Road Hanover, MD 21076-1320 Springfield, VA 22161 Phone: 301-621-0390 or 703-605-6000 Fax: 301-621-0134 This report is also available in electronic form at http://ston.jsc.nasa.gov/collections/TRS/ CONTENTS 1 Introduction ......................................................................................................................
    [Show full text]
  • A Trip to Mars
    A Trip to Mars Overview Participants play a game that steps through a human mission to Mars, to learn about the variety of people on the ground supporting missions, and the factors that can affect a mission outcome. Activity Time 10 minutes, although participants may opt to repeat the game multiple times Intended Audience Families or other mixed-age groups, including children as young as 4 years old with assistance from an older child, teen, or adult School-aged children ages 5 and up Tweens What’s the Point? Each space mission is supported by a large team with different responsibilities. Missions are influenced by many factors, including weather, solar storms, human health, and technological problems. Materials For the facilitator: ☐ 2 to 4 large dice constructed using: ☐ 2-4 (6-12-inch-wide) cube-shaped boxes ☐ 12-24 pieces of colorful paper ☐ 1 thick, dark marker ☐ Tape ☐ 7 (28" x 22") poster boards for the different mission stages ☐ A printout of the “Poster Scenarios” on thin cardstock or thick paper so that participants cannot see through it. ☐ An uploaded copy of the video “How Do You Get to Mars?” from http://mars.nasa.gov/msl/multimedia/videos/ind€ex.cfm?v=32# For each participant: ☐ A copy of the Mission Instructions Preparation Before the event • Prepare the posters: − Each Poster should have the step written at the top: Step One: Launch, Step Two: Travel, Step Three A: Habitat, Step Three B: Greenhouse, Step Three C: Ice, Step Four: Return − Print and fold the poster scenarios, then tape each of the six (Flight Director, Space Communicator, Flight Activities Officer, Flight Surgeon, Weather Officer, and Public Affairs Officer) to the appropriate poster, so that lifting the flap will reveal the information.
    [Show full text]
  • Downloaded for Personal Non-Commercial Research Or Study, Without Prior Permission Or Charge
    MacArtney, Adrienne (2018) Atmosphere crust coupling and carbon sequestration on early Mars. PhD thesis. http://theses.gla.ac.uk/9006/ Copyright and moral rights for this work are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Enlighten:Theses http://theses.gla.ac.uk/ [email protected] ATMOSPHERE - CRUST COUPLING AND CARBON SEQUESTRATION ON EARLY MARS By Adrienne MacArtney B.Sc. (Honours) Geosciences, Open University, 2013. Submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy at the UNIVERSITY OF GLASGOW 2018 © Adrienne MacArtney All rights reserved. The author herby grants to the University of Glasgow permission to reproduce and redistribute publicly paper and electronic copies of this thesis document in whole or in any part in any medium now known or hereafter created. Signature of Author: 16th January 2018 Abstract Evidence exists for great volumes of water on early Mars. Liquid surface water requires a much denser atmosphere than modern Mars possesses, probably predominantly composed of CO2. Such significant volumes of CO2 and water in the presence of basalt should have produced vast concentrations of carbonate minerals, yet little carbonate has been discovered thus far.
    [Show full text]
  • NASA Technical Memorandum 0000
    NASA/TM–2016-219182 Frontier In-Situ Resource Utilization for Enabling Sustained Human Presence on Mars Robert W. Moses and Dennis M. Bushnell Langley Research Center, Hampton, Virginia April 2016 NASA STI Program . in Profile Since its founding, NASA has been dedicated to the CONFERENCE PUBLICATION. advancement of aeronautics and space science. The Collected papers from scientific and technical NASA scientific and technical information (STI) conferences, symposia, seminars, or other program plays a key part in helping NASA maintain meetings sponsored or this important role. co-sponsored by NASA. The NASA STI program operates under the auspices SPECIAL PUBLICATION. Scientific, of the Agency Chief Information Officer. It collects, technical, or historical information from NASA organizes, provides for archiving, and disseminates programs, projects, and missions, often NASA’s STI. The NASA STI program provides access concerned with subjects having substantial to the NTRS Registered and its public interface, the public interest. NASA Technical Reports Server, thus providing one of the largest collections of aeronautical and space TECHNICAL TRANSLATION. science STI in the world. Results are published in both English-language translations of foreign non-NASA channels and by NASA in the NASA STI scientific and technical material pertinent to Report Series, which includes the following report NASA’s mission. types: Specialized services also include organizing TECHNICAL PUBLICATION. Reports of and publishing research results, distributing completed research or a major significant phase of specialized research announcements and feeds, research that present the results of NASA providing information desk and personal search Programs and include extensive data or theoretical support, and enabling data exchange services.
    [Show full text]