Antibodies and Tuberculosis: Finally Coming of Age?

Total Page:16

File Type:pdf, Size:1020Kb

Antibodies and Tuberculosis: Finally Coming of Age? PERSPECTIVES clusters that express proliferation-associated OPINION markers and secrete M. tuberculosis- specific antibodies14. However, depletion of B cells Antibodies and tuberculosis: using the therapeutic monoclonal antibody rituximab resulted in highly heterogeneous effects in local granuloma immune finally coming of age? modulation, perhaps owing to the variety of antibody and non-antibody Hao Li and Babak Javid functions of B cells, but had no effect on disease outcome15. Abstract | Are antibodies important for protection against tuberculosis? The jury While these studies did not by has been out for more than 100 years. B cell depletion in experimental themselves prove a lack of B cell or Mycobacterium tuberculosis infection failed to identify a major role for these cells antibody involvement in immunity to in immunity to tuberculosis. However, recent identification of naturally occurring M. tuberculosis, they did cast doubt on antibodies in humans that are protective during M. tuberculosis infection has the potential importance of B cells and reignited the debate. Here, we discuss the evidence for a protective role for antibodies in animal models of TB infection. In parallel, however, studies using antibodies antibodies in tuberculosis and consider the feasibility of designing novel in passive immunization suggested that tuberculosis vaccines targeting humoral immunity. certain antibodies are protective against TB. Administration of monoclonal antibodies The role of humoral immunity in vaccine strategy in TB and discuss the key raised against M. tuberculosis antigens or tuberculosis (TB) is controversial. Almost all questions that still need to be addressed in pooled mouse or human immunoglobulins clinical and preclinical vaccine candidates this field. could ameliorate disease in animal models for TB that are in development target in most16–23, although not all24, cases. Perhaps cell-mediated immunity1. As an intracellular Antibodies in tuberculosis owing to caution in interpretation of some pathogen, it has been assumed that Why is antibody-mediated immunity of the data — antibodies mixed with Mycobacterium tuberculosis, which is the controversial? Koch’s 1882 discovery of M. tuberculosis in vitro before infection, causative agent of TB, would be inaccessible M. tuberculosis as the causative agent of TB as in some of the experiments, might have to circulating antibodies; however, cells stimulated an interest in specific therapies, induced clumping and exaggerated the infected with M. tuberculosis would be including serum therapy, which had shown degree of offered protection — there was vulnerable to killing by the effector arm considerable success in the treatment of greater enthusiasm for the development of the cell-mediated immune response. other infectious diseases (reviewed in REF.8). of recombinant vaccines that elicited Several publications have stimulated However, dozens of studies using serum potent cell- mediated immune responses a re- evaluation of the contribution of therapy in TB showed highly variable in animal models. antibody- mediated immunity to protection results, partly owing to differences in against M. tuberculosis2–5, but a number antigens, antibody titres in serum and host Antibodies back in vogue. In 2013, the first of important questions remain. Why has animals (reviewed in REF.9). As such, late- stage clinical trial in the modern era antibody- mediated immunity been largely interest in serum therapy waned rapidly for a new vaccine against TB was reported; overlooked for vaccine development? and came to a halt following the more disappointingly, it showed no efficacy over Which approaches led to the recent series promising discoveries of the BCG and above routine BCG immunization25. of high- profile papers re- examining the vaccine strain and streptomycin, the first The vaccine, known as MVA85A, delivered role of antibodies in human immunity to anti- tubercular antibiotic. a recombinant immunodominant epitope, TB? How do antibodies offer protection There was also increasing evidence for antigen 85A, via modified vaccinia Ankara against M. tuberculosis? As the only licensed the importance of cell-mediated responses virus. MVA85A performed as engineered: vaccine for TB, bacillus Calmette–Guerin in protection against TB. Mice lacking key it elicited a potent response of CD4+ T cells (Mycobacterium bovis- BCG or BCG) elements of cell-mediated immunity, such secreting IFNγ25,26. Therefore, its failure offers highly variable protection against as IFNγ, tumour necrosis factor (TNF) or (though unsurprising27 to some) led to TB6 and almost no protection against the T cells, and patients with HIV are highly a re- evaluation of what may constitute a transmissible form of the disease, there is an susceptible to TB10,11. This contrasted with protective immune response against urgent need for a new TB vaccine if we are the relatively modest disease phenotypes M. tuberculosis. Some questioned whether to interrupt the current TB emergency; in seen when mice lacking B cells were infected IFNγ- secreting CD4+ T cells were the key 2016 M. tuberculosis claimed more lives than with M. tuberculosis12,13. It was shown to cell- mediated immunity28, and there was any other single pathogen7. In this Opinion in experimentally infected cynomolgus also renewed interest in the potential role, piece, we consider whether antibody-based macaques that M. tuberculosis- containing if any, of antibody-mediated immunity in vaccines could show promise as a new granulomata are surrounded by B cell M. tuberculosis infection. NATURE REVIEWS | IMMUNOLOGY VOLUME 18 | SEPTEMBER 2018 | 591 PERSPECTIVES Important lessons had been learnt in were infected with M. tuberculosis, HEBUI) with no evidence of prior infection the interim. The focus shifted to studying antibodies from the individuals with LTBI by M. tuberculosis may represent human naturally elicited human antibody responses. were better at restricting intracellular ‘restrictors’ that can control M. tuberculosis It was also clear from the renaissance in growth of the pathogen than antibodies infection — although an alternative broadly neutralizing antibodies in the HIV from patients with active TB4. explanation might be that current tests for field that not all HIV-infected individuals Our own group and the groups of LTBI merely fail to identify the mediators made these protective antibody responses29. Kaufmann and Wardemann chose to of immune exposure in these individuals33. As such, pooling antibodies from multiple compare antibody responses between By contrast, no patients with active TB made donors might drown out signals of patients with active TB and health-care protective antibody responses3. Intriguingly, protection within the noise of the majority workers (HCWs) who had potential M. tuberculosis growth restriction owing of donors that did not make protective occupational exposure to M. tuberculosis3,5. to antibodies from protective donors was responses. Below, we focus on four Zimmermann et al. identified M. tuberculosis- completely abrogated both in vivo and key papers published since 2016 that specific antibody responses in both patients in vitro in the absence of CD4+ T cells and applied these principles to advance with active TB and HCWs. Approximately required formation of immune complexes the field2–5. 40% of monoclonal antibodies isolated for full efficacy, suggesting that protection A low titre of antibodies against from the plasmablasts of these individuals was not due simply to neutralization of lipoarabinomannan (LAM), which is a recognized mycobacterial antigens, with M. tuberculosis by antibodies3. key glycolipid found on the surface of the majority of M. tuberculosis- specific Together, these studies revived interest Mycobacterium spp., had been associated antibodies targeting surface-exposed in humoral immunity to TB and suggested with disseminated TB in children30, antigens: either binding intact bacteria that subjects with high exposure to and passive immunization of mice with or surface antigens5. It was found that M. tuberculosis but without active TB monoclonal antibodies against the sugar 7 of 12 isolated immunoglobulin A (IgA) represent the ideal population in which to component of LAM, arabinomannan, had monoclonal antibodies but 0 of 16 isolated study and isolate protective antibodies. been demonstrated to be protective in IgG monoclonal antibodies were able to One further study deserves highlighting. mouse infection models19,21. Achkar restrict M. tuberculosis growth within the Unlike the preceding four studies, it focused and colleagues obtained serum from lung epithelial cell line A549. However, on BCG- elicited immunity in murine TB 30 healthy volunteers immunized with BCG, although HCWs had slightly higher titres of and did not involve human antibodies. which stimulates both cell-mediated and M. tuberculosis-specific IgA, both restrictive Casadevall and colleagues showed that when humoral immunity2. They demonstrated and ineffective M. tuberculosis- specific mice were immunized with BCG grown with that BCG elicited antibody responses monoclonal antibodies were isolated from an intact capsule, they were better able to against both arabinomannan and LAM and patients with active TB and the healthy resist subsequent infection with pathogenic that post- vaccination serum was able to HCWs. Therefore, it could not be inferred M. tuberculosis34. Importantly, encapsulated opsonize M. tuberculosis for phagocytosis from these studies how important
Recommended publications
  • Lactoferrin and Its Detection Methods: a Review
    nutrients Review Lactoferrin and Its Detection Methods: A Review Yingqi Zhang, Chao Lu and Jin Zhang * Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada; [email protected] (Y.Z.); [email protected] (C.L.) * Correspondence: [email protected] Abstract: Lactoferrin (LF) is one of the major functional proteins in maintaining human health due to its antioxidant, antibacterial, antiviral, and anti-inflammatory activities. Abnormal levels of LF in the human body are related to some serious diseases, such as inflammatory bowel disease, Alzheimer’s disease and dry eye disease. Recent studies indicate that LF can be used as a biomarker for diagnosis of these diseases. Many methods have been developed to detect the level of LF. In this review, the biofunctions of LF and its potential to work as a biomarker are introduced. In addition, the current methods of detecting lactoferrin have been presented and discussed. We hope that this review will inspire efforts in the development of new sensing systems for LF detection. Keywords: lactoferrin; biomarkers; immunoassay; instrumental analysis; sensor 1. Introduction Lactoferrin (known as lactotransferrin, LF), with a molecular weight of about 80 kDa, is a functional glycoprotein, which contains about 690 amino acid residues. It was first isolated from bovine milk by Sorensen in 1939 and was first isolated from human milk by Citation: Zhang, Y.; Lu, C.; Zhang, J. Johanson in 1960 [1,2]. The three-dimensional structure of LF has been unveiled by high Lactoferrin and Its Detection resolution X-ray crystallographic analysis, and it consists of two homologous globular lobes Methods: A Review.
    [Show full text]
  • Monoclonal Antibody Playbook
    Federal Response to COVID-19: Monoclonal Antibody Clinical Implementation Guide Outpatient administration guide for healthcare providers 2 SEPTEMBER 2021 1 Introduction to COVID-19 Monoclonal Antibody Therapy 2 Overview of Emergency Use Authorizations 3 Site and Patient Logistics Site preparation Patient pathways to monoclonal administration 4 Team Roles and Responsibilities Leadership Administrative Clinical Table of 5 Monoclonal Antibody Indications and Administration Indications Contents Preparation Administration Response to adverse events 6 Supplies and Resources Infrastructure Administrative Patient Intake Administration 7 Examples: Sites of Administration and Staffing Patterns 8 Additional Resources 1 1. Introduction to Monoclonal Therapy 2 As of 08/13/21 Summary of COVID-19 Therapeutics 1 • No Illness . Health, no infections • Exposed Asymptomatic Infected . Scope of this Implementation Guide . Not hospitalized, no limitations . Monoclonal Antibodies for post-exposure prophylaxis (Casirivimab + Imdevimab (RGN)) – EUA Issued. • Early Symptomatic . Scope of this Implementation Guide . Not hospitalized, with limitations . Monoclonal Antibodies for treatment (EUA issued): Bamlanivimab + Etesevimab1 (Lilly) Casirivimab + Imdevimab (RGN) Sotrovimab (GSK/Vir) • Hospital Adminission. Treated with Remdesivir (FDA Approved) or Tocilizumab (EUA Issued) . Hospitalized, no acute medical problems . Hospitalized, not on oxygen . Hospitlaized, on oxygen • ICU Admission . Hospitalized, high flow oxygen, non-invasive ventilation
    [Show full text]
  • LECTURE 05 Acquired Immunity and Clonal Selection
    LECTURE: 05 Title: ACQUIRED "ADAPTIVE" IMMUNITY & CLONAL SELECTION THEROY LEARNING OBJECTIVES: The student should be able to: • Recognize that, acquired or adaptive immunity is a specific immunity. • Explain the mechanism of development of the specific immunity. • Enumerate the components of the specific immunity such as A. Primary immune response. B. Secondary immune response • Explain the different phases that are included in the primary and secondary immune responses such as: A. The induction phase. B. Exponential phase. C. Steady phase. D. Decline phase. • Compare between the phases of the primary and secondary immune responses. • Determine the type of the immunoglobulins involved in each phase. • Determine which immunoglobulin is induced first and, that last longer. • Enumerate the characteristics of the specific immunity such as: A. The ability to distinguish self from non-self. B. Specificity. C. Immunological memory. • Explain naturally and artificially acquired immunity (passive, and active). • Explain the two interrelated and independent mechanisms of the specific immune response such as : A. Humoral immunity. B. Cell-mediated (cellular) immunity. • Recognize that, the specific immunity is not always protective, for example; sometimes it causes allergies (hay fever), or it may be directed against one of the body’s own constituents, resulting in autoimmunity (thyroditis). LECTURE REFRENCE: 1. TEXTBOOK: ROITT, BROSTOFF, MALE IMMUNOLOGY. 6th edition. Chapter 2. pp. 15-31 2. TEXTBOOK: ABUL K. ABBAS. ANDREW H. LICHTMAN. CELLULAR AND MOLECULAR IMMUNOLOGY. 5TH EDITION. Chapter 1. pg 3-12. 1 ACQUIRED (SPECIFIC) IMMUNITY INTRODUCTION Adaptive immunity is created after an interaction of lymphocytes with particular foreign substances which are recognized specifically by those lymphocytes.
    [Show full text]
  • Ab200015 Human Lactoferrin Simplestep ELISA® Kit
    Version 1 Last updated 28 August 2019 ab200015 Human Lactoferrin SimpleStep ELISA® Kit For the quantitative measurement of Lactoferrin in human serum, plasma, milk, urine, saliva, and cell culture supernatants. This product is for research use only and is not intended for diagnostic use. Copyright © 2018 Abcam. All rights reserved Table of Contents 1. Overview 1 2. Protocol Summary 2 3. Precautions 3 4. Storage and Stability 3 5. Limitations 4 6. Materials Supplied 4 7. Materials Required, Not Supplied 5 8. Technical Hints 5 9. Reagent Preparation 7 10. Standard Preparation 8 11. Sample Preparation 9 12. Plate Preparation 11 13. Assay Procedure 12 14. Calculations 14 15. Typical Data 15 16. Typical Sample Values 16 17. Assay Specificity 23 18. Species Reactivity 23 19. Troubleshooting 24 20. Notes 25 Technical Support 26 Copyright © 2018 Abcam. All rights reserved 1. Overview Lactoferrin in vitro SimpleStep ELISA® (Enzyme-Linked Immunosorbent Assay) kit is designed for the quantitative measurement of Lactoferrin protein in humanserum, plasma, milk, urine, saliva, and cell culture supernatants. The SimpleStep ELISA® employs an affinity tag labeled capture antibody and a reporter conjugated detector antibody which immunocapture the sample analyte in solution. This entire complex (capture antibody/analyte/detector antibody) is in turn immobilized via immunoaffinity of an anti-tag antibody coating the well. To perform the assay, samples or standards are added to the wells, followed by the antibody mix. After incubation, the wells are washed to remove unbound material. TMB Development Solution is added and during incubation is catalyzed by HRP, generating blue coloration. This reaction is then stopped by addition of Stop Solution completing any color change from blue to yellow.
    [Show full text]
  • Tests for Autoimmune Diseases Test Codes 249, 16814, 19946
    Tests for Autoimmune Diseases Test Codes 249, 16814, 19946 Frequently Asked Questions Panel components may be ordered separately. Please see the Quest Diagnostics Test Center for ordering information. 1. Q: What are autoimmune diseases? A: “Autoimmune disease” refers to a diverse group of disorders that involve almost every one of the body’s organs and systems. It encompasses diseases of the nervous, gastrointestinal, and endocrine systems, as well as skin and other connective tissues, eyes, blood, and blood vessels. In all of these autoimmune diseases, the underlying problem is “autoimmunity”—the body’s immune system becomes misdirected and attacks the very organs it was designed to protect. 2. Q: Why are autoimmune diseases challenging to diagnose? A: Diagnosis is challenging for several reasons: 1. Patients initially present with nonspecific symptoms such as fatigue, joint and muscle pain, fever, and/or weight change. 2. Symptoms often flare and remit. 3. Patients frequently have more than 1 autoimmune disease. According to a survey by the Autoimmune Diseases Association, it takes up to 4.6 years and nearly 5 doctors for a patient to receive a proper autoimmune disease diagnosis.1 3. Q: How common are autoimmune diseases? A: At least 30 million Americans suffer from 1 or more of the 80 plus autoimmune diseases. On average, autoimmune diseases strike three times more women than men. Certain ones have an even higher female:male ratio. Autoimmune diseases are one of the top 10 leading causes of death among women age 65 and under2 and represent the fourth-largest cause of disability among women in the United States.3 Women’s enhanced immune system increases resistance to infection, but also puts them at greater risk of developing autoimmune disease than men.
    [Show full text]
  • Understanding the Immune System: How It Works
    Understanding the Immune System How It Works U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES NATIONAL INSTITUTES OF HEALTH National Institute of Allergy and Infectious Diseases National Cancer Institute Understanding the Immune System How It Works U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES NATIONAL INSTITUTES OF HEALTH National Institute of Allergy and Infectious Diseases National Cancer Institute NIH Publication No. 03-5423 September 2003 www.niaid.nih.gov www.nci.nih.gov Contents 1 Introduction 2 Self and Nonself 3 The Structure of the Immune System 7 Immune Cells and Their Products 19 Mounting an Immune Response 24 Immunity: Natural and Acquired 28 Disorders of the Immune System 34 Immunology and Transplants 36 Immunity and Cancer 39 The Immune System and the Nervous System 40 Frontiers in Immunology 45 Summary 47 Glossary Introduction he immune system is a network of Tcells, tissues*, and organs that work together to defend the body against attacks by “foreign” invaders. These are primarily microbes (germs)—tiny, infection-causing Bacteria: organisms such as bacteria, viruses, streptococci parasites, and fungi. Because the human body provides an ideal environment for many microbes, they try to break in. It is the immune system’s job to keep them out or, failing that, to seek out and destroy them. Virus: When the immune system hits the wrong herpes virus target or is crippled, however, it can unleash a torrent of diseases, including allergy, arthritis, or AIDS. The immune system is amazingly complex. It can recognize and remember millions of Parasite: different enemies, and it can produce schistosome secretions and cells to match up with and wipe out each one of them.
    [Show full text]
  • Datasheet: MCA2763 Product Details
    Datasheet: MCA2763 Description: MOUSE ANTI HUMAN LACTOFERRIN Specificity: LACTOFERRIN Format: Purified Product Type: Monoclonal Antibody Clone: 2B8 Isotype: IgG1 Quantity: 0.2 mg Product Details Applications This product has been reported to work in the following applications. This information is derived from testing within our laboratories, peer-reviewed publications or personal communications from the originators. Please refer to references indicated for further information. For general protocol recommendations, please visit www.bio-rad-antibodies.com/protocols. Yes No Not Determined Suggested Dilution Flow Cytometry Immunohistology - Frozen Immunohistology - Paraffin ELISA Immunoprecipitation Western Blotting Functional Assays Where this product has not been tested for use in a particular technique this does not necessarily exclude its use in such procedures. Suggested working dilutions are given as a guide only. It is recommended that the user titrates the product for use in their own system using the appropriate negative/positive controls. Target Species Human Product Form Purified IgG - liquid Preparation Purified IgG prepared by affinity chromatography on Protein G from tissue culture supernatant Buffer Solution Phosphate buffered saline Preservative 0.09% Sodium Azide (NaN ) Stabilisers 3 Approx. Protein 1.0mg/ml Concentrations Immunogen Purified Lactoferrin from human milk. External Database UniProt: Links P02788 Related reagents Page 1 of 3 Entrez Gene: 4057 LTF Related reagents Synonyms LF Fusion Partners Spleen cells from immunised Balb/c mice were fused with cells of the Sp2/0 myeloma cell line. Specificity Mouse anti Human Lactoferrin antibody, clone 2B8 recognizes human lactoferrin, a ~80 kDa globular iron binding glycoprotein found in body secretions such as milk and saliva and is a member of the transferrin family proteins.
    [Show full text]
  • Coverage of Monoclonal Antibody Products to Treat COVID-19
    Coverage of Monoclonal Antibody Products to Treat COVID-19 Monoclonal antibody products to treat Coronavirus disease 2019 (COVID-19) help the body fight the virus or slow the virus’s growth. Medicare beneficiaries have coverage without beneficiary cost sharing for these products when used as authorized or approved by the Food and Drug Administration (FDA). Disclaimer: The contents of this document do not have the force and effect of law and are not meant to bind the public Medicare in any way, unless specifically incorporated into a contract. This document is intended only to provide clarity to the public regarding existing requirements under the law. This communication was printed, published, or produced and disseminated at U.S. taxpayer expense. Site of Care1 Payable by Expected Patient Expected Payment to Providers: Medicare Cost-Sharing Key Facts • Medicare payment for monoclonal antibody products to treat COVID-19 is similar across Inpatient No patient sites of care, with some small differences. Hospital cost-sharing • Medicare pays for the administration of monoclonal antibody products to treat COVID-19. For example, beginning on May 6, 2021, Medicare will pay approximately Outpatient $450 in most settings, or approximately $750 No patient in the beneficiary’s home or residence, for Hospital or cost-sharing the administration of certain monoclonal “Hospital 4 2 antibody products to treat COVID-19. For without Walls ” monoclonal antibody products to treat COVID-19 that are administered before May 6, 2021, the Medicare payment rate in all No patient settings is approximately $310. Outpatient cost-sharing3 Physician Office/ • CMS will exercise enforcement discretion to Infusion Center allow Medicare-enrolled immunizers working within their scope of practice and subject to applicable state law to bill directly and receive direct reimbursement from the Medicare program for administering Nursing Home monoclonal antibody treatments to No patient (See third bullet in Medicare Part A Skilled Nursing Facility Key Facts on CMS cost-sharing residents.
    [Show full text]
  • Monoclonal Antibody Treatment for COVID-19
    Monoclonal Antibody Treatment for COVID-19 Monoclonal antibody treatment is for people who have COVID-19 or were recently exposed to someone who has COVID-19, and are not hospitalized. Treatment can lower the amount of virus in your body, reduce symptoms and help avoid hospitalization. Treatment works best when you get it soon after COVID-19 symptoms begin, so it is important to get tested right away. What is monoclonal antibody treatment? How is monoclonal antibody Monoclonal antibodies are made in a lab and treatment given? work similarly to antibodies your immune Treatment is usually given by intravenous (IV) system makes to fight infection. Monoclonal infusion and takes about an hour. Treatment can antibody treatment helps your body fight also be given by injection. Patients are observed COVID-19 while your immune system begins for an additional hour to make sure they do not to make its own antibodies. In clinical studies, have any immediate bad reactions. monoclonal antibody treatments were shown to be safe and effective. What are the side effects? Side effects may include: Who is eligible for monoclonal antibody treatment? • A reaction at the site of the IV or injection, including pain, swelling, bleeding or bruising Treatment is authorized for people who meet all the following: • Nausea, vomiting or diarrhea • Itching, rash or hives Tested positive for COVID-19 Have had mild to moderate COVID-19 Allergic reactions and other serious side effects symptoms for 10 days or less are very rare. If you experience fever, trouble breathing, rapid or slow heart rate, tiredness, Are age 12 or older and weigh at least 88 pounds weakness, confusion, or other concerning symptoms, contact your provider right away.
    [Show full text]
  • Vaccine Immunology Claire-Anne Siegrist
    2 Vaccine Immunology Claire-Anne Siegrist To generate vaccine-mediated protection is a complex chal- non–antigen-specifc responses possibly leading to allergy, lenge. Currently available vaccines have largely been devel- autoimmunity, or even premature death—are being raised. oped empirically, with little or no understanding of how they Certain “off-targets effects” of vaccines have also been recog- activate the immune system. Their early protective effcacy is nized and call for studies to quantify their impact and identify primarily conferred by the induction of antigen-specifc anti- the mechanisms at play. The objective of this chapter is to bodies (Box 2.1). However, there is more to antibody- extract from the complex and rapidly evolving feld of immu- mediated protection than the peak of vaccine-induced nology the main concepts that are useful to better address antibody titers. The quality of such antibodies (e.g., their these important questions. avidity, specifcity, or neutralizing capacity) has been identi- fed as a determining factor in effcacy. Long-term protection HOW DO VACCINES MEDIATE PROTECTION? requires the persistence of vaccine antibodies above protective thresholds and/or the maintenance of immune memory cells Vaccines protect by inducing effector mechanisms (cells or capable of rapid and effective reactivation with subsequent molecules) capable of rapidly controlling replicating patho- microbial exposure. The determinants of immune memory gens or inactivating their toxic components. Vaccine-induced induction, as well as the relative contribution of persisting immune effectors (Table 2.1) are essentially antibodies— antibodies and of immune memory to protection against spe- produced by B lymphocytes—capable of binding specifcally cifc diseases, are essential parameters of long-term vaccine to a toxin or a pathogen.2 Other potential effectors are cyto- effcacy.
    [Show full text]
  • Monitoring Multiple Myeloma Patients Treated with Daratumumab: Teasing out Monoclonal Antibody Interference
    Clin Chem Lab Med 2016; 54(6): 1095–1104 Open Access Christopher McCuddena, Amy E. Axela, Dominique Slaets, Thomas Dejoie, Pamela L. Clemens, Sandy Frans, Jaime Bald, Torben Plesner, Joannes F.M. Jacobs, Niels W.C.J. van de Donk, Philippe Moreau, Jordan M. Schecter, Tahamtan Ahmadi and A. Kate Sasser* Monitoring multiple myeloma patients treated with daratumumab: teasing out monoclonal antibody interference DOI 10.1515/cclm-2015-1031 developed using a mouse anti-daratumumab antibody. To Received October 21, 2015; accepted February 10, 2016; previously evaluate whether anti-daratumumab bound to and shifted published online March 30, 2016 the migration pattern of daratumumab, it was spiked into Abstract daratumumab-containing serum and resolved by IFE/SPE. The presence (DIRA positive) or absence (DIRA negative) Background: Monoclonal antibodies are promising anti- of residual M-protein in daratumumab-treated patient myeloma treatments. As immunoglobulins, monoclonal samples was evaluated using predetermined assessment antibodies have the potential to be identified by serum criteria. DIRA was evaluated for specificity, limit of sensi- protein electrophoresis (SPE) and immunofixation elec- tivity, and reproducibility. trophoresis (IFE). Therapeutic antibody interference with Results: In all of the tested samples, DIRA distinguished standard clinical SPE and IFE can confound the use of between daratumumab and residual M-protein in com- these tests for response assessment in clinical trials and mercial serum samples spiked with daratumumab and disease monitoring. in daratumumab-treated patient samples. The DIRA Methods: To discriminate between endogenous myeloma limit of sensitivity was 0.2 g/L daratumumab, using protein and daratumumab, a daratumumab-specific spiking experiments. Results from DIRA were repro- immunofixation electrophoresis reflex assay (DIRA) was ducible over multiple days, operators, and assays.
    [Show full text]
  • Bovine Lactoferrin Antibody Catalog Number: BLAC-101AP Lot Number: General Information
    FabGennix International, Inc. 9191 Kyser Way Bldg. 4 Suite 402 Frisco, TX 75033 Tel: (214)-387-8105, 1-800-786-1236 Fax: (214)-387-8105 Email: [email protected] Web: www.FabGennix.com Rabbit Polyclonal Anti-Bovine Lactoferrin antibody Catalog Number: BLAC-101AP Lot Number: General Information Product Bovine Lactoferrin Description Lactoferrin Antibody Affinity Purified Accession # Uniprot: D3G9G3 GenBank: ACT76166.1 Verified Applications CM, ELISA, IF, IHC, IP, WB Species Cross Reactivity Bovine, Sheep Host Rabbit Immunogen Purified bovine Lactoferrin protein Alternative Nomenclature CKRX antibody, GIG12 antibody, Growth inhibiting protein 12 antibody, Kaliocin 1 antibody, LF antibody, LTF antibody, Neutrophil lactoferrin antibody, Talalactoferrin alfa antibody Physical Properties Quantity 100 µg Volume 200 µl Form Affinity Purified Immunoglobulins Immunoglobulin & Concentration 0.5 mg/ml IgG in antibody stabilization buffer Storage Store at -20⁰C for long term storage. Recommended Dilutions ELISA 1:10,000 Immunocytochemistry 1:200 Immunofluorescence 1:200 Immunohistochemistry 1:200 Immunoprecipitation 1:200 Western Blot 1:500 Related Products Catalog # BIOTIN-Conjugated BLAC-BIOTIN FITC-Conjugated BLAC-FITC Antigenic Blocking Peptide P-BLAC Western Blot Positive Control PC-BLAC Human Lactoferrin Antibody HLAC-101AP Alpha Fetoprotein Antibody AFP-101AP Tel: (214)-387-8105, 1-800-786-1236 Fax: (214)-387-8105 Email: [email protected] Web: www.FabGennix.com Application Verification: WB of BLAC-101AP with PC-BLAC. 1:500 antibody dilution in DiluObuffer. Dilutions are for reference only. Applications not listed above are not necessarily precluded from working with this antibody. Investigators intending to use an application that has not been verified can request a complimentary sample.
    [Show full text]