The Reproduction of Some Echinoderms from Macquarie Island
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Star Asterias Rubens
bioRxiv preprint doi: https://doi.org/10.1101/2021.01.04.425292; this version posted January 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. How to build a sea star V9 The development and neuronal complexity of bipinnaria larvae of the sea star Asterias rubens Hugh F. Carter*, †, Jeffrey R. Thompson*, ‡, Maurice R. Elphick§, Paola Oliveri*, ‡, 1 The first two authors contributed equally to this work *Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, United Kingdom †Department of Life Sciences, Natural History Museum, Cromwell Road, South Kensington, London SW7 5BD, United Kingdom ‡UCL Centre for Life’s Origins and Evolution (CLOE), University College London, Darwin Building, Gower Street, London WC1E 6BT, United Kingdom §School of Biological & Chemical Sciences, Queen Mary University of London, London, E1 4NS, United Kingdom 1Corresponding Author: [email protected], Office: (+44) 020-767 93719, Fax: (+44) 020 7679 7193 Keywords: indirect development, neuropeptides, muscle, echinoderms, neurogenesis 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.01.04.425292; this version posted January 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. How to build a sea star V9 Abstract Free-swimming planktonic larvae are a key stage in the development of many marine phyla, and studies of these organisms have contributed to our understanding of major genetic and evolutionary processes. -
Vortex Arrays and Ciliary Tangles Underlie the Feeding–Swimming Tradeoff in Starfish Larvae
Vortex arrays and ciliary tangles underlie the feeding{swimming tradeoff in starfish larvae William Gilpin1, Vivek N. Prakash2, Manu Prakash2∗ 1Department of Applied Physics, 2Department of Bioengineering, Stanford University, Stanford, CA ∗To whom correspondence should be addressed; E-mail: [email protected] March 12, 2018 arXiv:1611.01173v2 [physics.flu-dyn] 13 Feb 2017 1 Abstract Many marine invertebrates have larval stages covered in linear arrays of beating cilia, which propel the animal while simultaneously entraining planktonic prey.1 These bands are strongly conserved across taxa spanning four major superphyla,2,3 and they are responsible for the unusual morphologies of many invertebrate larvae.4,5 However, few studies have investigated their underlying hydrodynamics.6,7 Here, we study the ciliary bands of starfish larvae, and discover a beautiful pattern of slowly-evolving vor- tices that surrounds the swimming animals. Closer inspection of the bands reveals unusual ciliary \tangles" analogous to topological defects that break-up and re-form as the animal adjusts its swimming stroke. Quantitative experiments and modeling demonstrate that these vortices create a physical tradeoff between feeding and swim- ming in heterogenous environments, which manifests as distinct flow patterns or \eigen- strokes" representing each behavior|potentially implicating neuronal control of cilia. This quantitative interplay between larval form and hydrodynamic function may gen- eralize to other invertebrates with ciliary bands, and illustrates the potential -
Systematic Comparison of Sea Urchin and Sea Star Developmental Gene Regulatory Networks Explains How Novelty Is Incorporated in Early Development
ARTICLE https://doi.org/10.1038/s41467-020-20023-4 OPEN Systematic comparison of sea urchin and sea star developmental gene regulatory networks explains how novelty is incorporated in early development Gregory A. Cary 1,3,5, Brenna S. McCauley1,4,5, Olga Zueva1, Joseph Pattinato1, William Longabaugh2 & ✉ Veronica F. Hinman 1 1234567890():,; The extensive array of morphological diversity among animal taxa represents the product of millions of years of evolution. Morphology is the output of development, therefore phenotypic evolution arises from changes to the topology of the gene regulatory networks (GRNs) that control the highly coordinated process of embryogenesis. A particular challenge in under- standing the origins of animal diversity lies in determining how GRNs incorporate novelty while preserving the overall stability of the network, and hence, embryonic viability. Here we assemble a comprehensive GRN for endomesoderm specification in the sea star from zygote through gastrulation that corresponds to the GRN for sea urchin development of equivalent territories and stages. Comparison of the GRNs identifies how novelty is incorporated in early development. We show how the GRN is resilient to the introduction of a transcription factor, pmar1, the inclusion of which leads to a switch between two stable modes of Delta-Notch signaling. Signaling pathways can function in multiple modes and we propose that GRN changes that lead to switches between modes may be a common evolutionary mechanism for changes in embryogenesis. Our data additionally proposes a model in which evolutionarily conserved network motifs, or kernels, may function throughout development to stabilize these signaling transitions. 1 Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA. -
The Sea Stars (Echinodermata: Asteroidea): Their Biology, Ecology, Evolution and Utilization OPEN ACCESS
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/328063815 The Sea Stars (Echinodermata: Asteroidea): Their Biology, Ecology, Evolution and Utilization OPEN ACCESS Article · January 2018 CITATIONS READS 0 6 5 authors, including: Ferdinard Olisa Megwalu World Fisheries University @Pukyong National University (wfu.pknu.ackr) 3 PUBLICATIONS 0 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Population Dynamics. View project All content following this page was uploaded by Ferdinard Olisa Megwalu on 04 October 2018. The user has requested enhancement of the downloaded file. Review Article Published: 17 Sep, 2018 SF Journal of Biotechnology and Biomedical Engineering The Sea Stars (Echinodermata: Asteroidea): Their Biology, Ecology, Evolution and Utilization Rahman MA1*, Molla MHR1, Megwalu FO1, Asare OE1, Tchoundi A1, Shaikh MM1 and Jahan B2 1World Fisheries University Pilot Programme, Pukyong National University (PKNU), Nam-gu, Busan, Korea 2Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, Bangladesh Abstract The Sea stars (Asteroidea: Echinodermata) are comprising of a large and diverse groups of sessile marine invertebrates having seven extant orders such as Brisingida, Forcipulatida, Notomyotida, Paxillosida, Spinulosida, Valvatida and Velatida and two extinct one such as Calliasterellidae and Trichasteropsida. Around 1,500 living species of starfish occur on the seabed in all the world's oceans, from the tropics to subzero polar waters. They are found from the intertidal zone down to abyssal depths, 6,000m below the surface. Starfish typically have a central disc and five arms, though some species have a larger number of arms. The aboral or upper surface may be smooth, granular or spiny, and is covered with overlapping plates. -
Parvulastra Parvivipara and P. Vivipara)
Research Ideas and Outcomes 4: e29766 doi: 10.3897/rio.4.e29766 Research Article A note on life-history traits and conservation concerns for viviparous Australian seastars (Parvulastra parvivipara and P. vivipara) Kiran Liversage‡§, Maria Byrne ‡ Estonian Marine Institute, University of Tartu, Tallinn, Estonia § The University of Sydney, Sydney, Australia Corresponding author: Kiran Liversage ([email protected]) Reviewed v1 Received: 14 Sep 2018 | Published: 11 Oct 2018 Citation: Liversage K, Byrne M (2018) A note on life-history traits and conservation concerns for viviparous Australian seastars (Parvulastra parvivipara and P. vivipara). Research Ideas and Outcomes 4: e29766. https://doi.org/10.3897/rio.4.e29766 Abstract The asterinid seastars Parvulastra parvivipara and P. vivipara share atypical viviparous reproductive modes that have made them of interest for research on life-history evolution and population genetics. This article briefly reviews life-history traits of these endemic Australian species and information on distribution and rarity, as well as providing some additional new analysis. Almost exclusive self-fertilisation has led to extreme genetic poverty in both species and viviparity limits dispersal potential causing relatively small geographical ranges. There is some evidence that the number of intertidal boulder-fields harbouring P. parvivipara, and the overall geographical range, may have become reduced in recent years. In addition, approximately 25 % of boulder-fields with P. parvivipara have been colonised by invasive oysters (Magallana gigas). To understand potential effects of oysters on P. parvivipara, we tested for correlations between P. parvivipara abundances and cover of oyster encrustations that included this invader (native + non-native oyster shells were assessed together because they produced similar encrustations and largely could not be differentiated). -
A Systematic Revision of the Asterinid Genus Aquilonastra O'loughlin
Memoirs of Museum Victoria 63(2): 257–287 (2006) ISSN 1447-2546 (Print) 1447-2554 (On-line) http://www.museum.vic.gov.au/memoirs/index.asp A systematic revision of the asterinid genus Aquilonastra OʼLoughlin, 2004 (Echinodermata: Asteroidea) P. M ARK OʼLOUGHLIN1 AND FRANCIS W.E. ROWE2 1Honorary Associate, Marine Biology Section, Museum Victoria, GPO Box 666, Melbourne, Vic. 3001, Australia ([email protected]) 2Research Associate, Australian Museum, Sydney, NSW, Australia ([email protected]). Private address: Beechcroft, Norwich Road, Scole, Diss, Norfolk, IP21 4DY, U.K. Abstract OʼLoughlin, P. Mark and Rowe, Francis W.E. A systematic revision of the asterinid genus Aquilonastra OʼLoughlin, 2004 (Echinodermata: Asteroidea). Memoirs of Museum Victoria 63(2): 257–287. The Indo-west Pacifi c Aquilonastra OʼLoughlin is reviewed. Eleven species are retained in Aquilonastra: A. anomala (H.L. Clark); A. batheri (Goto); A. burtonii (Gray); A. cepheus (Müller and Troschel); A. corallicola (Marsh); A. coronata (Martens); A. iranica (Mortensen); A. limboonkengi (Smith); A. minor (Hayashi); A. rosea (H.L. Clark); A. scobinata (Livingstone). Asterina lorioli Koehler is reassigned to Aquilonastra. Thirteen new species are described: A. byrneae; A. colemani; A. conandae; A. doranae; A. halseyae; A. marshae; A. moosleitneri; A. oharai; A. richmondi; A. rowleyi; A. samyni; A. watersi; A. yairi. The four subspecies of Asterina coronata Martens are junior synonyms: Asterina coronata cristata Fisher; Asterina coronata euerces Fisher; Asterina coronata fascicularis Fisher; Asterina coronata forma japonica Hayashi. The 13 fi ssiparous Red Sea specimens described by Perrier as Asteriscus wega are the syntypes. Asteriscus wega Perrier is a junior synonym of Asterina burtonii Gray. -
The Advantages of the Pentameral Symmetry of the Starfish
The advantages of the pentameral symmetry of the starfish Liang Wua1, Chengcheng Jia1, Sishuo Wanga, and Jianhao Lvb a College of Biological Sciences, China Agricultural University, Beijing, 100094, China b College of Science, China Agricultural University, Beijing, 100094, China 1 Joint first authors. Corresponding author Liang Wu College of Biological Sciences, China Agricultural University, Beijing, 100094, China Tel: +86-10-62731071/+86-13581827546 Fax: +86-10-62731332 E-mail: [email protected] Chengcheng Ji E-mail: [email protected] Sishuo Wang E-mail: [email protected] Jianhao Lv E-mail: [email protected] Abstract Starfish typically show pentameral symmetry, and they are typically similar in shape to a pentagram. Although starfish can evolve and live with other numbers of arms, the dominant species always show pentameral symmetry. We used mathematical and physical methods to analyze the superiority of starfish with five arms in comparison with those with a different number of arms with respect to detection, turning over, autotomy and adherence. In this study, we determined that starfish with five arms, although slightly inferior to others in one or two aspects, exhibit the best performance when the four aforementioned factors are considered together. In addition, five-armed starfish perform best on autotomy, which is crucially important for starfish survival. This superiority contributes to the dominance of five-armed starfish in evolution, which is consistent with the practical situation. Nevertheless, we can see some flexibility in the number and conformation of arms. The analyses performed in our research will be of great help in unraveling the mysteries of dominant shapes and structures. -
Asteroidea : Echinodermata) in Port Phillip
O’Loughlin, P. M. (2012) List of seastars (Asteroidea : Echinodermata) in Port Phillip. Museum Victoria, Melbourne. This list is based on Museum Victoria collection records and knowledge of local experts. It includes all species in Port Phillip and nearby waters that are known to these sources. Number of species listed: 33. Species (Author) Higher Classification Allostichaster palmula Benavides Serrato & O'Loughlin, 2007 Asteriidae : Forcipulatida : Asteroidea : Phylum Allostichaster polyplax (Muller & Troschel, 1844) Asteriidae : Forcipulatida : Asteroidea : Echinodermata Aquilonastra scobinata (Livingstone, 1933) Asterinidae : Valvatida : Asteroidea : Echinodermata Asterias amurensis Lutken, 1871 Asteriidae : Forcipulatida : Asteroidea : Echinodermata Astrostole scaber (Hutton, 1872) Asteriidae : Forcipulatida : Asteroidea : Echinodermata Bollonaster pectinatus (Sladen, 1883) Astropectinidae : Paxillosida : Asteroidea : Echinodermata Coscinasterias muricata Verrill, 1867 Asteriidae : Forcipulatida : Asteroidea : Echinodermata Fromia polypora Clark, 1916 Ophidiasteridae : Valvatida : Asteroidea : Echinodermata Luidia australiae Doderlein, 1920 Luidiidae : Paxillosida : Asteroidea : Echinodermata Meridiastra atyphoida (Clark, 1916) Asterinidae : Valvatida : Asteroidea : Echinodermata Meridiastra calcar (Lamarck, 1816) Asterinidae : Valvatida : Asteroidea : Echinodermata Meridiastra fissura O'Loughlin, 2002 Asterinidae : Valvatida : Asteroidea : Echinodermata Meridiastra gunnii (Gray, 1840) Asterinidae : Valvatida : Asteroidea : Echinodermata -
<I>Patiriella Vivipara</I> (Echinodermata: Asteroidea
AUSTRALIAN MUSEUM SCIENTIFIC PUBLICATIONS Prestedge, G. K., 1998. The distribution and biology of Patiriella vivipara (Echinodermata: Asteroidea: Asterinidae) a sea star endemic to southeast Tasmania. Records of the Australian Museum 50(2): 161–170. [7 October 1998]. doi:10.3853/j.0067-1975.50.1998.1277 ISSN 0067-1975 Published by the Australian Museum, Sydney naturenature cultureculture discover discover AustralianAustralian Museum Museum science science is is freely freely accessible accessible online online at at www.australianmuseum.net.au/publications/www.australianmuseum.net.au/publications/ 66 CollegeCollege Street,Street, SydneySydney NSWNSW 2010,2010, AustraliaAustralia Records of the Australian Museum (1998) Vol. 50: 161-170. ISSN 0067-1975 The Distribution and Biology of Patiriella vivipara (Echinodermata: Asteroidea: Asterinidae) a Sea Star Endemic to Southeast Tasmania GEOFFREY K. PRESTEDGE 16 Geeves Crescent, Midway Point Tasmania 7171, Australia ABSTRACT. The asterinid sea star Patiriella vivipara is endemic to southeast Tasmania and has a highly restricted distribution, being only known from four locations. It has an unusual pattern of viviparous reproduction, giving birth to juveniles. In this study the birth rate, growth rate, size and age at commencement of reproduction of P vivipara was examined in aquaria for a period of six years. The population of P vivipara at Pittwater was also monitored through monthly examination of a permanent 1m2 quadrat in which the number of adults and juveniles were counted and recorded. These counts were made over an eight-year period. Patiriella vivipara gives birth to juveniles through the year with a period of enhanced reproduction from November to January. Records of water salinity and temperature were taken at Pittwater, as were air temperatures and exposure times during low tide. -
Sequence of Stegnaster Inflatus Trapping and Eating an Amphipod, Observed on the Glass Wall of an Aquarium
Fig. 6 Fig. 7 Fig. 8 Figs. 2 to 8: Sequence of Stegnaster inflatus trapping and eating an amphipod, observed on the glass wall of an aquarium. Stippled areas are those parts pressed firmly on to the glass. For full explanation see text. 162 TANE 20 1974 FEEDING BEHAVIOUR OF STEGNASTER INFLATUS HUTTON. (CLASS: ASTEROIDEA, FAMILY: ASTERINIDAE). Roger V. Grace* SUMMARY Feeding behaviour of Stegnaster inflatus Hutton, observed in the laboratory, is described, and related to the field behaviour of this starfish. A posture commonly adopted by S. inflatus in the field appears to be part of the sequence of feeding responses. INTRODUCTION Underwater field observations of Stegnaster inflatus at Army Bay, approximately 25 kilometres north of Auckland, show that during daylight hours this starfish lives mainly subtidally under ledges, usually attached to the roof or wedged in a crevice at the back of an overhang. In outline, Stegnaster inflatus is almost perfectly pentagonal, and is often brightly coloured; (for colour plate of this starfish, see Morton and Miller,2 plate 23). Frequently one or more of the inter-ambulacral edges of the starfish is raised above the rock surface to which the star is attached. A common pose when the starfish is wedged in a crevice is illustrated in Fig. 1. In this position the tips of the arms are the only points of attachment of the oral surface, and the central area of the aboral surface may be supported by the floor of the crevice. All five inter-ambulacral areas are held well away from the substrate. Laboratory observations suggest a reason for this posture. -
PISCO 'Mobile' Inverts 2017
PISCO ‘Mobile’ Inverts 2017 Lonhart/SIMoN MBNMS NOAA Patiria miniata (formerly Asterina miniata) Bat star, very abundant at many sites, highly variable in color and pattern. Typically has 5 rays, but can be found with more or less. Lonhart/SIMoN MBNMS NOAA Patiria miniata Bat star (formerly Asterina miniata) Lonhart/SIMoN MBNMS NOAA Juvenile Dermasterias imbricata Leather star Very smooth, five rays, mottled aboral surface Adult Dermasterias imbricata Leather star Very smooth, five rays, mottled aboral surface ©Lonhart Henricia spp. Blood stars Long, tapered rays, orange or red, patterned aboral surface looks like a series of overlapping ringlets. Usually 5 rays. Lonhart/SIMoN MBNMS NOAA Henricia spp. Blood star Long, tapered rays, orange or red, patterned aboral surface similar to ringlets. Usually 5 rays. (H. sanguinolenta?) Lonhart/SIMoN MBNMS NOAA Henricia spp. Blood star Long, tapered rays, orange or red, patterned aboral surface similar to ringlets. Usually 5 rays. Lonhart/SIMoN MBNMS NOAA Orthasterias koehleri Northern rainbow star Mottled red, orange and yellow, large, long thick rays Lonhart/SIMoN MBNMS NOAA Mediaster aequalis Orange star with five rays, large marginal plates, very flattened. Confused with Patiria miniata. Mediaster aequalis Orange star with five rays, large marginal plates, very flattened. Can be mistaken for Patiria miniata Pisaster brevispinus Short-spined star Large, pale pink in color, often on sand, thick rays Lonhart/SIMoN MBNMS NOAA Pisaster giganteus Giant-spined star Spines circled with blue ring, thick -
A Newly Recorded Sea Star (Asteroidea: Valvatida) from Jejudo Island, Korea
Short communication Korean J. Syst. Zool. Vol. 26, No. 3: 349-351, November 2010 A Newly Recorded Sea Star (Asteroidea: Valvatida) from Jejudo Island, Korea Sook Shin* Department of Life Science, Sahmyook University, Seoul 139-742, Korea ABSTRACT Some asteroid specimens were collected from the subtidal zone near Gapado, Jejudo Island with fishing net on June 2010. Among them, Anseropoda petaloides (Goto, 1914) which belongs to the family Asterinidae of the order Valvatida turned out to be a new record from Korea. Morphological characters of this species col- lected at 130 m deep are redescribed with photographs. This species is characterized by its very thin body composed of plates imbricated into each other like scales. Twenty four asteroids are currently known from Jejudo Island, Korea. Keywords: taxonomy, Valvatida, Asterinidae, Anseropoda, Jejudo Island, Korea INTRODUCTION 1*Genus Anseropoda Nardo, 1834 Type species: Asterias placenta Pennant, 1777. Sea stars are marine benthos, and the most diverse and famil- Number of species: 16 worldwide (one in Korea) iar group of living echinoderms. They are abundantly distri- buted in regions of the North Pacific Ocean, and approxi- 2*Anseropoda petaloides (Goto, 1914) (Fig. 1A-M) mately, 1,800 species are known worldwide (Mah, 2009). Palmipes petaloides Goto, 1914, p. 659, pl. 19, fig. 284. Sladen (1879) was the first to record asteroids from the Korea Anseropoda petaloides Hayashi, 1973, p. 73; Imaoka et al., Strait. Afterwards, 51 species were reported from South 1990, p. 55; A.M. Clark, 1993, p. 206; O’Loughlin and Korea by previous works (Rho and Kim, 1966; Rho and Shin, Waters, 2004, p.