1 Case Study for Invention: the Benefits of Plastic Innovation Since

Total Page:16

File Type:pdf, Size:1020Kb

1 Case Study for Invention: the Benefits of Plastic Innovation Since Case Study for Invention: The Benefits of Plastic Innovation Since the Age of Plastics began, the United States has been the unquestioned leader in polymer innovation. This prominence is due in part to the ingenuity of chemists in the United States and in part to the support polymer innovation has received from industry, the government, and academic institutions. As the United States faces economic challenges from rising industrial nations like China, it is important to consider that this supportive atmosphere has allowed the United States to remain on the cutting edge of new discoveries and developments. The Age of Plastics began in America. In 1869 John Wesley Hyatt invented celluloid, the first synthetic plastic, while searching for an artificial replacement for ivory. The growing popularity of billiards generated a demand for ivory that made it, and the elephants it came from, a scarce resource. Hyatt’s invention was inspired by the $10,000 reward promised for a workable ivory substitute. After several years of experimentation he found that by treating nitrated cellulose, which is derived from cotton, with camphor, he could produce a light, strong material that could be crafted to look and feel like ivory, tortoiseshell, linen, and other natural materials. Hyatt’s invention wasn’t ideal for billiard balls; the balls made an explosive crack when they collided. But manufacturers churned out other celluloid products that imitated expensive ones, like tortoiseshell combs and linen shirt collars, creating a revolution in the production of goods. Until the creation of synthetic polymers people were confined by what nature provided. With celluloid Hyatt opened the door to the development of new, useful materials that loosened our dependence on nature. Plastics not only freed humans from the material constraints imposed by the world but also weakened the social divisions between rich and poor. Celluloid brushes and combs mimicked more expensive versions. Working-class men could buy easy-to-clean celluloid shirt cuffs and collars that imitated linen, allowing them to blend in with wealthy businessmen. Inexpensive consumer goods made material wealth more widespread and blurred class distinctions. Plastic became even more inexpensive and widely available with the invention of Bakelite in 1907. Leo Baekeland was already a wealthy chemist and inventor when he began searching for a synthetic replacement for shellac, a natural substance used for electrical insulation. His invention, the durable plastic he called Bakelite, was not only a superb insulator; it was also an excellent material for use in mass-produced consumer goods, even better than celluloid. Bakelite was so successful that it inspired large chemical companies like DuPont and Dow to invest in the development of more plastics. While Hyatt and Baekeland mostly worked independently, the growth of American corporations provided polymer innovation with the resources and support of organized business. These new corporate research ventures worked to invent new polymers and then figure out how they could be used rather than seek materials with certain properties, as Hyatt and Baekeland had. 1 Some of these inventions were entirely serendipitous. In 1938 chemist Roy Plunkett was experimenting with new refrigerants when he found his canister coated with a slippery white substance. He recognized that the frictionless qualities of the new polymer could have many useful applications. Marketed as Teflon, his surprise discovery has been used in everything from medical equipment to nonstick pots and pans. Scientific investigation proved critical for American victory in World War II. The war was won not only on battlefields but also in research laboratories. Americans searched for alternative materials that would substitute for and improve the performance of scarce natural resources like rubber, metal, wool, wood, and cotton. Advances in polymer science provided the needed materials, and plastics proved invaluable to the war effort. For example, nylon, invented in 1935, was used for parachutes, ropes, body armor, and more. Plexiglas provided a light, durable alternative to glass for aircraft windows, and nonstick Teflon was used in the atomic bomb. When the war ended, the American economy shifted from producing tanks and planes to making consumer goods. New plastics inventions again proved valuable, improving Americans’ quality of life. For example, plastic food packaging improved food safety and changed the way people shopped. Perfected by William Hale Charch in 1927, moisture-proof cellophane protected food from spoiling and contamination. Cellophane ads reminded shoppers of sanitation issues: “Strange hands. Inquisitive hands. Dirty hands. Touching, feeling, examining things you buy in stores. Your sure protection against hands-across-the-counter is tough, clear, germ-proof Cellophane.”1 Plastic wrapping became ubiquitous in grocery stores as consumers responded positively to cellophane packaging. Cellophane also allowed food to be transported longer distances and stay fresh longer, reducing food waste from spoilage. Plastic inventions changed American society for the better. The low cost and versatility of plastics made consumer goods more widely accessible and allowed for critical developments in innumerable fields. Plastics improved safety, with inventions like padded foam dashboards and bicycle helmets. Fuel efficiency got a boost from lighter cars. The use of plastics in medical devices and procedures led to advancements in medicine and widespread improvements in human health. Plastics also made possible the technological revolution that created cell phones and other high-powered computers. American standards of living have improved dramatically in the last half century—in large part because of plastics. Innovators continue to explore new ways to make and use plastics. Recently, plastics made from plant sources like corn and sugar have been introduced. Scientists are also investigating ways to make truly biodegradable plastics that address disposal concerns. The possibilities for new developments in polymer science are endless. The incredible advances of the past century have been aided by government support, not by limits and regulations. To maintain the momentum of scientific advancement, innovation must be encouraged and supported. 1 Quoted in Stephen Fenichel, Plastic: The Making of a Synthetic Century (New York: Harper Collins, 1996), p. 115 .
Recommended publications
  • Complicated Views: Mainstream Cinema's Representation of Non
    University of Southampton Research Repository Copyright © and Moral Rights for this thesis and, where applicable, any accompanying data are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis and the accompanying data cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The content of the thesis and accompanying research data (where applicable) must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holder/s. When referring to this thesis and any accompanying data, full bibliographic details must be given, e.g. Thesis: Author (Year of Submission) "Full thesis title", University of Southampton, name of the University Faculty or School or Department, PhD Thesis, pagination. Data: Author (Year) Title. URI [dataset] University of Southampton Faculty of Arts and Humanities Film Studies Complicated Views: Mainstream Cinema’s Representation of Non-Cinematic Audio/Visual Technologies after Television. DOI: by Eliot W. Blades Thesis for the degree of Doctor of Philosophy May 2020 University of Southampton Abstract Faculty of Arts and Humanities Department of Film Studies Thesis for the degree of Doctor of Philosophy Complicated Views: Mainstream Cinema’s Representation of Non-Cinematic Audio/Visual Technologies after Television. by Eliot W. Blades This thesis examines a number of mainstream fiction feature films which incorporate imagery from non-cinematic moving image technologies. The period examined ranges from the era of the widespread success of television (i.e.
    [Show full text]
  • Artificial Billiard Balls
    www.mrs.org/publications/bulletin HISTORICAL NOTE Artificial Billiard Balls In his 1859 book The Game of Billiards, and to printers like Hyatt for burn pre- lished the Albany Billiard Ball Company, Michael Phelan, co-owner of the Phelan vention; it also served as a coating for and also the Albany Dental Plate & Collender Company, the largest manu- photographic plates. Company—although this effort was occa- facturer of billiard balls in the United One day in 1868, Hyatt found that a sionally plagued by reports of exploding States, lamented the state of his raw bottle of collodion in his cabinet had dentures by cigar smokers and com- material supply. The ivory obtained from spilled, and that a hard, thick, transpar- plaints about the taste of camphor that the tusks of the elephants of Ceylon, he ent material had formed. He thought col- the dentures retained. The Hyatts later said, was superior to that of the African lodion might make an excellent coating combined both companies to form the elephant for his purposes, being more for his billiard balls. In his excitement, he Celluloid Manufacturing Company. They solid and less friable. However, the cost convinced his brother Isaiah Smith Hyatt, never submitted their billiard balls to the of this ivory was “dreadfully dear.” until then a newspaper editor, to join him Phelan & Collender Company for consid- Adding to the problem was the fact that in his experimentation. eration for the $10,000 prize, however, only 1 in 50 tusks was of sufficient quali- and it is probable that the money was ty to make a billiard ball, due to the “[Phelan] offered a prize of never awarded.
    [Show full text]
  • Books of HIST (MVO) Completed
    1 HIST’S SIXTY YEARS OF SPONSORED PUBLICATIONS: AN EXPANDED 2 BIBLIOGRAPHY 3 Mary Virginia Orna ([email protected]) 4 5 INTRODUCTION 6 For sixty years, the Division of the History of Chemistry (HIST) has sponsored publications 7 of history-related volumes drawn for the most part from symposia that were presented at 8 American Chemical Society (ACS) meetings. The origin of each volume depended upon 9 individuals who organized symposia, or in some cases, proposed book volumes. It has been 10 the practice of the Division to provide some financial support for these ventures; many 11 organizers were able to obtain additional support from various types of grants and 12 contributions. Generally, the editor of the volume was also the organizer of the event. Except 13 for the Archaeological Chemistry volumes, there were no set series or themes over the years, 14 but the volumes naturally fell into the six categories given in the Outline and Overview of 15 this article. 16 Since this paper has as its goal a permanent record of this HIST-initiated activity, 17 each volume will be highlighted with a re-publication of parts of its Preface and if warranted, 18 some additional information on the contents of the volume. Since a large percentage of the 19 volumes’ contents (titles and abstracts of papers) can be found on the ACS website, 20 [www.acs.org/publications], they will not be repeated here but a link to the volume on the 21 ACS website will be provided. However, several volumes were published elsewhere, and 22 even some volumes published by the ACS have no presence on its website.
    [Show full text]
  • Thistle Short Aua,Itj 07078
    Millburn- Short Hills Historical Society P.O. Box «M Thistle Short aUa,ItJ 07078 VoLXXBtt November 1997 "The Dance in the Barn" (From the October 1888 edition of The News Item) he barn-dance given on Thursday night, Sept. 20, by __ TMr. and Mrs. William I. Russell was a pleasant incident of the season in the charming little borough of Short Hills, N.J. Mr. Russell's horses are the fortunate possessors of a large home, the gable front having a width of sixty feet and their owner's invitation to "come and dance in the bam" was a welcome one. Doubtless the horses shared the spirit of hospitality characteristic of their master, and joined in the invitation with all their hearts; certainly not one said ""neigh". A band of five pieces fur- nished the musicians being stationed in the mow. Smilax surrounded the mow opening, twined every post and wreathed every window. Floral horse-shoes hung against each stall-post, and over the doorway was a ball of flowers three feet in diameter. The walls were hung with pictures of English hunting scenes, famous turf winners, etc. Canvas covered the floors, and the stalls, fitted up with seats, rugs, lamps and flowers, formed cosey retreats for tired dancers. The guests were received in the house, the lower part of which contained solid banks of flowers on every mantel and in every nook, and an awning was stretched to the barn. Dancing began at 9:30. and supper was served in the house at midnight. The floral decorations of the table were as attractive as those of the ball-room, the centrepiece being a representation of a pony tandem, with dog cart and footman complete.
    [Show full text]
  • DAMAGE ATLAS Atlas of Case Studies Presenting Typical Damages
    DAMAGE ATLAS Atlas of case studies presenting typical damages Project nbr 212218 http://popart.mnhn.fr Cellulose acetate (CA) Categories Semi-synthetic ; thermoplastic Chemical structure Production - Cellulose acetate was created by Paul Schutzenberger in 1865, by acetylating cellulose under exposure of acetic acid, but manufacturing processes were not available before the first decade of the 20 th century. - as a stiff material, cellulose acetate needs to be plasticized. Triacetine or triphenyl phosphate and phtalates have been and are still used as plasticizers. - Because of its low flammability, it tended to replace cellulose nitrate as a “safety” material for many uses. - spinning methods were also developed before the outbreak of WWI for creating artificial silk and a wide range of textile fibers Forms and applications - All type of objects imitating natural materials, like tortoiseshell, horn, ivory or mother-of-pearl. It is still very present in glasses manufacturing. - other cast objects, such as Lego ® bricks (before 1965) - flexible sheet for photographic “safety films” and other types of uses - wide range of textile fibers Some trade names Rhodoid ®, Viscose®, Rayon ®, Tricel ® Physical characteristics and appearance - Highly transparent material - Raw cellulose acetate is a rigid material which requires plasticizers. - Its scratching resistance is high. - CA is soluble in water, alcohol, ketone and chlorinated solvents. Degradation process - Higher water absorption. - Hydrolysis in presence of acids and moisture. - CA emits
    [Show full text]
  • Learning from Entrepreneurial Failure
    LEARNING FROM ENTREPRENEURIAL FAILURE Leo Baekeland’s Exit from Europe - Joris Mercelis1 - 150 years after the birth of Leo H. Baekeland (1863- 1944), one of Belgium’s most celebrated chemists and high-tech innovators, it has become a priority of policy-makers and academic administrators on both sides of the Atlantic to make university science students and/or faculty more entrepreneurial. It is therefore significant that Baekeland became a successful entrepreneur only after his move to the United States and departure from academia in 1889. Drawing on new source material and various conceptual frameworks regarding the determinants of successful entrepreneurship, this article will reconsider why this was the case. Consistent with recent evidence in entrepreneurship research, it will pay special attention to the institutional incentives faced by Baekeland and examine whether these were responsible for the failure of his first business endeavor. Yet this article will also consider the possibility that non-institutional factors mattered more than the influence of institutional considerations. 47 Learning from Entrepreneurial Failure Academia has long been a congenial setting The Belgian-American chemical innovator for various types of actions and behaviors that Leo H. Baekeland (1863-1944) was among could reasonably be termed “entrepreneurial”. the academic risk takers who, many decades The pursuit of organizational innovations, earlier, did found a business start-up while re- such as the creation of new departments and maining affiliated with his educational insti­ programs or the adjustment of existing ones tution(s). When Baekeland co-established Dr in response to changing societal needs and Baekelandt et Compagnie, a photochemical demands, provides one of the more obvious enterprise, in late December 1887, his ap- examples.
    [Show full text]
  • Cinema in the Digital Age: a Rebuttal to Lev Manovich ! ! ! ! ! ! ! a Senior Project
    ! ! ! ! Cinema in the Digital Age: A Rebuttal to Lev Manovich ! ! ! ! ! ! ! A Senior Project presented to the Faculty of the Philosophy Department California Polytechnic State University, San Luis Obispo ! ! ! ! ! In Partial Fulfillment of the Requirements for the Degree Bachelor of Arts ! ! by! Barbara! Cail December, 2013! ! ! © 2013 Barbara Cail ! Cail "1 I. Introduction! ! Philosophy of film has been in upheaval since the early days of digital post- production effects and manipulation in the 1980s. Although shot and released on celluloid, many feature films of the 1990s were transferred to video in a process known as telecine. Telecine effectively turned the film image into an analog video image which could then be digitized and ingested into a computer for post-production editing and visual effects. Concurrent rapid innovations in non-linear editing software and hardware dramatically accelerated the post-production editing process, while decreasing costs and increasing profits for film studios. End-to-end digital filmmaking gained industry credibility when George Lucas embraced digital for his 1999 release of Star Wars Episode I: The Phantom Menace. The film was partially recorded on digital cameras, edited and composited on computers and distributed digitally to select movie theaters.1 ! ! As technologies continued to mature and cinema became increasingly digital, film philosophy entered a crisis. Classical film theories that depend upon the acknowledged indexical relationship of an analog photo to its referent in reality were unable to accommodate the move to digital. This quandary has renewed interest in these classical theories, returning them to the forefront of film philosophy.! ! Lev Manovich, a preeminent digital media philosopher, has posited that cinema has been fundamentally changed by cinema’s digital revolution.
    [Show full text]
  • Celluloid Dresser Piece
    Donation of the Month Celluloid Dresser Piece 1998.16.1-2 donated by Friends of the Rogers Historical Museum 2001.29.1 donated by Nancy McCuin 2001.35.7.3-6 donated by Jan Riggs Is it ivory or is it plastic? By the mid -1900's, inventors were seeking to create cheaper synthetic materials to replace expensive natural ones. One of these materials was ivory. Ivory was getting harder to get and the demand for more high. The first faux ivory was introduced by English inventor Alexander Parkes and won him an award at the 1862 World's Fair in London. His new material, made from cellulose, nitric acid, and a solvent, could be molded when heated and hardened into a material that imitated ivory. However, this new material didn't hold up very well when mass produced and many pieces cracked and warped. In 1863 American inventor John Wesley Hyatt took the same basic ingredients but changed the solvent to camphor and created a more successful, moldable material he named "celluloid." Some of the earliest objects to be made from celluloid included false teeth. Popular products were shirt collars and cuffs which resisted water and stains. Celluloid was also used to imitate tortoiseshell and marble. Products that used to be made with ivory or bone could now be made in celluloid. These dresser set pieces from the early 1900s are wonderful examples of celluloid substitutes for ivory. Though the plastic has yellowed over time, you can see the ivory-like look in some of them. The comb is very recognizable as it looks very much like combs made today from modern plastic.
    [Show full text]
  • Buying Into Bioplastics: Starch Based Bioplastic for Food Packaging
    BUYING INTO BIOPLASTICS: STARCH BASED BIOPLASTIC FOR FOOD PACKAGING Maya Román, Reagan Dowling, John Christiano PLASTICS IN FOOD STARCH BASED PLASTICS Petroleum-Based Plastic Starch-Based Bioplastic ● The first plastic used in FCMs was Cellophane ● Bioplastic: plastic derived from natural Base Natural gas or crude oil: Corn and other vegetables: based on celluloid, the first synthetic materials and degrades when exposed to Materials Non-Renewable Renewable polymer, in 1927. environmental conditions ● Bakelite was the first completely synthetic ● Starch bioplastic derived from starch-based Disposal Limited recycling Landfills, Composting, plastic, used in a wide range of applications. polymers found in vegetables like corn and Landfills/Oceans Potentially Recyclable ● Plastic disposables became mainstream by potatoes the 1960s, as Saran Wrap, Styrofoam, Ziploc ● Fully biodegradable - Have little to no Post Breaks down extremely slowly Compost, off gassing methane (a bags, and microwave dinner trays, among environmental impact Disposal and harmfully greenhouse gas) other applications. ● Strong, lightweight, malleable ● Plasticware is a cheaper, safer alternative for Water Immense amounts of water in Still uses large amounts of water ● Number of food companies using starch restaurants compared to reusable options. Use both fuel extraction and to grow the crops bioplastic growing exponentially. Ex: Ecoware ● Plastics make up the sixth largest industry, in processing into plastic the US, consisting of 989,000 employees, and PRODUCTION STEPS: with a shipment value of $432.3 billion in Cost Extremely cheap for food Still in development, much 2016. Extraction Production of Polymer processing packaging pricier than petroleum of starch polymers (with extruder) counterpart FOOD PACKAGING’S Food BPA and similar chemicals can Excessive water in or on the BEST CHOICE Safety leach out of containers into packaging will lead to food and drink breakdown Neither petroleum-based nor bioplastics are perfect solutions.
    [Show full text]
  • Cellulose Nitrate in Conservation (1988)
    Research in Conservation 1988 Charles Selwitz Cellulose Nitrate in Conservation Cellulose Nitrate in Conservation Research in Conservation 1988 Charles Selwitz Cellulose Nitrate in Conservation THE GETTY CONSERVATION INSTITUTE © 1988 by the J. Paul Getty Trust. All rights reserved Printed in the United States of America. Library of Congress Cataloging-in-Publication Data Selwitz, Charles M., 1927- Cellulose nitrate in conservation. (Research in conservation) "January 1986." Bibliography: p. Includes index. 1. Art—Conservation and restoration—Research. 2. Nitrocellulose—Research. I. Title. II. Series. N8560.S45 1988 702'.8'8 88-8803 ISBN 0-89236-098-4 The Getty Conservation Institute The Getty Conservation Institute (GCI), an operating program of the J. Paul Getty Trust, was created in 1982 to enhance the quality of conservation practice in the world today. Based on the belief that the best approach to conservation is interdisciplinary, the Institute brings together the knowledge of conservators, scientists, and art historians. Through a combination of in-house activities and collaborative ventures with other organizations, the Institute plays a catalytic role that contributes substantially to the conservation of our cultural heritage. The Institute aims to further scientific research, to increase conservation training opportunities, and to strengthen communication among specialists. Research in Conservation This reference series is born from the concern and efforts of the Getty Conservation Institute to publish and make available the findings of research conducted by the GCI and its individual and institutional research partners, as well as state-of-the-art reviews of conservation literature. Each volume will cover a separate topic of current interest and concern to conservators.
    [Show full text]
  • The Dangers of Cellulose Nitrate Film INDG469
    Health and Safety Executive The dangers of cellulose nitrate film This leaflet is aimed at private individuals and voluntary groups who have or find old film in domestic or other non-workplace premises. It gives advice on: ■ why cellulose nitrate film is hazardous; ■ how to identify cellulose nitrate films and negatives; ■ how to recognise signs of decomposition; ■ what to do if you have cellulose nitrate film; ■ contact points for information and advice. The leaflet does not cover requirements for the storage and handling of a large number of cellulose nitrate films and negatives such as may be found in archives on commercial or industrial premises or in museums. Exacting standards are defined for such activity (see British Standard BS ISO 10356:1996 and National Fire Protection Association Code NFPA 40), and it is covered by workplace health, safety and fire legislation including the Dangerous Substances and Explosive Atmospheres Regulations 2002 (DSEAR). Cellulose nitrate film is extremely dangerous. It catches fire very easily and once alight is difficult to put out. Fires involving cellulose nitrate burn extremely quickly with a hot, intense flame and the smoke is particularly toxic, containing large quantities of poisonous gases. Any cellulose nitrate film that you come across now will be extremely old. This is a problem because the high fire risk from cellulose nitrate film increases as it ages. Old cinematographic film and old photographic negatives (including X-ray film) may be made from cellulose nitrate (which means they contain nitrated cellulose or other nitrated product). These films are sometimes referred to as ‘nitrate’, ‘nitrate-based’, ‘nitro-cellulose-based’ or ‘celluloid’ film (although the term ‘celluloid’ is often used these days to refer to film in general, the film may not actually contain cellulose nitrate – see identification methods later in the leaflet).
    [Show full text]
  • Guide to the Celluloid Corporation Records
    Guide to the Celluloid Corporation Records NMAH.AC.0009 Robert S. Harding and E.S. Etuk 1985 July 11 Archives Center, National Museum of American History P.O. Box 37012 Suite 1100, MRC 601 Washington, D.C. 20013-7012 [email protected] http://americanhistory.si.edu/archives Table of Contents Collection Overview ........................................................................................................ 1 Administrative Information .............................................................................................. 1 Biographical / Historical.................................................................................................... 2 Arrangement..................................................................................................................... 2 Scope and Contents........................................................................................................ 2 Names and Subjects ...................................................................................................... 2 Container Listing ............................................................................................................. 4 Series 1: Publications, 1891 - 1935......................................................................... 4 Series 2: Trade Catalogs, 1883‑1928...................................................................... 5 Series 3: Salesman's Kit, 1937 - 1943.................................................................... 6 Series 4: Photographs, 1837 - 1920, undated........................................................
    [Show full text]