Polyculture Production

Total Page:16

File Type:pdf, Size:1020Kb

Polyculture Production Polyculture Production Principles, Benefits and Risks of Multiple Cropping Land Management Systems for Australia A report for the Rural Industries Research and Development Corporation by Larry Geno and Dr Barbara Geno May 2001 RIRDC Publication No 01/34 RIRDC Project No AGC-3A © 2001 Rural Industries Research and Development Corporation. All rights reserved. ISBN 0 642 58256 4 ISSN 1440-6845 Polyculture Production - Principles, Benefits and Risks of Multiple Cropping Land Management Systems for Australia Publication No. 01/34 Project No. AGC-3A The views expressed and the conclusions reached in this publication are those of the authors and not necessarily those of persons consulted. RIRDC shall not be responsible in any way whatsoever to any person who relies in whole or in part on the contents of this report. This publication is copyright. However, RIRDC encourages wide dissemination of its research, providing the Corporation is clearly acknowledged. For any other enquiries concerning reproduction, contact the Publications Manager on phone 02 6272 3186. Researcher Contact Details Agroecology Associates Bretons Road CROHAMHURST QLD 4519 RIRDC Contact Details Rural Industries Research and Development Corporation Level 1, AMA House 42 Macquarie Street BARTON ACT 2600 PO Box 4776 KINGSTON ACT 2604 Phone: 02 6272 4539 Fax: 02 6272 5877 Email: [email protected]. Website:http://www.rirdc.gov.au Published in May 2001 Printed on environmentally friendly paper by Canprint ii Foreword This comprehensive report provides a well-balanced synthesis of information available on what is termed polycultural production. Polyculture places an ecological framework to the growing of more than one crop at a time in one place. This report further: • Provides an innovative synthesis of worldwide information not previously available on polyculture production: including multiple cropping, permaculture, agroforestry and intercropping dimensions applicable to agriculture, forestry and aquaculture management. • Presents a strategy for sustainable land use intensification drawn from both traditional and modern practices. Polyculture is shown to offer the proverbial ‘free lunch’ by producing more from less. This technique is useful as questionable inputs are withdrawn from production under triple bottom line accountability. • Establishes polyculture as an exemplary integrating theme for understanding both native and manipulated ecosystems and their interaction. • Explores the science behind the benefits of polyculture, traces the conceptual development through time of the ecological theories of competition, complementarity, resource capture and plant interaction to show the transition from a static, structural understanding to a more dynamic, functional understanding of what is, at times the chaotic, nature of polyculture performance. • Establishes a firm scientific basis for polyculture production management. • Details desirable polyculture component characteristics and design principles for use in designing new farming systems, especially amenable to low input, organic and marginal land farming and for reducing environmental impact and enhancing ecological integrity. • Illuminates potential barriers and constraints to wider adoption and implementation of polyculture production as being biophysical, mechanical, social, economic and institutional. The report notes present low adoption rates and the need for future research, development, communication and adoption of polyculture principles and practices. This project was funded from RIRDC Core Funds which are provided by the Federal Government. This report, a new addition to RIRDC’s diverse range of over 600 research publications, forms part of our Organic Produce R&D program, which aims to optimise the profitability of Australian organic production in domestic and overseas markets and to promote the utilisation of organic farming systems as a means of enchancing the sustainability of Australian agricultural systems. Most of our publications are available for viewing, downloading or purchasing online through our website: • downloads at www.rirdc.gov.au/reports/Index.htm • purchases at www.rirdc.gov.au/eshop Peter Core Managing Director Rural Industries Research and Development Corporation iii Acknowledgments This research is dedicated to Bill Mollison, who has long grappled with the concepts of polyculture and their holistic application under his wider concept of permaculture. The Origins of Permaculture In November 1959, watching marsupial browsers in the floristically simple rainforests of Tasmania, I wrote in my diary: ‘I believe that we could build systems that would function as well as this one does.’ A casual reflection, not further developed, had broken the barrier between passive observation (in an attempt to understand inter-relationships between browsers and plants) and the active creation of many similar systems that we could construct ourselves. The step from passive analysis to active management, or active creation, was critical. I was also discovering over this period (1959-1962) that even two of these common browsers and no more than 26 woody plants species could set up a series of very complex interactions. Thus, it was the interactions of components, rather than the number of species that gave the system its flexibility. That flexibility allowed a fairly stable condition to be established through a variation in other influences, in weather and growth. The system constantly changed, but continued to function. This, then, was both the precursor and the core of Permaculture: the realisation that we can create systems, based on analogies of natural systems, or try to improve them for productivity, and then allow the created system to demonstrate evolutions, stepping in at critical stages to manage, or add or subtract species, and observing at all times. These system analogies, if well constructed and recorded, could produce a yield that could be constantly assessed or improved and would also need minimal maintenance energy after the establishment phase. (Mollison 1996) About the authors As researchers and commercial farmers for 25 years, Barbara and Larry have always sought ecological answers to the expectations of the land. Trained through PhD level in ecology and management, they have established polyculture farms in three countries, operated a national organic farm certification scheme, contributed to new crop development, grower organisations, popular and journal publications, and the advance of the concept of sustainability. Through their consulting, they endeavour to place solid, useful information in the hands of those who are on the land to develop successful models of adaptive human ecology. Barbara currently lectures at university, while Larry grows native fruit trees and consults on sustainable farm design. Barbara also is involved with the efforts of both the Centre for Australian Regional Economic Development (CARED) and the Institute of Sustainable Regional Development (ISRD) to promote sustainable solutions to regional development problems. iv Contents FOREWORD .......................................................................................................................III ACKNOWLEDGMENTS........................................................................................................... IV LIST OF TABLES AND FIGURES .......................................................................................... VII EXECUTIVE SUMMARY ........................................................................................................ VIII 1. INTRODUCTION.............................................................................................................1 1.1 Background to the Study ...........................................................................................1 1.2 Justification of the Research .....................................................................................1 1.3 Structure of the Report ..............................................................................................1 2. DEFINING POLYCULTURE ...........................................................................................3 2.1 Evolution of Polyculture Terms..................................................................................3 2.2 Monoculture/Polyculture cropping continuum ............................................................3 2.3 Multiple Cropping ......................................................................................................4 2.4 Sequential Cropping..................................................................................................4 2.5 Intercropping .............................................................................................................5 2.6 Other Relevant Terms ...............................................................................................6 3. WHY STUDY POLYCULTURE? A RATIONALE.........................................................10 3.1 Farming has always been predominantly polycultural..............................................10 3.2 Most farmers in the world farm polycultures ............................................................11 3.3. Interest in polycultures is growing...........................................................................13 3.4.Monoculture problems / Polyculture opportunities ...................................................14 Industrial Agricultural Intensification ........................................................................19
Recommended publications
  • Sustainable Intensification of Agriculture by Intercropping
    Science of the Total Environment 615 (2018) 767–772 Contents lists available at ScienceDirect Science of the Total Environment journal homepage: www.elsevier.com/locate/scitotenv The new Green Revolution: Sustainable intensification of agriculture by intercropping Marc-Olivier Martin-Guay a, Alain Paquette b,JérômeDuprasa, David Rivest a,⁎ a Département des sciences naturelles and Institut des sciences de la forêt tempérée (ISFORT), Université du Québec en Outaouais (UQO), 58 rue Principale, Ripon, QC J0V 1V0, Canada b Département des sciences biologiques, Université du Québec à Montréal, CP 8888, Succursale Centre-ville, Montréal QcH3C 3P8, Canada HIGHLIGHTS GRAPHICAL ABSTRACT • Global productivity potential of intercropping was determined using a meta-analysis. • Global land equivalent ratio of intercropping was 1.30. • Land equivalent ratio of intercropping did not vary through a water stress gra- dient. • Intercropping increases gross energy production by 38%. • Intercropping increases gross incomes by 33%. article info abstract Article history: Satisfying the nutritional needs of a growing population whilst limiting environmental repercussions will require Received 14 July 2017 sustainable intensification of agriculture. We argue that intercropping, which is the simultaneous production of Received in revised form 3 October 2017 multiple crops on the same area of land, could play an essential role in this intensification. We carried out the first Accepted 4 October 2017 global meta-analysis on the multifaceted benefits of intercropping. The objective of this study was to determine Available online xxxx the benefits of intercropping in terms of energetic, economic and land-sparing potential through the framework fi Editor: Jay Gan of the stress-gradient hypothesis. We expected more intercropping bene ts under stressful abiotic conditions.
    [Show full text]
  • Indian Crop Diversity
    Indian crop diversity N Sivaraj, SR Pandravada, V Kamala, N Sunil, K Rameash, Babu Abraham, M Elangovan* & SK Chakrabarty National Bureau of Plant Genetic Resources (NBPGR), Regional Station, Hyderabad 500030. *Directorate of Sorghum Research (DSR), Hyderabad 500 030, Andhra Pradesh. What is Crop diversity? exchange for broadening the genetic base, conservation Crop diversity is the variability in genetic and phenotypic of crop diversity, exploring and promoting the under- traits that is found in cultivars grown by the farming utilized crops; developing genetic diversity to reduce crop community. Crop varieties may vary in height, branching vulnerability to climate changes and to overcome other pattern, flower colour, fruiting time or seed size etc. and they yield limiting characters. may also vary in their response to less obvious abiotic traits such as their response to heat, cold or drought, or their Status of India’s Crop diversity ability to resist specific disease and pests. It is possible to The Indian subcontinent is extremely diverse in its discern variation in almost every conceivable trait, including climate, physiography and flora and the Indian gene nutritional qualities, preparation and cooking techniques, centre is among the 12 mega diversity regions of the and of course how a crop tastes. And if a trait cannot be world. Rich diversity occurs in several crop plants and found in the crop itself, it can often be found in a wild their wild progenitors. About 25 crop species were relative of that crop, a plant that has similar traits of that domesticated in India. It is endowed with rich diversity of species which is not under cultivation or used in agriculture, more than 18,000 species of higher plants including, 160 but exist in the wild.
    [Show full text]
  • Salix Production for the Floral Industry in the USA Who Grow Willows
    Salix production for the floral industry in the USA Who grow willows • Plant nurseries (ornamental and erosion control) • Biomass growers • Basket makers • Floral cut-stem production The USDA Specialty Crop Initiative • the production of woody ornamental cut stems, representing a specialty niche in cut flower production, has risen in popularity • dogwood (Cornus), Forsythia, Hydrangea, lilac (Syringa), and Viburnum • potential as an off-season production option, or third crop enterprise Objectives • to characterize the extent of Salix cultivation as a floral crop in the USA by identifying the active willow growers and their profiles, production acreage and gross sales • to identify if the production practices are well defined and consistent to support crop expansion • the potential the crop’s expansion Distribution and concentration of Salix survey recipients in the United States 52 growers The Association of Specialty Cut Flower Growers (ASCFG) Grower profile • Small scale specialty cut flower producers (58.6%) • Large scale specialty cut flower producers (24.1%) • 24.1% considered Salix as “major crop” –Total gross sales for 80.0% was less than $25,000; 17.0% grossed $25,000- 50,000 and 3% grossed $50,000- 100,000 • good cash return, up to $1.25 to $1.75 per stem of common pussy willow • annual gross financial returns for willow plants, up to $24.94, is much higher than for many other woody florals Taxa in cultivation • For catkins •For Stems The seasonality of the crop Willow harvest for ornamental value by number of growers reporting
    [Show full text]
  • Redalyc.BIOMASS, YIELD and LAND EQUIVALENT RATIO OF
    Tropical and Subtropical Agroecosystems E-ISSN: 1870-0462 [email protected] Universidad Autónoma de Yucatán México Morales-Rosales, Edgar Jesús; Franco-Mora, Omar BIOMASS, YIELD AND LAND EQUIVALENT RATIO OF Helianthus annus L. IN SOLE CROP AND INTERCROPPED WITH Phaseolus vulgaris L. IN HIGH VALLEYS OF MEXICO Tropical and Subtropical Agroecosystems, vol. 10, núm. 3, septiembre-diciembre, 2009, pp. 431-439 Universidad Autónoma de Yucatán Mérida, Yucatán, México Available in: http://www.redalyc.org/articulo.oa?id=93912996011 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Tropical and Subtropical Agroecosystems, 10 (2009): 431 - 439 BIOMASS, YIELD AND LAND EQUIVALENT RATIO OF Helianthus annus L. IN SOLE CROP AND INTERCROPPED WITH Phaseolus vulgaris L. IN HIGH VALLEYS OF MEXICO Tropical and [BIOMASA, RENDIMIENTO Y USO EQUIVALENTE DE LA TIERRA DE Helianthus annus L. EN UNICULTIVO Y ASOCIADO CON Phaseolus vulgaris Subtropical L. EN VALLES ALTOS DE MÉXICO] Agroecosystems Edgar Jesús Morales-Rosales* and Omar Franco-Mora Centro de Investigación y Estudios Avanzados en Fitomejoramiento, Facultad de Ciencias Agrícolas, Universidad Autónoma del Estado de México. Carretera Toluca- Ixtlahuaca Km. 15 C. P. 50200. Toluca, Estado de México. E-mail: [email protected] *Corresponding author SUMARY RESUMEN The aim of the
    [Show full text]
  • 12Things You Need to Know to Garden Successfully with Aquaponics
    12Things You Need to Know to Garden Successfully With Aquaponics CONTACT US [email protected] Website Blog Facebook Twitter Community YouTube Introduction Aquaponics is an exciting new way to grow your favorite fruits, vegetables, and ornamental plants by combining the best of aquaculture and hydroponics to create a completely organic, sustainable and productive growing method. This method can be used both inside and out, it is dirt- free, weed-free, chemical-free, and it uses less than 1/10 the water needed by traditional, soil-based gardening. In aquaponic gardening water is pumped from the fish tank into a grow bed that is filled with an inert growing medium. The medium is home to colonies of beneficial bacteria and composting red worms. The bacteria converts the toxic ammonia from the fish waste first into nitrites then into nitrates, and the worms convert the solid waste into vermicomost. At this point the fish waste has become a near-perfect food for the plants. The plants now filter the water by absorbing the converted fish waste, making a healthier environement for the fish. This symbiotic relationship between the plants, fish, and bacteria / worms creates an environment where all the living elements thrive. This article is a guide to some of what you need to know to grow plants and fish successfully in a media-based aquaponic system. It is not intended to be comprehensive, but rather is a high level overview of some of the basic things you need to know in order to start an aquaponics system of your own. We will go into more depth on each of these subject in upcoming newsletters, so watch for them in your inbox! We are passionate about aquaponic gardening here at The Aquaponic Source™, and we hope that you will find a passion for aquaponic gardening gardening as well.
    [Show full text]
  • Efficacy of Intercropping Pattern in Reducing Weeds Infestation in Okra, Maize and Pepper Intercrop
    International Journal of Weed Science and Technology ISSN 4825-3499 Vol. 2 (1), pp. 063-069, January, 2018. Available online at www.advancedscholarsjournals.org © Advanced Scholars Journals Full Length Research Paper Efficacy of intercropping pattern in reducing weeds infestation in okra, maize and pepper intercrop *Ubini C. Thomas, Jaymiwhie Obanna and Ikogho B. Patrick Department of Crop and Soil Science, University of Port Harcourt, P. M. B 5323 Port Harcourt, Nigeria. Accepted 15 January, 2018 Field study was conducted to evaluate the efficacy of intercropping pattern in reducing weed infestation in okra, maize and pepper intercrop; at the teaching and research farm of Rivers State University of Science and Technology Port Harcourt, Nigeria during 2009 and 2010 cropping season. Three intercropping pattern namely; alternate row intercropping, strip row intercropping and mixed intercropping were compared to sole cropping in a randomized complete block design replicated three times. The result reveal that weed biomass were significantly lower in both years in all forms of intercropping pattern compared to sole cropping or mono-cropping. Weed smothering efficiency in both years showed that mixed pattern (45.7%) >alternate row pattern (33.4%) > strip row pattern (11.5%). Crop yield were better in an intercrop system for maize and pepper in both years compared to -1 sole crop. However, mean okra fruit yield was highest in sole cropping (3253 kg ha ) when compared -1 to intercropping pattern. Maize yield was highest in mixed pattern (8,987 kg ha ) and lowest in sole -1 -1 cropping (6,955 kg ha ) while pepper fruit yield was highest in strip row pattern (5,435 kg ha ) and -1 lowest in mixed pattern (1,562 kg ha ).
    [Show full text]
  • Environmental Significance of Riparian Agroecosystems with Special Reference to Influence on Wetland Livelihood
    [ VOLUME 6 I ISSUE 2 I APRIL– JUNE 2019] E ISSN 2348 –1269, PRINT ISSN 2349-5138 Environmental Significance of Riparian Agroecosystems with special reference to Influence on Wetland Livelihood Dr. Reshma J.K.1 & Dr. Allan Thomas2 1Asst. Professor and Head, PG Department of Environmental Sciences All Saints’ College, Thiruvananthapuram, Kerala. 2Asst. Professor and Head, Department of Extension College of Agriculture, Vellayani, Kerala. Received: February 12, 2019 Accepted: March 24, 2019 INTRODUCTION Riparian Agroecosystem (Agriculture + Ecosystem = Agroecosystem) is construed as a spatially and functionally coherent unit of agricultural activity along river banks, subsuming both biotic & abiotic components, their respective interaction as well. An agroecosystem appends the region that is stuffed in by agricultural activity, prodigally by changes to the complexity ofspecies assemblagesandenergy flows, as well as to the net nutrient balance. Traditionally an agroecosystem, particularly one managed intensively, is epitomized as having a simpler species composition and simpler energy and nutrient flows which makes it unique from other "natural" ecosystems. Moreover, agroecosystems are often confederated with elevated nutrient input, as in the case of forest gardens, probably the world's oldest and most resilient agroecosystemswhich is balanced byeutrophication of consociated ecosystems not directly engaged in agriculture. Substaintial components of Agroecosystem derive all its energy requirements from solar input along with atmospheric and human inputs that come from outside the system, which are referred to as “consumption and markets. Some of the unparagoned features of agroecosystems are monoculture, use of genetically modified organisms and artificially selected crops, row crops, increased soil aeration, simplification of biodiversity and maintenance at an early succession state.
    [Show full text]
  • Course Handout for Introduction to Forest Gardening
    COURSE HANDOUT FOR INTRODUCTION TO FOREST GARDENING Complied by Jess Clynewood and Rich Wright Held at Coed Hills Rural Art Space 2010 ETHICS AND PRINCIPLES OF PERMACULTURE Care for the Earth v Care for the people v Fair shares PRINCIPLES Make the least change for the greatest effect v Mistakes are tools for learning v The only limits to the yield of a system are imagination and understanding Observation – Protracted and thoughtful observation rather than prolonged and thoughtless action. Observation is a key tool to re-learn. We need to know what is going on already so that we don’t make changes we will later regret. Use and value diversity - Diversity allows us to build a strong web of beneficial connections. Monocultures are incredibly fragile and prone to pests and diseases – diverse systems are far more robust and are intrinsically more resilient. Relative Location and Beneficial Connections – View design components not in isolation but as part of a holistic system. Place elements to maximise their potential to create beneficial connections with other elements. Multi-functional Design – Try and gain as many yields or outputs from each element in your design as possible. Meet every need in multiple ways, as many elements supporting each important function creates stability and resilience. Perennial systems – minimum effort for maximum gain Create no waste - The concept of waste is essentially a reflection of poor design. Every output from one system could become the input to another system. We need to think cyclically rather than in linear systems. Unmet needs = work, unused output = pollution. Stacking – Make use of vertical as well as horizontal space, filling as many niches as possible.
    [Show full text]
  • Agricultural Robotics: the Future of Robotic Agriculture
    UK-RAS White papers © UK-RAS 2018 ISSN 2398-4422 DOI 10.31256/WP2018.2 Agricultural Robotics: The Future of Robotic Agriculture www.ukras.org // Agricultural Robotics Agricultural Robotics // UKRAS.ORG // Agricultural Robotics FOREWORD Welcome to the UK-RAS White Paper the automotive and aerospace sectors wider community and stakeholders, as well Series on Robotics and Autonomous combined. Agri-tech companies are already as policy makers, in assessing the potential Systems (RAS). This is one of the core working closely with UK farmers, using social, economic and ethical/legal impact of activities of UK-RAS Network, funded by technology, particularly robotics and AI, to RAS in agriculture. the Engineering and Physical Sciences help create new technologies and herald Research Council (EPSRC). new innovations. This is a truly exciting It is our plan to provide annual updates time for the industry as there is a growing for these white papers so your feedback By bringing together academic centres of recognition that the significant challenges is essential - whether it is to point out excellence, industry, government, funding facing global agriculture represent unique inadvertent omissions of specific areas of bodies and charities, the Network provides opportunities for innovation, investment and development that need to covered, or to academic leadership, expands collaboration commercial growth. suggest major future trends that deserve with industry while integrating and further debate and in-depth analysis. Please coordinating activities at EPSRC funded This white paper aims to provide an direct all your feedback to whitepaper@ RAS capital facilities, Centres for Doctoral overview of the current impact and ukras.org.
    [Show full text]
  • Cultural Ecosystem Services of Agroecosystems Along the Wasatch Front, Utah
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 8-2020 Cultural Ecosystem Services of Agroecosystems Along the Wasatch Front, Utah Tiffany K. Woods Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Environmental Design Commons, and the Landscape Architecture Commons Recommended Citation Woods, Tiffany K., "Cultural Ecosystem Services of Agroecosystems Along the Wasatch Front, Utah" (2020). All Graduate Theses and Dissertations. 7904. https://digitalcommons.usu.edu/etd/7904 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. CULTURAL ECOSYSTEM SERVICES OF AGROECOSYSTEMS ALONG THE WASATCH FRONT, UTAH by Tiffany K. Woods A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Bioregional Planning Approved: __________________________ __________________________ Brent Chamberlain, Ph.D. Arthur J. Caplan, Ph.D. Major Professor Committee Member __________________________ __________________________ Sarah C. Klain, Ph.D. Janis L. Boettinger, Ph.D. Committee Member Acting Vice Provost of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2020 ii Copyright Tiffany K. Woods 2020 All Rights Reserved iii ABSTRACT Cultural ecosystem services of agroecosystems along the Wasatch Front, Utah by Tiffany K. Woods, Master of Science Utah State University, 2020 Major Professor: Brent Chamberlain, Ph.D. Department: Landscape Architecture and Environmental Planning Agroecosystems, including peri-urban systems, are important providers of a range of services. However, management of these systems has generally been based on the market value of crops, neglecting to capture the broader public goods that ecosystem services provide to stakeholders.
    [Show full text]
  • Building the Sustainable Landscape
    Building the Sustainable Urban Landscape DR. ELLEN VINCENT S O I S A MYRTLE BEACH, SC 1 8 F E B 2 0 1 4 Acknowledgments Thank you to: Dale Westemeier, City of Greenville Danny Burbage, Charleston Tom Smiley, Bartlett Tree Resources Lab Paul Minerva, Derek Ham, Steve Gillum, Tyler Jones, Clemson University And for long-term inspiration: Drs. Don Ham, Kim Coder, and Ed Gilman Overview Sustainability defined Components of the SL Design intent- Aesthetics Function: size & access Ecosystems services Cost effectiveness Vincent by Ellen Photo Sustainable spaces Centennial Oak Quercus macrocarpa, Clemson campus Sustainability: historic def. 1987 “Sustainable development is development that meets the needs of the present without Healthy compromising the ability of Environment future generations to meet Vincent Ellen by pyramid triadIssue their own needs” (World Commission, 1987, p. 8). Sustainability Economic Social Justice Development The World Commission on Environment and Development (1987). Our common future.. Oxford: Oxford University Press. Gro Harlan Brundtland (b. 1939) 5 http://www.kennuncorked.com/images_multiple_locations/sus_history_gro_harlem_brundtland.gif Norwegian Minister for Environmental Affairs (1974-1979) Prime Minister of Norway (Feb –Oct 1981, May 1986-Oct 1989) Chair of United Nations World Commission on Environment and Development, published Our Common Future (April, 1987) aka The Brundtland Report Commissioners: 22 people 21 countries http://en.wikipedia.org/wiki/Gro_Harlem_Brundtland Sustainability http://en.wikipedia.org/wiki/Gro_Harlem_Brundtland http://en.wikipedia.org/wiki/Gro_Harlem_Brundtland “The ‘environment’ is where we all live; and ‘development’ is what we all do in attempting to improve our lot within that abode. The two are inseparable” –Gro Harlem Brundtland (The Case for Sustainable Landscapes, 2009, p.
    [Show full text]
  • Land Tenure Insecurity Constrains Cropping System Investment in the Jordan Valley of the West Bank
    sustainability Article Land Tenure Insecurity Constrains Cropping System Investment in the Jordan Valley of the West Bank Mark E. Caulfield 1,2,* , James Hammond 2 , Steven J. Fonte 1 and Mark van Wijk 2 1 Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523-1170, USA; [email protected] 2 International Livestock Research Institute (ILRI), Livestock Systems and the Environment, Nairobi 00100, Kenya; [email protected] (J.H.); [email protected] (M.v.W.) * Correspondence: markcaulfi[email protected]; Tel.: +212-(0)-6-39-59-89-18 Received: 17 July 2020; Accepted: 8 August 2020; Published: 13 August 2020 Abstract: The annual income of small-scale farmers in the Jordan Valley, West Bank, Palestine remains persistently low compared to other sectors. The objective of this study was therefore to explore some of the main barriers to reducing poverty and increasing farm income in the region. A “Rural Household Multi-Indicator Survey” (RHoMIS) was conducted with 248 farmers in the three governorates of the Jordan Valley. The results of the survey were verified in a series of stakeholder interviews and participatory workshops where farmers and stakeholders provided detailed insight with regard to the relationships between land tenure status, farm management, and poverty. The analyses of the data revealed that differences in cropping system were significantly associated with land tenure status, such that rented land displayed a greater proportion of open field cropping, while owned land and sharecropping tenure status displayed greater proportions of production systems that require greater initial investment (i.e., perennial and greenhouse).
    [Show full text]