Abstract Book

Total Page:16

File Type:pdf, Size:1020Kb

Abstract Book Monday, August 13th 2018 8:00 Opening Session I (Session chair: Xueming Yang) 8:20 – 9:00 Spectroscopy of Metal and Metal Oxide Clusters using Slow Electron Velocity-Map Imaging of Cryogenically Cooled Anions Daniel Neumark 9:00 – 9:40 Photoluminescent Metal-Containing Ions Manfred Kappes 9:40 – 10:00 Dalian Coherent Light Source-Based Infrared Spectroscopy of Neutral Clusters Ling Jiang 10:00 – 10:30 Break Session II (Session chair: Guanghou Wang) 10:30 – 11:10 Two-Dimensional Boron Sheets Kehui Wu 11:10 – 11:30 Manipulating the Magnetic Moment of Graphene-Supported Palladium Clusters by Adsorption of Hydrogen María J. López 11:30 – 11:50 Probing the Structures of Gas-Phase Boron Clusters Using Size-Selective IR Spectroscopy Andre Fielicke 11:50 – 12:10 Ab Initio Global Search of Pure and Metal-Doped Boron Clusters Jijun Zhao 12:10 – 13:30 Lunch Session III (Session chair: Julio Alonso) 13:30 – 14:10 When Not only Each Atom Counts! Ulrich Heiz 14:10 – 14:50 From Single-Atom Catalysis (SAC) to Single-Cluster Catalysis (SCC) Jun Li 14:50 – 15:10 Activation and Reactions of Small Molecules (O2, NO, CO, C2H4, etc.) on IB Group (Cu, Ag, and Au) Metal Clusters Xiao-Peng Xing 15:10 – 15:30 Successive Nitridation of Tantalum Cluster Cations by Ammonia Molecules: The Origin of Bulk- Nitride Composition of Group 5 Metals Masashi Arakawa 15:30 – 16:00 Break Session IV (Session chair: Chuan-Gang Ning) 16:00 – 16:40 Infrared and Velocity-Map Imaging Studies of Decorated Metal Clusters and Metal-Ligand Complexes Stuard Mackenzie 16:40 – 17:20 Infrared Spectroscopy of Donor-Acceptor Bonding Carbonyl Complexes Mingfei Zhou 17:20 – 17:40 The Effect of Radiative Cooling on the Size-Dependent Stability of Small Boron Clusters Piero Ferrari 17:40 – 18:00 Bilayer Fullerenes Studied by Ion Mobility Mass Spectrometry Motoyoshi Nakano Monday August 13th INV1 Spectroscopy of metal and metal oxide clusters using slow electron velocity-map imaging of cryogenically cooled anions Daniel Neumark1 1 University of California at Berkeley, USA [email protected] Slow electron velocity-map imaging of cryogenically cooled anions (cryo-SEVI) is a high resolution variant of negative ion photoelectron spectroscopy. It yields well-resolved spectra of species that were previously found to be spectroscopically intractable using lower resolution techniques. Results will be presented for transition metal oxide clusters, aluminum clusters, and mixed carbon/silicon clusters. The effects of complexation of water will also be considered, with the goal of elucidating whether water is physisorbed or dissociatively chemisorbed. 19th International Symposium on Small Particles and Inorganic Clusters August 12-17, 2018, Hangzhou China Monday August 13th INV2 Photoluminescent Metal-Containing Cluster Ions Manfred M. Kappes1,2 1 Institute of Physical Chemistry, KIT, Karlsruhe, Germany 2 Institute of Nanotechnology, KIT, Karlsruhe, [email protected] Isolated ionic clusters held together mainly by Coulomb interactions have been of interest to cluster science since before ISSPIC-I. Over the years, system complexity has evolved from alkali halide clusters to experimentally more demanding metal-organic aggregates thus also making contact to mainstream chemistry. Advancements in mass spectrometry and associated hybrid methods have made this possible --- driven to a significant degree by technology developed in the cluster community. This talk will discuss recent work on photoluminescent metal-organic aggregates containing transition or lanthanoid metal ions. We have studied them after electrospray ionization - using high resolution ion mobility spectrometry, trapped ion photoluminescence spectroscopy and time-resolved photoelectron spectroscopy [1-3]. Whereas the emission spectroscopy of isolated cationic luminophores can be readily probed (and compared to solution), this is not the case for multianionic systems. Instead of strong photoluminescence as in condensed phase, these species undergo excited state electron tunneling detachment (ESETD). The competing mechanisms will be discussed and explained. [1] M.-O. Winghart, J.-P. Yang, M. Vonderach, A.-N. Unterreiner, D.-L. Huang, L.-S. Wang, S. Kruppa, C. Riehn and M. Kappes, J. Chem. Phys., 144, 054305 (2016) [2] J.-F. Greisch, J. Chmela, M. E. Harding, D. Wunderlich, B. Schaefer, M. Ruben, W. Klopper, D. Schooss and M. Kappes, Phys. Chem. Chem. Phys., 19, 6105 (2017) [3] J. Chmela, J.-F. Greisch, M. E. Harding, W. Klopper, M. Kappes and D. Schooss, J. Phys. Chem. A, 122, 2461 (2018) 19th International Symposium on Small Particles and Inorganic Clusters August 12-17, 2018, Hangzhou China Monday August 13th HT1 Dalian Coherent Light Source-Based Infrared Spectroscopy of Neutral Clusters Ling Jiang State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, China E-mail: [email protected] Dalian Coherent Light Source (DCLS) delivers the Vacuum Ultraviolet Free Electron Laser (VUV-FEL) with high brightness and ultrafast laser pulses in the 50-180 nm wavelength region in picoseconds or 100 femtoseconds, which is an ideal light source for the ionization of molecular systems and the excitation of valence electrons with very high efficiency. DCLS is operated in the mode of High Gain Harmonic Generation (HGHG), which is beneficial to narrow bandwidth, stable power, and low cost due to fewer undulators. The VUV-FEL power for individual pulse at 133 nm approached more than 200 microJoules. The user experiment started in June, 2017. It is open for good proposals from the whole world. In this talk, we will present the commission and main specifications of DCLS, and the first experiment of DCLS- based infrared spectroscopy of neutral water clusters. 19th International Symposium on Small Particles and Inorganic Clusters August 12-17, 2018, Hangzhou China Monday August 13th INV3 Two-dimensional boron sheets Kehui Wu Institute of Physics, Chinese Academy of Sciences [email protected] Seeking for low-dimensional boron allotropes has attracted considerable interest in the past decades and theoretical works predicted the existence of 2D boron sheets (or namely borophene). As boron has only three valence electrons, the electron deficiency makes a honeycomb lattice of boron energetically unstable. Instead, a triangular lattice with periodic holes was predicted to be more stable. In 2015, we successfully synthesized 2D boron sheets on silver surface, which host triangular lattice with different arrangements of hexagonal holes [1,2]. An intriguing question is whether it is possible to prepare a borophene monolayer with a pure honeycomb lattice. Honeycomb borophene will naturally host Dirac fermions and thus intriguing electronic properties resembling other group IV elemental 2D materials. Recently, We reported the successful preparation of a purely honeycomb, graphene-like borophene, by using an Al(1 1 1) surface as the substrate and molecular beam epitaxy (MBE) growth in ultrahigh vacuum. Scanning tunneling microscopy (STM) images reveal perfect monolayer borophene with planar, non-buckled honeycomb lattice similar as graphene. Theoretical calculations show that the honeycomb borophene on Al(1 1 1) is energetically stable. Remarkably, nearly one electron charge is transferred to each boron atom from the Al(1 1 1) substrate and stabilizes the honeycomb borophene structure [3]. This work demonstrated that one can manipulate the borophene lattice by controlling the charge transfer between the substrate and the borophene. And the honeycomb borophene provides attractive possibility to construct boron-based atomic layers with unique electronic properties such as Dirac states, as well as to control superconductivity in boron-based compounds. Figure 1. High resolution STM images of honeycomb borophene monolayer on Al(1 1 1). (a) STM image (15 nm × 15 nm) showing the large- period, triangular corrugation. (b) A high resolution STM image (2.4 nm × 2.4 nm) of the area marked by black rectangle in (a), showing a flat honeycomb lattice. (c) 3D STM image (4 nm × 4 nm) of the area marked by white rectangle in (a). The scanning parameters for (a-c) are: sample bias −11 mV, I = 130 pA. References: [1] B. J. Feng et al. Nat. Chem. 8, 563(2016) [2] B. J. Feng et al. Phys. Rev. Lett. 118, 096401 (2017) [3] W. B. Li et al. Sci. Bull. 5, 282(2018) 19th International Symposium on Small Particles and Inorganic Clusters August 12-17, 2018, Hangzhou China Monday August 13th HT2 Manipulating the magnetic moment of graphene-supported palladium clusters by adsorption of hydrogen María J. López1, María Blanco-Rey2,3, J. Iñaki Juaristi4,3, Maite Alducin4,2,3, Alejandra Granja-DelRío1, Julio A. Alonso1,3 1 Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid, Spain 2 Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Donostia-San Sebastián, Spain. 3 Donostia International Physics Center (DIPC), Donostia-San Sebastián, Spain 4 Departamento de Física de Materiales, Facultad de Químicas UPV/EHU, Donostia-San Sebastián, Spain [email protected] The catalytic activity of transition metal (TM) clusters and nanoparticles supported on carbonaceous materials towards the dissociation of molecular hydrogen in two hydrogen atoms plays a key role in a variety of technological applications
Recommended publications
  • Hannu Häkkinen Departments of Physics and Chemistry Nanoscience Center University of Jyväskylä FULL PUBLICATION LIST
    Hannu Häkkinen Departments of Physics and Chemistry Nanoscience Center University of Jyväskylä FULL PUBLICATION LIST FI-40014 Jyväskylä, FINLAND [email protected] http://users.jyu.fi/~hahakkin/ May 2020 Highly Cited Researcher by Clarivate Analytics 2018, H-index = 67 (WoS May 2020) The 10 most significant publications, relevant for PI’s current research: 1. O. Lopez-Acevedo, K.A. Kacprzak, J. Akola, H. Häkkinen, “Quantum size effects in ambient CO oxidation catalysed by ligand-protected gold clusters”, Nature Chem. 2, 329 (2010). 2. H. Häkkinen, “The gold-sulfur interface at the nanoscale”, Nature Chem. 4, 443 (2012). An invited review, WoS “highly cited” paper. It was listed in top-10 most cited papers in Nature Chemistry in 2016 by Google Scholar. 3. H.Yang, Y. Wang, H. Huang, L. Gell, L. Lehtovaara, S. Malola, H. Häkkinen, N. Zheng, "All- thiol-stabilized Ag44 and Au12Ag32 nanoparticles with single-crystal structures", Nature Comm. 4, 2422 (2013). WoS “highly cited” paper. 4. V. Marjomäki, T. Lahtinen, M. Martikainen, J. Koivisto, S. Malola, K. Salorinne, M. Pettersson, H. Häkkinen, "Site- specific targeting of enterovirus capsid by functionalized monodisperse gold nanoclusters", Proc. Natl. Acad. Sci. (USA) 111, 1277 (2014). 5. M. Azubel, J. Koivisto, S. Malola, D. Bushnell, G.L. Hura, A.L. Koh, H. Tsunoyama, T. Tsukuda, M. Pettersson, H. Häkkinen, R.D. Kornberg, "Electron microscopy of gold nanoparticles at atomic resolution", Science 345, 909 (2014). WoS “highly cited” paper. 6. K. Salorinne, S. Malola, O.A. Wong, C.D. Rithner, X. Chen, C.J. Ackerson, H. Häkkinen, "Conformation and dynamics of the ligand shell of a water-soluble Au102 nanoparticle", Nature Comm.
    [Show full text]
  • Freiburg Institute of Physics Activity Report 2014-2017
    Freiburg Institute of Physics Activity Report 2014-2017 Albert-Ludwigs-Universität Freiburg INSTITUTE OF PHYSICS UNIVERSITY OF FREIBURG ACTIVITY REPORT 2014 - 2017 Institute of Physics Albert-Ludwigs-Universitat¨ Freiburg Hermann-Herder-Str. 3 79104 Freiburg Front cover Velocity map imaging detection of photoelectrons emitted from a size-selected Na3− cluster, fascinating morphologies of polymer crystals, and a candidate event for a Higgs boson produced in the ATLAS experiment, symbolising the three research areas of the Institute of Physics. IMPRESSUM Published February 2018 by the Freiburg Institute of Physics Editorial Team M. Walther T. Schatz¨ Cover Design T. Klaas Printed by University of Freiburg All rights reserved. ii The Institute of Physics of the University of Freiburg, with the explicit support of the Rectorate of the University, has decided to install an international Scientific Advisory Board (SAB), to consult and advise the institute in all aspects of its academic research and education, on a regular basis. The present activity report provides a concise description of the scientific activities of the research groups during the years 2014 to 2017, of the teaching and outreach programme, and of the available infrastructure. The part of the scientific activities is divided into three main chapters dedicated to the three main research areas of the institute. The variable structure of these chapters reflects the diverse and lively scientific cultures of the different areas which meet under the roof of this institute. Following the inaugural meeting of the Scientific Advisory Board on February 17./18., 2014, its 2nd meeting is scheduled for April 12./13., 2018. iii iv Contents I The Institute of Physics 5 1.1 Overview of the Institute .
    [Show full text]
  • Henry Hess: Curriculum Vitae – September 2018 Page 1 of 23
    Henry Hess: Curriculum Vitae – September 2018 Page 1 of 23 Henry Hess Professor Phone: (212) 854-7749 Department of Biomedical Engineering Fax: (212) 854-8725 Columbia University [email protected] 351L Engineering Terrace New York, NY 10027 Research My primary research interest is nanobiotechnology, in particular hybrid nanodevices and materials Interests merging biological and synthetic building blocks. Creative approaches to the design of such devices draw from chemistry, biotechnology, microfabrication, biology, and engineering. Education Technical University Clausthal Clausthal, Germany Prediploma in Physics, Minor in Chemistry, February 1993. Technical University Berlin Berlin, Germany Diploma (M.Sc.), Department of Physics, March 1996. Thesis: Fragmentation and Condensation Dynamics of Clusters and Small Aggregates. Free University Berlin Berlin, Germany Ph.D. Institute for Experimental Physics, Summa Cum Laude, December 1999. Thesis: Femtosecond Spectroscopy of Cold Metal Clusters. Awards 6.Place in German High School Physics Competition (1991) High School Honors Program at the Brookhaven National Lab (1991) Scholarship from the “Deutsche Studienstiftung” (1991-93) Erwin-Stephan-Award of the Technical University Berlin for outstanding graduates (1996) Wolfgang-Paul-Award of the German Society for Mass Spectrometry for best PhD thesis (2000) Feodor Lynen postdoctoral fellowship of the A. von Humboldt foundation (2000, renewed 2001) Philip Morris Forschungspreis (together with Viola Vogel, 2005) Distinguished Mentor Award of the
    [Show full text]
  • Tav6.Pdf (4.230Mb)
    A METHODOLOGY FOR STUDYING FIELD DIFFERENCES IN SCIENTIFIC COMMUNICATION - EXPLAINING OPENNESS AND SHARING IN TWO SCIENTIFIC COMMUNITIES IN THE CHEMICAL AND PHYSICAL SCIENCES A Dissertation Presented to the Faculty of the Graduate School of Cornell University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Theresa Velden August 2011 c 2011 Theresa Velden ALL RIGHTS RESERVED A METHODOLOGY FOR STUDYING FIELD DIFFERENCES IN SCIENTIFIC COMMUNICATION - EXPLAINING OPENNESS AND SHARING IN TWO SCIENTIFIC COMMUNITIES IN THE CHEMICAL AND PHYSICAL SCIENCES Theresa Velden, Ph.D. Cornell University 2011 This dissertation is about differences in communication practices across scien- tific fields, and how to study those differences. It explores how differences in communicative behavior of scientists can be traced back to differences in the kind of research they are doing. The focus is on one aspect of scientific commu- nication in particular: how openly do research teams within a research specialty share scientific knowledge? This question is of particular relevance vis-a-vis` the World Wide Web’s innovative potential to connect people and information worldwide. For the sciences this translates into an increased immediacy with which scientists can access and exchange scientific knowledge, as well as new ways of (re)evaluating, combining, and mining data. The methodological ap- proach developed in this study combines qualitative (ethnographic) and quanti- tative (network analytic) methods. This approach supports scaling-up nuanced local ethnographic field studies to the aggregate level of research specialties for comparison between fields. Behavioral patterns are captured and quanti- fied through structural analyses of publication networks that are constructed from the accumulated 20-year publication output of a research specialty.
    [Show full text]
  • From Free Cluster to Cluster Assembled Materials » P
    PRODUCTIONS SCIENTIFIQUES Articles de revue 1. « From free cluster to cluster assembled materials » P. MELINON, V. PAILLARD, V. DUPUIS, A. PEREZ, P. JENSEN, A. HOAREAU, J.P. PEREZ, J. TUAILLON, M. BROYER, J.L. VIALLE, M. PELLARIN,B. BAGUENARD, J. LERME International Journal of Modern Physics B, 9, 339-397 (1995) 2. “Nanocrystalline Structures Prepared by Neutral Cluster Beam Deposition.” A. PEREZ, P. MELINON, V. PAILLARD, V. DUPUIS, P. JENSEN, A. HOAREAU, J.P. PEREZ, J. TUAILLON, M. BROYER, J.L. VIALLE, M. PELLARIN, B. BAGUENARD, J. LERME, "Clusters and Nanostructured Materials", P. Jena and S.N. Behera editors, Nova Science, p. 319-332 (1996) 3. "Electronic and atomic structure of large covalent and metal clusters. Application to cluster assembled Materials" M. BROYER, M. PELLARIN, B. BAGUENARD, J. LERME, J.L. VIALLE, P. MELINON, J. TUAILLON, V. DUPUIS, B. PREVEL, A. PEREZ in : "Cluster Assembled Materials, Ed. K. Sattler, Transtech Pub. Co. Materials Science Forum, 232 , 27 (1996) 4. "Cluster assembled materials: a novel class of nanostructured solids with original structures and properties" A. PEREZ, P. MELINON, V. DUPUIS, P. JENSEN, B. PREVEL, J. TUAILLON, L. BARDOTTI, C. MARTET, M. TREILLEUX, M. BROYER, M. PELLARIN, J.L. VIALLE, B. PALPANT AND J. LERME, J. Phys. D, Special Section on Nanotechnology, Applied Physics, 30 , 709 (1997). 5. "Nanostructured materials from clusters : synthesis and properties" A. PEREZ, P. MELINON, V. DUPUIS, B. PREVEL, L. BARDOTTI, J. TUAILLON- COMBES, B. MASENELLI, M. TREILLEUX, M. PELLARIN, JEAN LERME, E. COTTANCIN, M. BROYER, M. JAMET, M. NEGRIER, F. TOURNUS, M. GAUDRY Materials Transactions, Special Issue on Nano-Metals 1, Vol 42 , N°8, 1460 (2001).
    [Show full text]
  • STT 60 Nanotechnology
    3169 boekomslag • def [XP] 23-09-1998 11:55 Pagina 1 Nanotechnology is considered a key technology for the 21st century NanotechnologyNanotechnology by renowned scientists. But what Towards a molecular construction kit exactly is nanotechnology? What is Towards a molecular construction kit the difference between ‘bottom-up’ and ‘top-down’ nanofabrication, and what is a scanning probe micro- scope? And most of all: what will nanotechnology bring us? These questions are addressed in Edited by Arthur ten Wolde this book from the Netherlands Study Centre for Technology Trends (STT). It uses terms that are understandable to a wide technically interested audience. It provides an overview of STT 60 the scientific state of the art as well as the technological potential of nanomaterials, nanoelectronics, molecular nanotechnology and nano- scale-resolution microscopes. The impact is illustrated with examples of current and future applications in almost every product area. This book is a special jubilee edition to celebrate STT’s 30th anniversary. It is the tangible result of a collaborative effort from STT and many scientists from universities and industry with backgrounds in physics, chemistry and biology. This publication is intended for everyone involved in technological development, and especially for ISBN 90-804496-1-X those interested in this wave of innovation surpassing the impact of information technology and biotechnology. 9 789080 449619 Nanotechnology The Netherlands Study Centre for Technology Trends (STT), founded in 1968 by the Royal Institution of Engineers in the Netherlands, has the following aims: – to evaluate technological trends from the viewpoint of the engineering sciences and to explore their interaction with other developments in society as a whole; – to give wide publicity to its findings as a contribution to a more integrated picture of the future of society in the Netherlands and elsewhere.
    [Show full text]
  • Computational and Theoretical Chemistry Virtual Summer Conference Series
    Computational and Theoretical Chemistry Virtual Summer Conference Series Germantown, Maryland Summer 2020 i FOREWORD Plans were already underway for the seventh annual CTC PI meeting scheduled for May 12-14, 2020 when it was canceled due to COVID-19. In response to the cancellation, a few PIs planted the seed of a virtual conference series as a viable alternative. Hence, here we are organizing the 2020 CTC Summer Conference Series. Using repurposed submitted abstracts originally for the PI meeting, we have organized a series of afternoon meetings scheduled to be held monthly over the summer of 2020. Despite the change in style, venue, format, and duration, we sincerely hope this virtual conference series will serve as a platform for collegial discussion and exchange of ideas among the various projects within the CTC program. It is our deep hope that seeds for future collaborations among research groups with mutually complementary expertise will grow from this virtual conference series. The 2020 CTC virtual summer conference series is sponsored by the Chemical Sciences, Geosciences and Biosciences Division of the Office of Basic Energy Sciences, U.S. Department of Energy, and includes invited speakers and participants from the core CTC program, Computational Chemical Science projects, Quantum Information Science Projects, Energy Frontier Research Centers, and SciDAC efforts. We thank all of the researchers whose dedication, innovation, and reviewing activities have enhanced the goals of Basic Energy Sciences and made this virtual meeting possible. We look forward to seeing this community build upon its successes and look forward to the next joint meeting. Special thanks to Sharwyn Fryer and Teresa Crockett from Office of Basic Energy Sciences and Connie Lansdon at Oak Ridge Institute for Science and Education for their important contributions to the technical and logistical features of this meeting.
    [Show full text]
  • Open C.E.Jones Dissertation 112008.Pdf
    The Pennsylvania State University The Graduate School Department of Chemistry CLUSTERS: ADDRESSING MATERIAL AND ENVIRONMENTAL ISSUES A Dissertation in Chemistry by Charles E. Jones, Jr. © 2008 Charles E. Jones, Jr. Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy December 2008 The dissertation of Charles E. Jones, Jr. was reviewed and approved* by the following: A. Welford Castleman, Jr. Eberly Family Distinguished Chair in Science Evan Pugh Professor of Chemistry and Physics Dissertation Advisor Chair of Committee Nicholas Winograd Evan Pugh Professor of Chemistry John V. Badding Professor of Chemistry Renee D. Diehl Professor of Physics Ayusman Sen Professor of Chemistry Head of the Department of Chemistry *Signatures are on file in the Graduate School iii ABSTRACT The present thesis work is part of a continuing effort in the Castleman group to study the physical and chemical properties of clusters as they relate to materials and the environment. With regards to materials, metal-based clusters are synthesized in the gas phase in order to identify uniquely stable species. Just as atoms or molecules are the building blocks of matter in nature, our group envisions the synthesis of future cluster-assembled materials (CAMs) built with clusters. By varying the size and composition of a cluster by even one atom, the electronic properties can be dramatically changed. A general introduction of the cluster chemistry and physics pertinent to this thesis work is presented in Chapter 1. Anion photoelectron spectroscopy is the experimental technique utilized in this work to study metal and metal-based clusters. A home-built instrument was employed, and descriptions of its components are presented in Chapter 2.
    [Show full text]
  • Physics Newsletter 2020
    Home of Physics and Astronomy on the Idaho Palouse Newsletter Issue No. 1 MMXX Editor: J.R. Hiller URL: https://www.uidaho.edu/sci/physics/news/physics-newsletter Message from the Chair ence. Faculty quickly trained themselves in the use of Zoom and launched synchronous To say that this has been quite a year and asynchronous versions of their courses. would seem unnecessary. It has been quite Any diligent student should have been as a year for everyone. All the various dis- successful in that semester as in any other. ruptions and hardships induced by the pan- In the process, much was learned about demic came so fast that being reactive was the technology that is now the founda- usually the only course of action. For the tion for our fall-semester preparations, as University of Idaho, this came on top of we plan to deliver several courses in hy- months spent dealing with budget cuts, not brid remote/in-class combinations that ac- to mention my own summer-long effort to commodate social distancing. Only small relocate from Minnesota. classes that fit safely within their rooms will However, through it all (and continuing be delivered in the fully traditional fash- today, as we prepare for a fall semester in ion, and those only until the Thanksgiving the new normal), the Department has kept break. After that break, all instruction will its focus on our dual core missions of teach- again be fully online for the remainder of the ing and research. We pivoted to fully online semester, to prevent students from returning instruction in March, with only the week of with new infections.
    [Show full text]
  • Growth of Nanostructures by Cluster Deposition: a Review
    Growth of nanostructures by cluster deposition : experiments and simple models Pablo Jensen∗ D´epartement de Physique des Mat´eriaux, Universit´eClaude Bernard Lyon-1, 69622 Villeurbanne C´edex, France This paper presents a comprehensive analysis of simple models useful to analyze the growth of nanostructures obtained by cluster deposition. After detailing the potential interest of nanostruc- tures, I extensively study the first stages of growth (the submonolayer regime) by kinetic Monte- Carlo simulations. These simulations are performed in a wide variety of experimental situations : complete condensation, growth with reevaporation, nucleation on defects, total or null cluster- cluster coalescence . The main scope of the paper is to help experimentalists analyzing their data to deduce which of those processes are important and to quantify them. A software including all these simulation programs is available at no cost on request to the author. I carefully discuss experiments of growth from cluster beams and show how the mobility of the clusters on the surface can be measured : surprisingly high values are found. An important issue for future technological applications of cluster deposition is the relation between the size of the incident clusters and the size of the islands obtained on the substrate. An approximate formula which gives the ratio of the two sizes as a function of the melting temperature of the material deposited is given. Finally, I study the atomic mechanisms which can explain the diffusion of the clusters on a substrate and the result of their mutual interaction (simple juxtaposition, partial or total coalescence . ). I. INTRODUCTION Growth of new materials with tailored properties is one of the most active research directions for physicists.
    [Show full text]
  • Henry Hess: Curriculum Vitae – March 31, 2015 Page 1 of 23
    Henry Hess: Curriculum Vitae – March 31, 2015 Page 1 of 23 Henry Hess Associate Professor Phone: (212) 854-7749 Department of Biomedical Engineering Fax: (212) 854-8725 Columbia University [email protected] 351L Emgineering Terrace New York, NY 10027 Research My primary research interest is nanobiotechnology, in particular hybrid nanodevices and materials Interests merging biological and synthetic building blocks. Creative approaches to the design of such devices draw from chemistry, biotechnology, microfabrication, biology, and engineering. Education Technical University Clausthal Clausthal, Germany Prediploma in Physics, Minor in Chemistry, February 1993. Technical University Berlin Berlin, Germany Diploma (M.Sc.), Department of Physics, March 1996. Thesis: Fragmentation and Condensation Dynamics of Clusters and Small Aggregates. Free University Berlin Berlin, Germany Ph.D. Institute for Experimental Physics, Summa Cum Laude, December 1999. Thesis: Femtosecond Spectroscopy of Cold Metal Clusters. Awards 6.Place in German High School Physics Competition (1991), High School Honors Program at the Brookhaven National Lab (1991), Scholarship from the “Deutsche Studienstiftung” (1991-93), Erwin-Stephan-Award of the Technical University Berlin for outstanding graduates (1996), Wolfgang-Paul-Award of the German Society for Mass Spectrometry for best PhD thesis (2000), Feodor Lynen postdoctoral fellowship of the A. von Humboldt foundation (2000, renewed 2001) Philip Morris Forschungspreis (together with Viola Vogel, 2005) Distinguished Mentor
    [Show full text]
  • Download Book of Abstracts
    Edited by Alfredo Tlahuice, Dulce Aguilar, Luis Pérez, Cecilia Noguez, Gabriela Díaz, and Ignacio L. Garzón Copyright: Instituto de Física, Universidad Nacional Autónoma de México Preface This Book of Abstracts contains a compilation of contributions presented at the XV International Symposium on Small Clusters and Inorganic Clus- ters – ISSPIC XV, held at Oaxaca City, Mexico on September 19-24, 2010. Contributions include plenary, progress reports (invited), and selected (hot topics) talks, as well as poster presentations. The scientific program also includes two Memorial talks in honor to Professors Tomotsu Kondow and Eck- erhard Recknagel, who were distinguished scientists in the field of Cluster and Nanoparticle Science. All the talks (plenary, invited and hot topics) are arranged chronologically according to the Program. The poster contributions have been classified into different topics, listed below. Topics A-01 to A-07 belong to Poster Session A, and topics B-01 to B-06 to Poster Session B. A code has been assigned to each poster abstract (for example, Poster B-03- 10 is the tenth poster within topic B-03). An author index is provided at the end of the Book. We acknowledge support from Consejo Nacional de Cien- cia y Teconología (CONACyT-Mexico) and Universidad Nacional Autónoma de México (UNAM) for the edition of this Book of Abstracts. A-01. Structure and thermodynamics of clusters and nanolloys A-02. Clusters on surfaces A-03. Carbon nanostructures A-04. Nanoparticles in biology and medicine A-05. Spectroscopy and dynamics with short laser pulses A-06. Nanoparticles in environmental science A-07. Molecular electronics and transport B-01.
    [Show full text]