Chemical Structure and Dynamics

Total Page:16

File Type:pdf, Size:1020Kb

Chemical Structure and Dynamics PNL-12154 UC-400 Annual Report 1998 Chemical Structure and Dynamics Steven D. Colson, Associate Director Robin S. McDowell, Program Manager and the Staff of the Chemical Structure and Dynamics Program March 1999 Prepared for the U.S. Department of Energy under Contract DE-AC06-76RLO 1830 Pacific Northwest National Laboratory Operated by Battelle for the U.S. Department of Energy DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. PACIFIC NORTHWEST NATIONAL LABORATORY operated by BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY under Contract DE-AC06-76RL01830 Printed in the United States of America Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831-0062; ph: (865) 576-8401 fax: (865) 576-5728 email: [email protected] Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161 ph: (800) 553-6847 fax: (703) 605-6900 email: [email protected] online ordering: http://www.ntis.gov/ordering.htm This document was printed on recycled paper. (8/00) Chemical Structure and Dynamics 1998 Annual Report Contents Femtosecond Laser-Induced Desorption of Positive Ions from Ionic Solidsa R. M. Williams, K. M. Beck, A. G. Joly, 1. Introduction........................................... 1-1 J. T. Dickinson, and W. P. Hess..................... 3-4 Photochemistry and Product Structures 2. Reaction Mechanisms at Interfaces of Matrix-Isolated Acetyl Chloridea J. B. Rowland, P. R. Winter, Structure and Reactivity G. B. Ellison, and W. P. Hess........................ 3-6 of Ice Surfaces and Interfacesa K. P. Stevenson, Z. Dohnalek, The UV Photodissociation of a R. L. Ciolli, G. A. Kimmel, Matrix-Isolated Propionyl Chloride R. S. Smith, and B. D. Kay ........................... 2-1 P. R. Winter, J. B. Rowland, W. P. Hess, J. G. Radziszewski, Ozone Decomposition M. R. Nimlos, and G. B. Ellison .................... 3-9 in Soot Aerosolsb R. S. Disselkamp, M. A. Carpenter, Experimental and Theoretical and J. P. Cowin .......................................... 2-7 Investigations of Electron Diffraction in Stimulated Desorptiona c The Structure of Iron Oxides Surfaces M. T. Sieger, G. K. Schenter, S. A. Joyce and S. A. Chambers...................... 2-9 and T. M. Orlando .....................................3-11 Photoionization of Liquid Water Electron-Stimulated Desorption Using a Newly-Constructed and Reactive Scattering a Liquid Beam Source in Nanoscale Ice Filmsa R. G. Tonkyn, N. Petrik, M. T. Sieger, W. C. Simpson, S. E. Barlow, and T. M. Orlando...................2-11 K. A. Briggman, and T. M. Orlando..............3-13 A Soft-Landing Ion Beam Vehicle Exhaust Treatment a for Re-Creating Ionic Interfaces Using Electrical Discharge Methodsf J. P. Cowin and M. J. Iedema........................2-12 R. G. Tonkyn, S. E. Barlow, Soft-Landed Ion Study of Watera T. M. Orlando, I. S. Yoon, A. C. Kolwaite, J. P. Cowin, M. J. Iedema, M. L. Balmer, and J. Hoard..........................3-15 A. A. Tsekouras, et al..................................2-14 Production of Molecular Oxygen Phase Transfer of Hydrated Ionsa on Icy Satellites via Electronic Excitationa K. Wu, J. P. Cowin, T. M. Orlando, M. T. Sieger, M. J. Iedema, and A. A. Tsekouras ................2-18 and W. C. Simpson ....................................3-16 Low-Energy Electron Impact of Sodium Nitrate Crystals 3. High-Energy Processes at and Adsorbed Methanol Overlayersc Environmental Interfaces N. G. Petrik, D. Camaioni, and T. M. Orlando .....................................3-18 Characterization of Nanocomposite Materials Prepared via Laser Ablation Stimulated Luminescence of a,d,e c of Pt/TiO2 Bi-Combinant Targets Yttria-Stabilized Cubic Zirconia Crystals K. M. Beck, T. Sasaki, and N. Koshizaki .......... 3-1 N. G. Petrik, D. P. Taylor, and T. M. Orlando .....................................3-20 iii Chemical Structure and Dynamics 1998 Annual Report 4. Cluster Models of the Three Dimensional Vibrational Condensed Phase Imaging by Coherent g Cluster Model Studies of the Structure Anti-Stokes Raman Scattering and Bonding of Environmentally- A. Zumbusch, G. R. Holtom, Important Materialsa and X. S. Xie.............................................5-13 L. S. Wang, J. B. Nicholas, S. D. Colson, Single-Molecule Enzymatic Dynamicsa H. Wu, X. B. Wang, C. F. Ding, H. P. Lu, L. Xun, and X. S. Xie....................5-14 and X. Li................................................... 4-1 Fluorescence Spectroscopy Photodetachment Photoelectron Spectroscopy and Exciton Dynamics of a of Multiply Charged anionsa Single Allophycocyanin Trimers L. S. Wang, X. B. Wang, and C. F. Ding......... 4-2 L. Ying and X. S. Xie..................................5-17 Photoelectron Spectroscopy and 6. Appendix Electronic Structure of Metal Clusters and Chemisorbed Metal–Cluster Complexesd CS&D Staff..................................................... 6-1 L. S. Wang, H. Wu, X. B. Wang Publications and Presentations C. F. Ding, X. Li, and W. Chen ..................... 4-5 Publications ............................................. 6-6 Study of Transition Metal– In Press and Submitted ............................. 6-8 Carbon Mixed Clustersd Patents....................................................6-10 L. S. Wang, X. B. Wang, H. Wu, Presentations...........................................6-10 W. Chen, X. Li, and H. S. Cheng ................... 4-7 Honors and Recognition.................................6-15 Time-Resolved Spectroscopy Visitors .........................................................6-16 of Solute/Solvent Clustersa Collaborations D. M. Laman, A. G. Joly, and D. Ray ............. 4-9 External Collaborations............................6-17 Collaborations within PNNL .....................6-19 5. Miscellaneous Acronyms and Abbreviations .........................6-21 Where CS&D Fits in PNNL ..............................6-21 High-Resolution Infrared Spectroscopy: Basic and Applied Researchg,h S. W. Sharpe, T. A. Blake, and R. L. Sams ....... 5-1 Characterization of Funding Support Quantum-Cascade Lasersg,h a S. W. Sharpe, J. F. Kelly, J. S. Hartman, DOE Office of Basic Energy Sciences, Chemical C. Gmachl, F. Capasso, D. L. Sivco, Sciences Division, Fundamental Interactions J. N. Baillargeon, and A. Y. Cho .................... 5-3 Branch. bPacific Northwest National Laboratory (PNNL) Demonstration of the Laboratory Directed Research and Development Asymmetric Ion Trapg (LDRD). S. E. Barlow and M. L. Alexander.................. 5-6 cDOE Environmental Management Science Pro- + Radiative Association of Cs gram (EMSP). a,g with 12-crown-4 Ether at 288 K dNational Science Foundation. S. E. Barlow and M. D. Tinkle ....................... 5-9 eAgency of Industrial Science and Technology, A New Approach to Near-Field Japan. Fluorescence Microscopy: fCooperative Research and Development Agree- g Two-Photon Excitation with Metal Tips ment (CRADA) with the Low Emissions Technol- E. J. Sánchez, L. Novotny, and X. S. Xie ........5-11 ogy Research and Development Partnership. gEMSL Operations, supported by DOE Office of Biological and Environmental Research. hDepartment of Energy. iv Chemical Structure and Dynamics 1998 Annual Report The CS&D group has particular expertise in the 1. Introduction preparation and spectroscopic analysis of molecu- lar clusters (S. D. Colson, D. Ray, S. W. Sharpe, Purpose and L. S. Wang); ultrafast and nonlinear optical spectroscopies (D. Ray, G. R. Holtom, and X. Xie); The Chemical Structure and Dynamics (CS&D) ultrahigh resolution spectroscopy for measure- program is a major component of the William R. ments of electronic and geometric structures and Wiley Environmental Molecular Sciences Labo- dynamics (S. W. Sharpe and R. S. McDowell); sur- ratory (EMSL), developed by Pacific Northwest face and interface structure, chemical reaction National Laboratory (PNNL) to provide a state-of- dynamics, and kinetics (J. P. Cowin, W. P. Hess, S. the-art collaborative facility for studies of chemical A. Joyce, B. D. Kay, and T. M. Orlando); ion-mole- structure and dynamics. We respond to the need cule traps and storage technology (S. E. Barlow); for a fundamental, molecular-level understanding and specialized chambers and instruments for of chemistry at a wide variety of environmentally chemical reactivity and analysis of atmospheric important interfaces by (1) extending the aerosols (S. E. Barlow and R. S. Disselkamp). experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) Environmental
Recommended publications
  • Hannu Häkkinen Departments of Physics and Chemistry Nanoscience Center University of Jyväskylä FULL PUBLICATION LIST
    Hannu Häkkinen Departments of Physics and Chemistry Nanoscience Center University of Jyväskylä FULL PUBLICATION LIST FI-40014 Jyväskylä, FINLAND [email protected] http://users.jyu.fi/~hahakkin/ May 2020 Highly Cited Researcher by Clarivate Analytics 2018, H-index = 67 (WoS May 2020) The 10 most significant publications, relevant for PI’s current research: 1. O. Lopez-Acevedo, K.A. Kacprzak, J. Akola, H. Häkkinen, “Quantum size effects in ambient CO oxidation catalysed by ligand-protected gold clusters”, Nature Chem. 2, 329 (2010). 2. H. Häkkinen, “The gold-sulfur interface at the nanoscale”, Nature Chem. 4, 443 (2012). An invited review, WoS “highly cited” paper. It was listed in top-10 most cited papers in Nature Chemistry in 2016 by Google Scholar. 3. H.Yang, Y. Wang, H. Huang, L. Gell, L. Lehtovaara, S. Malola, H. Häkkinen, N. Zheng, "All- thiol-stabilized Ag44 and Au12Ag32 nanoparticles with single-crystal structures", Nature Comm. 4, 2422 (2013). WoS “highly cited” paper. 4. V. Marjomäki, T. Lahtinen, M. Martikainen, J. Koivisto, S. Malola, K. Salorinne, M. Pettersson, H. Häkkinen, "Site- specific targeting of enterovirus capsid by functionalized monodisperse gold nanoclusters", Proc. Natl. Acad. Sci. (USA) 111, 1277 (2014). 5. M. Azubel, J. Koivisto, S. Malola, D. Bushnell, G.L. Hura, A.L. Koh, H. Tsunoyama, T. Tsukuda, M. Pettersson, H. Häkkinen, R.D. Kornberg, "Electron microscopy of gold nanoparticles at atomic resolution", Science 345, 909 (2014). WoS “highly cited” paper. 6. K. Salorinne, S. Malola, O.A. Wong, C.D. Rithner, X. Chen, C.J. Ackerson, H. Häkkinen, "Conformation and dynamics of the ligand shell of a water-soluble Au102 nanoparticle", Nature Comm.
    [Show full text]
  • Freiburg Institute of Physics Activity Report 2014-2017
    Freiburg Institute of Physics Activity Report 2014-2017 Albert-Ludwigs-Universität Freiburg INSTITUTE OF PHYSICS UNIVERSITY OF FREIBURG ACTIVITY REPORT 2014 - 2017 Institute of Physics Albert-Ludwigs-Universitat¨ Freiburg Hermann-Herder-Str. 3 79104 Freiburg Front cover Velocity map imaging detection of photoelectrons emitted from a size-selected Na3− cluster, fascinating morphologies of polymer crystals, and a candidate event for a Higgs boson produced in the ATLAS experiment, symbolising the three research areas of the Institute of Physics. IMPRESSUM Published February 2018 by the Freiburg Institute of Physics Editorial Team M. Walther T. Schatz¨ Cover Design T. Klaas Printed by University of Freiburg All rights reserved. ii The Institute of Physics of the University of Freiburg, with the explicit support of the Rectorate of the University, has decided to install an international Scientific Advisory Board (SAB), to consult and advise the institute in all aspects of its academic research and education, on a regular basis. The present activity report provides a concise description of the scientific activities of the research groups during the years 2014 to 2017, of the teaching and outreach programme, and of the available infrastructure. The part of the scientific activities is divided into three main chapters dedicated to the three main research areas of the institute. The variable structure of these chapters reflects the diverse and lively scientific cultures of the different areas which meet under the roof of this institute. Following the inaugural meeting of the Scientific Advisory Board on February 17./18., 2014, its 2nd meeting is scheduled for April 12./13., 2018. iii iv Contents I The Institute of Physics 5 1.1 Overview of the Institute .
    [Show full text]
  • Henry Hess: Curriculum Vitae – September 2018 Page 1 of 23
    Henry Hess: Curriculum Vitae – September 2018 Page 1 of 23 Henry Hess Professor Phone: (212) 854-7749 Department of Biomedical Engineering Fax: (212) 854-8725 Columbia University [email protected] 351L Engineering Terrace New York, NY 10027 Research My primary research interest is nanobiotechnology, in particular hybrid nanodevices and materials Interests merging biological and synthetic building blocks. Creative approaches to the design of such devices draw from chemistry, biotechnology, microfabrication, biology, and engineering. Education Technical University Clausthal Clausthal, Germany Prediploma in Physics, Minor in Chemistry, February 1993. Technical University Berlin Berlin, Germany Diploma (M.Sc.), Department of Physics, March 1996. Thesis: Fragmentation and Condensation Dynamics of Clusters and Small Aggregates. Free University Berlin Berlin, Germany Ph.D. Institute for Experimental Physics, Summa Cum Laude, December 1999. Thesis: Femtosecond Spectroscopy of Cold Metal Clusters. Awards 6.Place in German High School Physics Competition (1991) High School Honors Program at the Brookhaven National Lab (1991) Scholarship from the “Deutsche Studienstiftung” (1991-93) Erwin-Stephan-Award of the Technical University Berlin for outstanding graduates (1996) Wolfgang-Paul-Award of the German Society for Mass Spectrometry for best PhD thesis (2000) Feodor Lynen postdoctoral fellowship of the A. von Humboldt foundation (2000, renewed 2001) Philip Morris Forschungspreis (together with Viola Vogel, 2005) Distinguished Mentor Award of the
    [Show full text]
  • Tav6.Pdf (4.230Mb)
    A METHODOLOGY FOR STUDYING FIELD DIFFERENCES IN SCIENTIFIC COMMUNICATION - EXPLAINING OPENNESS AND SHARING IN TWO SCIENTIFIC COMMUNITIES IN THE CHEMICAL AND PHYSICAL SCIENCES A Dissertation Presented to the Faculty of the Graduate School of Cornell University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Theresa Velden August 2011 c 2011 Theresa Velden ALL RIGHTS RESERVED A METHODOLOGY FOR STUDYING FIELD DIFFERENCES IN SCIENTIFIC COMMUNICATION - EXPLAINING OPENNESS AND SHARING IN TWO SCIENTIFIC COMMUNITIES IN THE CHEMICAL AND PHYSICAL SCIENCES Theresa Velden, Ph.D. Cornell University 2011 This dissertation is about differences in communication practices across scien- tific fields, and how to study those differences. It explores how differences in communicative behavior of scientists can be traced back to differences in the kind of research they are doing. The focus is on one aspect of scientific commu- nication in particular: how openly do research teams within a research specialty share scientific knowledge? This question is of particular relevance vis-a-vis` the World Wide Web’s innovative potential to connect people and information worldwide. For the sciences this translates into an increased immediacy with which scientists can access and exchange scientific knowledge, as well as new ways of (re)evaluating, combining, and mining data. The methodological ap- proach developed in this study combines qualitative (ethnographic) and quanti- tative (network analytic) methods. This approach supports scaling-up nuanced local ethnographic field studies to the aggregate level of research specialties for comparison between fields. Behavioral patterns are captured and quanti- fied through structural analyses of publication networks that are constructed from the accumulated 20-year publication output of a research specialty.
    [Show full text]
  • From Free Cluster to Cluster Assembled Materials » P
    PRODUCTIONS SCIENTIFIQUES Articles de revue 1. « From free cluster to cluster assembled materials » P. MELINON, V. PAILLARD, V. DUPUIS, A. PEREZ, P. JENSEN, A. HOAREAU, J.P. PEREZ, J. TUAILLON, M. BROYER, J.L. VIALLE, M. PELLARIN,B. BAGUENARD, J. LERME International Journal of Modern Physics B, 9, 339-397 (1995) 2. “Nanocrystalline Structures Prepared by Neutral Cluster Beam Deposition.” A. PEREZ, P. MELINON, V. PAILLARD, V. DUPUIS, P. JENSEN, A. HOAREAU, J.P. PEREZ, J. TUAILLON, M. BROYER, J.L. VIALLE, M. PELLARIN, B. BAGUENARD, J. LERME, "Clusters and Nanostructured Materials", P. Jena and S.N. Behera editors, Nova Science, p. 319-332 (1996) 3. "Electronic and atomic structure of large covalent and metal clusters. Application to cluster assembled Materials" M. BROYER, M. PELLARIN, B. BAGUENARD, J. LERME, J.L. VIALLE, P. MELINON, J. TUAILLON, V. DUPUIS, B. PREVEL, A. PEREZ in : "Cluster Assembled Materials, Ed. K. Sattler, Transtech Pub. Co. Materials Science Forum, 232 , 27 (1996) 4. "Cluster assembled materials: a novel class of nanostructured solids with original structures and properties" A. PEREZ, P. MELINON, V. DUPUIS, P. JENSEN, B. PREVEL, J. TUAILLON, L. BARDOTTI, C. MARTET, M. TREILLEUX, M. BROYER, M. PELLARIN, J.L. VIALLE, B. PALPANT AND J. LERME, J. Phys. D, Special Section on Nanotechnology, Applied Physics, 30 , 709 (1997). 5. "Nanostructured materials from clusters : synthesis and properties" A. PEREZ, P. MELINON, V. DUPUIS, B. PREVEL, L. BARDOTTI, J. TUAILLON- COMBES, B. MASENELLI, M. TREILLEUX, M. PELLARIN, JEAN LERME, E. COTTANCIN, M. BROYER, M. JAMET, M. NEGRIER, F. TOURNUS, M. GAUDRY Materials Transactions, Special Issue on Nano-Metals 1, Vol 42 , N°8, 1460 (2001).
    [Show full text]
  • STT 60 Nanotechnology
    3169 boekomslag • def [XP] 23-09-1998 11:55 Pagina 1 Nanotechnology is considered a key technology for the 21st century NanotechnologyNanotechnology by renowned scientists. But what Towards a molecular construction kit exactly is nanotechnology? What is Towards a molecular construction kit the difference between ‘bottom-up’ and ‘top-down’ nanofabrication, and what is a scanning probe micro- scope? And most of all: what will nanotechnology bring us? These questions are addressed in Edited by Arthur ten Wolde this book from the Netherlands Study Centre for Technology Trends (STT). It uses terms that are understandable to a wide technically interested audience. It provides an overview of STT 60 the scientific state of the art as well as the technological potential of nanomaterials, nanoelectronics, molecular nanotechnology and nano- scale-resolution microscopes. The impact is illustrated with examples of current and future applications in almost every product area. This book is a special jubilee edition to celebrate STT’s 30th anniversary. It is the tangible result of a collaborative effort from STT and many scientists from universities and industry with backgrounds in physics, chemistry and biology. This publication is intended for everyone involved in technological development, and especially for ISBN 90-804496-1-X those interested in this wave of innovation surpassing the impact of information technology and biotechnology. 9 789080 449619 Nanotechnology The Netherlands Study Centre for Technology Trends (STT), founded in 1968 by the Royal Institution of Engineers in the Netherlands, has the following aims: – to evaluate technological trends from the viewpoint of the engineering sciences and to explore their interaction with other developments in society as a whole; – to give wide publicity to its findings as a contribution to a more integrated picture of the future of society in the Netherlands and elsewhere.
    [Show full text]
  • Abstract Book
    Monday, August 13th 2018 8:00 Opening Session I (Session chair: Xueming Yang) 8:20 – 9:00 Spectroscopy of Metal and Metal Oxide Clusters using Slow Electron Velocity-Map Imaging of Cryogenically Cooled Anions Daniel Neumark 9:00 – 9:40 Photoluminescent Metal-Containing Ions Manfred Kappes 9:40 – 10:00 Dalian Coherent Light Source-Based Infrared Spectroscopy of Neutral Clusters Ling Jiang 10:00 – 10:30 Break Session II (Session chair: Guanghou Wang) 10:30 – 11:10 Two-Dimensional Boron Sheets Kehui Wu 11:10 – 11:30 Manipulating the Magnetic Moment of Graphene-Supported Palladium Clusters by Adsorption of Hydrogen María J. López 11:30 – 11:50 Probing the Structures of Gas-Phase Boron Clusters Using Size-Selective IR Spectroscopy Andre Fielicke 11:50 – 12:10 Ab Initio Global Search of Pure and Metal-Doped Boron Clusters Jijun Zhao 12:10 – 13:30 Lunch Session III (Session chair: Julio Alonso) 13:30 – 14:10 When Not only Each Atom Counts! Ulrich Heiz 14:10 – 14:50 From Single-Atom Catalysis (SAC) to Single-Cluster Catalysis (SCC) Jun Li 14:50 – 15:10 Activation and Reactions of Small Molecules (O2, NO, CO, C2H4, etc.) on IB Group (Cu, Ag, and Au) Metal Clusters Xiao-Peng Xing 15:10 – 15:30 Successive Nitridation of Tantalum Cluster Cations by Ammonia Molecules: The Origin of Bulk- Nitride Composition of Group 5 Metals Masashi Arakawa
    [Show full text]
  • Computational and Theoretical Chemistry Virtual Summer Conference Series
    Computational and Theoretical Chemistry Virtual Summer Conference Series Germantown, Maryland Summer 2020 i FOREWORD Plans were already underway for the seventh annual CTC PI meeting scheduled for May 12-14, 2020 when it was canceled due to COVID-19. In response to the cancellation, a few PIs planted the seed of a virtual conference series as a viable alternative. Hence, here we are organizing the 2020 CTC Summer Conference Series. Using repurposed submitted abstracts originally for the PI meeting, we have organized a series of afternoon meetings scheduled to be held monthly over the summer of 2020. Despite the change in style, venue, format, and duration, we sincerely hope this virtual conference series will serve as a platform for collegial discussion and exchange of ideas among the various projects within the CTC program. It is our deep hope that seeds for future collaborations among research groups with mutually complementary expertise will grow from this virtual conference series. The 2020 CTC virtual summer conference series is sponsored by the Chemical Sciences, Geosciences and Biosciences Division of the Office of Basic Energy Sciences, U.S. Department of Energy, and includes invited speakers and participants from the core CTC program, Computational Chemical Science projects, Quantum Information Science Projects, Energy Frontier Research Centers, and SciDAC efforts. We thank all of the researchers whose dedication, innovation, and reviewing activities have enhanced the goals of Basic Energy Sciences and made this virtual meeting possible. We look forward to seeing this community build upon its successes and look forward to the next joint meeting. Special thanks to Sharwyn Fryer and Teresa Crockett from Office of Basic Energy Sciences and Connie Lansdon at Oak Ridge Institute for Science and Education for their important contributions to the technical and logistical features of this meeting.
    [Show full text]
  • Open C.E.Jones Dissertation 112008.Pdf
    The Pennsylvania State University The Graduate School Department of Chemistry CLUSTERS: ADDRESSING MATERIAL AND ENVIRONMENTAL ISSUES A Dissertation in Chemistry by Charles E. Jones, Jr. © 2008 Charles E. Jones, Jr. Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy December 2008 The dissertation of Charles E. Jones, Jr. was reviewed and approved* by the following: A. Welford Castleman, Jr. Eberly Family Distinguished Chair in Science Evan Pugh Professor of Chemistry and Physics Dissertation Advisor Chair of Committee Nicholas Winograd Evan Pugh Professor of Chemistry John V. Badding Professor of Chemistry Renee D. Diehl Professor of Physics Ayusman Sen Professor of Chemistry Head of the Department of Chemistry *Signatures are on file in the Graduate School iii ABSTRACT The present thesis work is part of a continuing effort in the Castleman group to study the physical and chemical properties of clusters as they relate to materials and the environment. With regards to materials, metal-based clusters are synthesized in the gas phase in order to identify uniquely stable species. Just as atoms or molecules are the building blocks of matter in nature, our group envisions the synthesis of future cluster-assembled materials (CAMs) built with clusters. By varying the size and composition of a cluster by even one atom, the electronic properties can be dramatically changed. A general introduction of the cluster chemistry and physics pertinent to this thesis work is presented in Chapter 1. Anion photoelectron spectroscopy is the experimental technique utilized in this work to study metal and metal-based clusters. A home-built instrument was employed, and descriptions of its components are presented in Chapter 2.
    [Show full text]
  • Physics Newsletter 2020
    Home of Physics and Astronomy on the Idaho Palouse Newsletter Issue No. 1 MMXX Editor: J.R. Hiller URL: https://www.uidaho.edu/sci/physics/news/physics-newsletter Message from the Chair ence. Faculty quickly trained themselves in the use of Zoom and launched synchronous To say that this has been quite a year and asynchronous versions of their courses. would seem unnecessary. It has been quite Any diligent student should have been as a year for everyone. All the various dis- successful in that semester as in any other. ruptions and hardships induced by the pan- In the process, much was learned about demic came so fast that being reactive was the technology that is now the founda- usually the only course of action. For the tion for our fall-semester preparations, as University of Idaho, this came on top of we plan to deliver several courses in hy- months spent dealing with budget cuts, not brid remote/in-class combinations that ac- to mention my own summer-long effort to commodate social distancing. Only small relocate from Minnesota. classes that fit safely within their rooms will However, through it all (and continuing be delivered in the fully traditional fash- today, as we prepare for a fall semester in ion, and those only until the Thanksgiving the new normal), the Department has kept break. After that break, all instruction will its focus on our dual core missions of teach- again be fully online for the remainder of the ing and research. We pivoted to fully online semester, to prevent students from returning instruction in March, with only the week of with new infections.
    [Show full text]
  • Growth of Nanostructures by Cluster Deposition: a Review
    Growth of nanostructures by cluster deposition : experiments and simple models Pablo Jensen∗ D´epartement de Physique des Mat´eriaux, Universit´eClaude Bernard Lyon-1, 69622 Villeurbanne C´edex, France This paper presents a comprehensive analysis of simple models useful to analyze the growth of nanostructures obtained by cluster deposition. After detailing the potential interest of nanostruc- tures, I extensively study the first stages of growth (the submonolayer regime) by kinetic Monte- Carlo simulations. These simulations are performed in a wide variety of experimental situations : complete condensation, growth with reevaporation, nucleation on defects, total or null cluster- cluster coalescence . The main scope of the paper is to help experimentalists analyzing their data to deduce which of those processes are important and to quantify them. A software including all these simulation programs is available at no cost on request to the author. I carefully discuss experiments of growth from cluster beams and show how the mobility of the clusters on the surface can be measured : surprisingly high values are found. An important issue for future technological applications of cluster deposition is the relation between the size of the incident clusters and the size of the islands obtained on the substrate. An approximate formula which gives the ratio of the two sizes as a function of the melting temperature of the material deposited is given. Finally, I study the atomic mechanisms which can explain the diffusion of the clusters on a substrate and the result of their mutual interaction (simple juxtaposition, partial or total coalescence . ). I. INTRODUCTION Growth of new materials with tailored properties is one of the most active research directions for physicists.
    [Show full text]
  • Henry Hess: Curriculum Vitae – March 31, 2015 Page 1 of 23
    Henry Hess: Curriculum Vitae – March 31, 2015 Page 1 of 23 Henry Hess Associate Professor Phone: (212) 854-7749 Department of Biomedical Engineering Fax: (212) 854-8725 Columbia University [email protected] 351L Emgineering Terrace New York, NY 10027 Research My primary research interest is nanobiotechnology, in particular hybrid nanodevices and materials Interests merging biological and synthetic building blocks. Creative approaches to the design of such devices draw from chemistry, biotechnology, microfabrication, biology, and engineering. Education Technical University Clausthal Clausthal, Germany Prediploma in Physics, Minor in Chemistry, February 1993. Technical University Berlin Berlin, Germany Diploma (M.Sc.), Department of Physics, March 1996. Thesis: Fragmentation and Condensation Dynamics of Clusters and Small Aggregates. Free University Berlin Berlin, Germany Ph.D. Institute for Experimental Physics, Summa Cum Laude, December 1999. Thesis: Femtosecond Spectroscopy of Cold Metal Clusters. Awards 6.Place in German High School Physics Competition (1991), High School Honors Program at the Brookhaven National Lab (1991), Scholarship from the “Deutsche Studienstiftung” (1991-93), Erwin-Stephan-Award of the Technical University Berlin for outstanding graduates (1996), Wolfgang-Paul-Award of the German Society for Mass Spectrometry for best PhD thesis (2000), Feodor Lynen postdoctoral fellowship of the A. von Humboldt foundation (2000, renewed 2001) Philip Morris Forschungspreis (together with Viola Vogel, 2005) Distinguished Mentor
    [Show full text]