1.2 Autoimmune Disease Multiple Sclerosis (MS)

Total Page:16

File Type:pdf, Size:1020Kb

1.2 Autoimmune Disease Multiple Sclerosis (MS) Genetic factors in the autoimmune disease multiple sclerosis Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf vorgelegt von Robert Goertsches aus Leverkusen Januar 2006 Aus dem Institut für Genetik der Heinrich-Heine Universität Düsseldorf Gedruckt mit der Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf Referent: Prof. Dr. E. Knust Koreferent: PD Dr. M. Beye Tag der mündlichen Prüfung: 20.04.2006 "Founded on acquired knowledge, a satisfying accomplishment manifest itself almost effortlessly, . however; only whoever has endured in the dark suspecting search, year after year, constantly swaying between conficende and despair, followed by the final breakthrough to the truth, can fully empathize." **** A. Einstein **** “Im Lichte bereits erlangter Erkenntnis erscheint das glücklich Erreichte fast wie selbstverständlich, . aber das ahnungsvolle, Jahre währende Suchen im Dunkeln mit seiner Abwechslung von Zuversicht und Ermattung und seinem endlichen Durchbrechen zur Wahrheit, das kennt nur, wer es selber erlebt hat.” Acknowledgement I want to express my thanks to the following persons without whom this work would have been impossible to initiate, manage and complete. I thank very much the person without whom I never would have gotten into this adventure in the first place, Pablo Villoslada, former member of the UNIC, Barcelona, and now investigating neurologist in Pamplona, at the Neuroimmunology department of the University of Navarra, Spain. I shall furthermore express my deepest gratitude to Xavier Monatalban and his team of the UNIC, examplary stating close colleagues and friends such as the always good mooded technician Mireia, the mighty informative, multilingual and cohering manager Josep Graells and his colleague Dunja, the living football bibles Carlos and Hector, the capable blood-drawing nurses Rosalia and Maria Jesus, Hammad, Christina, Montse, Eva, and in particular, for scientific advices and vivid discussions extending basic research, Manolo Comabella. All further members of the department that have not been named here, are thanked as well. I thank Armand Sanchez from the Department of Animal and Food Science, University Autonoma of Barcelona, for providing me with appropriate tools for DNA quantitations, DNA pool construction and quality testing. Special thanks goes to the company deCODE in Reykjavik, who showed great hospitality scientificwise (providing with the in-house genetic map) and on the personal level (3 months of teaching genetics and still icelandic friendliness), particularly Aslaug Jonasdottir, Ragnaheidur Fossdal, Theodora Thorlacius, and Jeff Gulcher. Furthermore I would like to express profound thanks to Jaume Bertranpetit and Arcadi Navarro from the Evolutionary biology department of the University Pompeu Fabra, Barcelona, for regular invitations to genetic meetings and providing access to their high- throughput genotyping facilities (thank you as well, Roger and Anna). I thank Alastair Compston and Stephen Sawcer, Cambridge (UK), for creating GAMES and for being of scientific help long after. I thank Sergio Baranzini and Jorge Oksenberg from University of California San Francisco (USA), for poof-reading the dissertation and counselling on genetic questions. I thank very much my supervisor Elisabeth Knust for her patience and interest in my research field that does not overlap exceedingly well with cell polarity in Drosophila. I direct the same to Martin Beye who was so kind in accepting to be co-referee of this dissertation. I deeply thank my parents Elaine and Klaus for being a constant and sensitive support all through my scientific life, and before! Finally and above all, I thank my dearest wife Verena, who managed to perform a multitude of important deeds: encouraging throughout this devoted long time, counselling on dissertation design, and - most important – giving birth to our daughter Emily, who I also thank for cheering me up endlessly. Die hier vorgelegte Dissertation habe ich eigenständig und ohne unerlaubte Hilfe angefertigt. Die Dissertation wurde in der vorgelegten oder in ähnlicher Form noch bei keiner anderen Institution eingereicht. Ich habe bisher keine erfolglosen Promotionsversuche unternommen. Düsseldorf, den 19.01.2006 (Robert Goertsches) Content i 1 Introduction 1-22 1.1 Autoimmunity 2 1.1.1 Autoimmune disease (AID) 2 1.2 Autoimmune disease multiple sclerosis (MS) 3 1.2.1 Clinical aspects of MS 3 1.2.2 Pathological heterogeneity of MS 5 1.2.3 Immunological heterogeneity of MS 6 1.3 Genetic factors in autoimmune disease 8 1.3.1 Simple genetic traits associated with autoimmunity 8 1.3.2 Genetics of common autoimmune diseases 10 1.3.3 Genetic heterogeneity in autoimmune diseases 10 1.4 Epistatic interaction in complex traits 11 1.5 Model of inheritance of autoimmune disease susceptibility 12 1.6 Common genetic variation in the human genome and their genetic markers 13 1.7 Concept of “Linkage Disequilibrium” and “Haplotype” 14 1.8 Basic approaches toward disease gene identification 16 1.8.1 Identifying disease genes in MS 17 1.8.2 Linkage analysis in MS 18 1.8.3 Association analysis in MS 18 1.9 Genetic heterogeneity, inheritance model and susceptibility genes in MS 18 1.9.1 A model of inheritance for MS 18 1.9.2 The (genetic) epidemiology and etiology of MS 20 1.10 Aim and content of the dissertation 21 2 Material & Methods 23-62 2.1 Genomic DNA extraction from peripheral blood 24 2.2 Determination of DNA concentration and quality 26 2.3 DNA pool contruction based on fluorescence quantitation 26 2.3.1 Calibration of TKO 100 Mini-Fluorometer by means of calf thymus DNA 28 2.3.2 DNA sample preparation, quantification and appropriate dilution 29 2.3.3 DNA pool construction 29 ii Content iii 2.4 DNA pool genotyping by means of microsatellite markers 30 2.4.1 Storage and preparation of reagents for PCR assay 31 2.4.2 Polymerase amplification and thermal cycling 32 2.4.3 Gel electrophoresis of PCR products 33 2.5 Analysis of microsatellite marker genotyped DNA pools 34 2.5.1 Processing of data 34 2.5.2 Analysis of STR-genotyped DNA pools applying the Single Peak Approach 35 2.6 A sliding-window method for the detection of clusters of markers displaying evidence for association with MS 39 2.6.1 Processing of data 39 2.6.2 Analysis of STR-Genotyped DNA pool data by sliding windows 40 2.7 SNP-Genotyping principle: the 5' Nuclease assay 43 2.7.1 Concepts of 5’ Nuclease and Allelic Discrimination Assay 43 2.7.2 Preparation of DNA dilutions for PCR assays: 96- and 384-well plates 45 2.7.3 Preparation of reaction solution for PCR assay 47 2.7.4 Polymerase amplification and thermal cycling and end-point analysis 48 2.8 MS patients and controls 50 2.9 SNP selection for two genomic regions of interest 50 2.10 SNP-Genotyping data handling 53 2.10.1 Allelic discrimination 53 2.10.2 Real-time amplification data 54 2.11 Analytical tools for describing genomic structure and detecting disease association 57 2.11.1 Descriptive analyses 57 2.11.1.1 Establishing Hardy-Weinberg equilibrium (HWE) in population samples 57 2.11.1.2 Linkage Disequilibrium (LD) determination by software Haploview 58 ii Content iii 2.11.2 Case-control association analyses 58 2.11.2.1 Single SNP-disease association analyses 58 2.11.2.2 Haplotype-disease association analyses 59 2.12 Accounting for multiple testing 61 3 Results 63-102 3.1 Genotyping of DNA Pools with microsatellite markers 64 3.2 Application of sliding windows on DNA pool data 66 3.2.1 Descriptive part 66 3.2.2 Sieving MS candidate regions and genes 71 3.3 Genotyping of individual DNA by means of single nucleotide polymorphism marker 79 3.3.1 Yield of applied 5' Nuclease assay 79 3.3.2 Hardy-Weinberg equilibrium (HWE) in healthy control and multiple sclerosis population samples 81 3.3.3 Linkage Disequilibrium block formation at genomic regions of interest 3p25.3 and 10q22.1 81 3.3.4 Detection of statistical significance derived from allele and single genotype comparisons 84 3.3.5 Correction for multiple testing through Sequential Bonferroni 88 3.4 Single gene inspection: haplotype analysis 89 3.4.1 VGLL4 - Transcription cofactor vestigial-like protein 90 3.4.2 PRF1 – Perforin 91 3.4.3 ADAMTS14 - a disintegrin-like and metalloproteinase domain with thrombospondin type 1 modules 14 92 3.4.4 C10orf27 – Chromsome 10 open reading frame 27 96 3.5 Combined gene haplotypes based on ascertained data of ADAMTS14 and C10orf27 99 iv Content v 4 Discussion 103-122 4.1 A whole genome screen employing microsatellite markers and pooled DNA 104 4.2 284 candidate genes detected by “Sliding windows” 107 4.3 3p25.2: Apg7l and Vgll4 110 4.4 10q22.1: Perforin, ADAMTS14 and C10orf27 111 4.4.1 10q22.1: Intergenic haplotypes ADAMTS14 and C10orf27 115 4.5 Pros and Cons on association study design 116 4.5.1 Pros of association studies 116 4.5.2 Cons of association studies 117 4.6 Multiple testing and epistasis 119 4.7 Conclusion and outlook 120 5 Summary 123-124 6 Reference List 125-146 7 Appendix 147-280 Appendix A STR-Genotyping of individual DNA samples 148 Appendix B STR genotyping data from DNA pools 167 Appendix C Sliding window plots and synoptical tables 197 Appendix D Genes of interest derived from sliding windows 245 Appendix E Allele and genotype frequency distributions and corresponding statistics 249 Appendix F Haplotype and haplotype pair frequency distributions and corresponding statistics 259 iv Abbreviations v Abbreviations
Recommended publications
  • Genetic Variations Associated with Resistance to Doxorubicin and Paclitaxel in Breast Cancer
    GENETIC VARIATIONS ASSOCIATED WITH RESISTANCE TO DOXORUBICIN AND PACLITAXEL IN BREAST CANCER by Irada Ibrahim-zada A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Laboratory Medicine and Pathobiology University of Toronto © Copyright by Irada Ibrahim-zada 2010 ii Genetic variations associated with resistance to doxorubicin and paclitaxel in breast cancer Irada Ibrahim-zada Doctor of Philosophy Department of Laboratory Medicine and Pathobiology University of Toronto 2010 Abstract Anthracycline- and taxane-based regimens have been the mainstay in treating breast cancer patients using chemotherapy. Yet, the genetic make-up of patients and their tumors may have a strong impact on tumor sensitivity to these agents and to treatment outcome. This study represents a new paradigm assimilating bioinformatic tools with in vitro model systems to discover novel genetic variations that may be associated with chemotherapy response in breast cancer. This innovative paradigm integrates drug response data for the NCI60 cell line panel with genome-wide Affymetrix SNP data in order to identify genetic variations associated with drug resistance. This genome wide association study has led to the discovery of 59 candidate loci that may play critical roles in breast tumor sensitivity to doxorubicin and paclitaxel. 16 of them were mapped within well-characterized genes (three related to doxorubicin and 13 to paclitaxel). Further in silico characterization and in vitro functional analysis validated their differential expression in resistant cancer cell lines treated with the drug of interest (over-expression of RORA and DSG1, and under-expression of FRMD6, SGCD, SNTG1, LPHN2 and DCT). iii Interestingly, three and six genes associated with doxorubicin and paclitaxel resistance, respectively, are involved in the apoptotic process in cells.
    [Show full text]
  • ZRF1-‐Mediated Transcriptional Regulation in Acute Myeloid Leukemia
    ZRF1-mediated transcriptional regulation in acute myeloid leukemia Santiago Demajo Meseguer TESI DOCTORAL UPF / 2013 Aquesta tesi ha estat realitzada sota la direcció del Dr. Luciano Di Croce Departament de Regulació Gènica, Cèl·lules Mare i Càncer Centre de Regulació Genòmica (CRG) Barcelona, desembre de 2013 TABLE OF CONTENTS ABSTRACT ....................................................................................................... 5 INTRODUCTION ...........................................................................................11 1. ACUTE MYELOID LEUKEMIA................................................................................13 1.1 Leukemia ........................................................................................................ 13 1.2 Acute myeloid leukemia (AML)............................................................. 14 1.3 Differentiation therapy in AML............................................................. 15 2. RETINOIC ACID SIGNALING PATHWAY ..............................................................19 2.1 RA metabolism and signaling................................................................ 19 2.2 Role of RA in differentiation, apoptosis and proliferation........ 20 2.3 RA molecular mechanism........................................................................ 22 2.4 Disruption of RA signaling: the example of PML-RARα.............. 23 3. CHROMATIN AND EPIGENETICS IN TRANSCRIPTION ......................................27 3.1 Chromatin structure.................................................................................
    [Show full text]
  • Role and Regulation of the P53-Homolog P73 in the Transformation of Normal Human Fibroblasts
    Role and regulation of the p53-homolog p73 in the transformation of normal human fibroblasts Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Lars Hofmann aus Aschaffenburg Würzburg 2007 Eingereicht am Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Dr. Martin J. Müller Gutachter: Prof. Dr. Michael P. Schön Gutachter : Prof. Dr. Georg Krohne Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am Erklärung Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig angefertigt und keine anderen als die angegebenen Hilfsmittel und Quellen verwendet habe. Diese Arbeit wurde weder in gleicher noch in ähnlicher Form in einem anderen Prüfungsverfahren vorgelegt. Ich habe früher, außer den mit dem Zulassungsgesuch urkundlichen Graden, keine weiteren akademischen Grade erworben und zu erwerben gesucht. Würzburg, Lars Hofmann Content SUMMARY ................................................................................................................ IV ZUSAMMENFASSUNG ............................................................................................. V 1. INTRODUCTION ................................................................................................. 1 1.1. Molecular basics of cancer .......................................................................................... 1 1.2. Early research on tumorigenesis ................................................................................. 3 1.3. Developing
    [Show full text]
  • DNAJC2 Rabbit Pab
    Leader in Biomolecular Solutions for Life Science DNAJC2 Rabbit pAb Catalog No.: A4633 Basic Information Background Catalog No. This gene is a member of the M-phase phosphoprotein (MPP) family. The gene encodes A4633 a phosphoprotein with a J domain and a Myb DNA-binding domain which localizes to both the nucleus and the cytosol. The protein is capable of forming a heterodimeric Observed MW complex that associates with ribosomes, acting as a molecular chaperone for nascent 72kDa polypeptide chains as they exit the ribosome. This protein was identified as a leukemia- associated antigen and expression of the gene is upregulated in leukemic blasts. Also, Calculated MW chromosomal aberrations involving this gene are associated with primary head and 65kDa/71kDa neck squamous cell tumors. This gene has a pseudogene on chromosome 6. Alternatively spliced variants which encode different protein isoforms have been Category described. Primary antibody Applications WB Cross-Reactivity Human, Mouse Recommended Dilutions Immunogen Information WB 1:500 - 1:2000 Gene ID Swiss Prot 27000 Q99543 Immunogen Recombinant fusion protein containing a sequence corresponding to amino acids 1-140 of human DNAJC2 (NP_055192.1). Synonyms DNAJC2;MPHOSPH11;MPP11;ZRF1;ZUO1 Contact Product Information www.abclonal.com Source Isotype Purification Rabbit IgG Affinity purification Storage Store at -20℃. Avoid freeze / thaw cycles. Buffer: PBS with 0.02% sodium azide,50% glycerol,pH7.3. Validation Data Western blot analysis of extracts of various cell lines, using DNAJC2 antibody (A4633) at 1:1000 dilution. Secondary antibody: HRP Goat Anti-Rabbit IgG (H+L) (AS014) at 1:10000 dilution. Lysates/proteins: 25ug per lane.
    [Show full text]
  • Genetic Insight Into the Domain Structure and Functions of Dicer-Type Ribonucleases
    International Journal of Molecular Sciences Review Genetic Insight into the Domain Structure and Functions of Dicer-Type Ribonucleases Kinga Ciechanowska, Maria Pokornowska and Anna Kurzy ´nska-Kokorniak* Department of Ribonucleoprotein Biochemistry, Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland; [email protected] (K.C.); [email protected] (M.P.) * Correspondence: [email protected]; Tel.: +48-61-852-85-03 (ext. 1264) Abstract: Ribonuclease Dicer belongs to the family of RNase III endoribonucleases, the enzymes that specifically hydrolyze phosphodiester bonds found in double-stranded regions of RNAs. Dicer enzymes are mostly known for their essential role in the biogenesis of small regulatory RNAs. A typical Dicer-type RNase consists of a helicase domain, a domain of unknown function (DUF283), a PAZ (Piwi-Argonaute-Zwille) domain, two RNase III domains, and a double-stranded RNA binding domain; however, the domain composition of Dicers varies among species. Dicer and its homologues developed only in eukaryotes; nevertheless, the two enzymatic domains of Dicer, helicase and RNase III, display high sequence similarity to their prokaryotic orthologs. Evolutionary studies indicate that a combination of the helicase and RNase III domains in a single protein is a eukaryotic signature and is supposed to be one of the critical events that triggered the consolidation of the eukaryotic RNA interference. In this review, we provide the genetic insight into the domain organization and structure of Dicer proteins found in vertebrate and invertebrate animals, plants and fungi. We also discuss, in the context of the individual domains, domain deletion variants and partner proteins, a variety of Dicers’ functions not only related to small RNA biogenesis pathways.
    [Show full text]
  • [KO Validated] DNAJC2 Rabbit Pab
    Leader in Biomolecular Solutions for Life Science [KO Validated] DNAJC2 Rabbit pAb Catalog No.: A19954 KO Validated Basic Information Background Catalog No. This gene is a member of the M-phase phosphoprotein (MPP) family. The gene encodes A19954 a phosphoprotein with a J domain and a Myb DNA-binding domain which localizes to both the nucleus and the cytosol. The protein is capable of forming a heterodimeric Observed MW complex that associates with ribosomes, acting as a molecular chaperone for nascent 80KDa polypeptide chains as they exit the ribosome. This protein was identified as a leukemia- associated antigen and expression of the gene is upregulated in leukemic blasts. Also, Calculated MW chromosomal aberrations involving this gene are associated with primary head and 65kDa/71kDa neck squamous cell tumors. This gene has a pseudogene on chromosome 6. Alternatively spliced variants which encode different protein isoforms have been Category described. Primary antibody Applications WB Cross-Reactivity Human, Mouse Recommended Dilutions Immunogen Information WB 1:500 - 1:2000 Gene ID Swiss Prot 27000 Q99543 Immunogen Recombinant protein of human DNAJC2. Synonyms DNAJC2;MPHOSPH11;MPP11;ZRF1;ZUO1 Contact Product Information www.abclonal.com Source Isotype Purification Rabbit IgG Affinity purification Storage Store at -20℃. Avoid freeze / thaw cycles. Buffer: PBS with 0.02% sodium azide,50% glycerol,pH7.3. Validation Data Western blot analysis of extracts from normal (control) and DNAJC2 knockout (KO) 293T cells, using DNAJC2 antibody (A19954) at 1:1000 dilution. Secondary antibody: HRP Goat Anti-Rabbit IgG (H+L) (AS014) at 1:10000 dilution. Lysates/proteins: 25ug per lane. Blocking buffer: 3% nonfat dry milk in TBST.
    [Show full text]
  • Nucleotide Excision Repair: Interplay Between Nuclear Compartmentalization, Histone Modifications and Signaling
    Nucleotide Excision Repair: Interplay between nuclear compartmentalization, histone modifications and signaling Dissertation zur Erlangung des Grades "Doktor der Naturwissenschaften" am Fachbereich Biologie der Johannes Gutenberg-Universität in Mainz Shalaka Chitale geb. am 20.06.1988 in Pune, India Mainz, 2017 Tag der mündlichen Prüfung: 20.06.2017 1 1 Table of Contents SUMMARY 4 ZUSSAMENFASSUNG 5 INTRODUCTION 7 THE NEED FOR EFFICIENT DNA REPAIR: 7 TYPES OF DNA DAMAGE: 7 Double strand break repair 9 Mismatch repair 10 Base excision repair 11 Nucleotide excision repair 12 DNA REPAIR IN THE CONTEXT OF CHROMATIN 17 Mechanisms of regulation of chromatin structure at site of DNA damage 18 Histone modifications: 19 ATP dependent Chromatin remodeling 22 SPATIAL NUCLEAR ORGANIZATION OF NER 23 REFERENCES 26 AIMS OF THE STUDY 34 ZRF1 MEDIATES REMODELING OF E3 LIGASES AT DNA LESION SITES DURING NUCLEOTIDE EXCISION REPAIR 35 INTRODUCTION 36 RESULTS 38 DISCUSSION 52 MATERIALS AND METHODS 57 AUTHOR CONTRIBUTION 63 REFERENCES 63 NUCLEAR ORGANIZATION OF NUCLEOTIDE EXCISION REPAIR IS MEDIATED BY RING1B DEPENDENT H2A-UBIQUITYLATION 69 SUMMARY 70 INTRODUCTION 70 RESULTS 72 NER is partially routed to the nucleolus and involves reorganization of chromatin 72 DDB2 causes repositioning of chromatin to the vicinity of the nucleolus 77 Nucleolar repositioning requires presence of a functional UV-RING1B complex and H2A-K119 ubiquitylation 80 ZRF1 is present in the nucleolus and facilitates relocalization of chromatin 85 DISCUSSION 88 EXPERIMENTAL PROCEDURES 90
    [Show full text]
  • Functions of RING1B and ZRF1 in Ubiquitin-Mediated Regulation of Nucleotide Excision Repair
    Functions of RING1B and ZRF1 in ubiquitin-mediated regulation of Nucleotide Excision Repair Dissertation zur Erlangung des Grades "Doktor der Naturwissenschaften" am Fachbereich Biologie der Johannes Gutenberg-Universität in Mainz Ekaterina Gracheva geb. am 21.04.1989 in Khabarovsk, Russland Mainz, 2016 Dekan: Prof. Dr. Hans Zischler 1. Berichterstatter: 2. Berichterstatter: Tag der mündlichen Prüfung: 28.07.2016 1 This work is dedicated to my late mother 1 Index of contents Index of figures 6 Index of tables 8 Index of abbreviations 9 Summary 1 Zusammenfassung 2 Introduction 3 DNA Repair Pathways 3 Types of DNA damage 3 Repair of double strand breaks 4 Mismatch repair 7 Base excision repair 7 Nucleotide excision repair 7 Regulation of DNA repair by posttranslational modifications 15 Phosphorylation 15 PARylation 16 Ubiquitination 16 SUMOylation 20 Regulation of NER by posttranslational modifications 20 Phosphorylation in NER 20 PARylation in NER 21 Ubiquitination in NER 21 2 Chromatin reorganization in DNA repair 25 Incorporation of histone variants 25 Posttranslational modifications of histones 26 Acetylation 26 Methylation 26 Ubiquitination 27 PRC1 complex 28 Deubiquitination of H2A 29 ATP-dependent chromatin remodeling 30 Chromatin reorganization in NER 31 Aims of the study 34 Materials and methods 35 Cell culture 35 Cell line production 35 U2OS-shRING1B 35 shRNA and siRNA mediated gene knockdown 35 shRNA transduction 35 siRNA transfectrion 36 Transfections 37 Genotoxic treatment and enzymatic inhibition 38 Biochemical methods 39
    [Show full text]
  • Human Untagged Clone – SC311107 | Origene
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for SC311107 DNAJC2 (NM_014377) Human Untagged Clone Product data: Product Type: Expression Plasmids Product Name: DNAJC2 (NM_014377) Human Untagged Clone Tag: Tag Free Symbol: DNAJC2 Synonyms: MPHOSPH11; MPP11; ZRF1; ZUO1 Vector: pCMV6-Entry (PS100001) E. coli Selection: Kanamycin (25 ug/mL) Cell Selection: Neomycin This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 3 DNAJC2 (NM_014377) Human Untagged Clone – SC311107 Fully Sequenced ORF: >NCBI ORF sequence for NM_014377, the custom clone sequence may differ by one or more nucleotides ATGCTGCTTCTGCCAAGCGCCGCGGACGGCCGGGGCACCGCCATCACCCACGCTCTGACCTCTGCCTCTA CACTCTGTCAAGTTGAACCTGTGGGAAGATGGTTTGAAGCTTTTGTTAAGAGGAGAAACAGAAATGCTTC TGCCTCTTTTCAGGAACTGGAGGATAAGAAAGAGTTATCCGAGGAATCAGAAGATGAAGAATTGCAGTTG GAAGAGTTTCCCATGCTGAAAACACTTGATCCCAAAGACTGGAAGAACCAAGATCATTATGCAGTTCTTG GACTTGGCCATGTGAGATACAAGGCTACACAGAGACAGATCAAAGCAGCTCATAAAGCAATGGTTTTAAA ACATCACCCAGACAAACGGAAAGCAGCTGGTGAACCAATAAAAGAAGGAGATAATGACTACTTCACTTGC ATAACTAAAGCTTATGAAATGTTATCTGATCCAGTGAAAAGACGAGCATTTAACAGTGTAGATCCTACTT TTGATAACTCAGTTCCTTCTAAAAGTGAAGCAAAGGATAATTTCTTCGAAGTGTTTACCCCAGTGTTTGA AAGGAATTCCAGATGGTCAAATAAAAAAAATGTTCCTAAACTTGGTGATATGAATTCATCATTTGAAGAT GTAGATATATTTTATTCTTTCTGGTATAATTTTGATTCTTGGAGAGAATTTTCTTATTTAGATGAAGAAG
    [Show full text]
  • Primepcr™Assay Validation Report
    PrimePCR™Assay Validation Report Gene Information Gene Name DnaJ (Hsp40) homolog, subfamily C, member 2 Gene Symbol DNAJC2 Organism Human Gene Summary This gene is a member of the M-phase phosphoprotein (MPP) family. The gene encodes a phosphoprotein with a J domain and a Myb DNA-binding domain which localizes to both the nucleus and the cytosol. The protein is capable of forming a heterodimeric complex that associates with ribosomes acting as a molecular chaperone for nascent polypeptide chains as they exit the ribosome. This protein was identified as a leukemia-associated antigen and expression of the gene is upregulated in leukemic blasts. Also chromosomal aberrations involving this gene are associated with primary head and neck squamous cell tumors. This gene has a pseudogene on chromosome 6. Alternatively spliced variants which encode different protein isoforms have been described. Gene Aliases MPHOSPH11, MPP11, ZRF1, ZUO1 RefSeq Accession No. NC_000007.13, NT_007933.15 UniGene ID Hs.558476 Ensembl Gene ID ENSG00000105821 Entrez Gene ID 27000 Assay Information Unique Assay ID qHsaCEP0058275 Assay Type Probe - Validation information is for the primer pair using SYBR® Green detection Detected Coding Transcript(s) ENST00000249270, ENST00000379263, ENST00000426036, ENST00000454277, ENST00000412522 Amplicon Context Sequence ACTGCATAATGATCTTGGTTCTTCCAGTCTTTGGGATCAAGTGTTTTCAGCATGG GAAACTCTTCCAACTGCAATTCTTCATCTTCTGATTCCTCGGATAACTCTTTCTTA TCCT Amplicon Length (bp) 85 Chromosome Location 7:102978239-102982305 Assay Design Exonic Purification
    [Show full text]
  • Role of Chromatin Regulators Atring1 and Atzrf1 in Arabidopsis Growth and Development Qiannan Wang
    Role of chromatin regulators AtRING1 and AtZRF1 in Arabidopsis growth and development Qiannan Wang To cite this version: Qiannan Wang. Role of chromatin regulators AtRING1 and AtZRF1 in Arabidopsis growth and development. Vegetal Biology. Université de Strasbourg, 2018. English. NNT : 2018STRAJ129. tel-02310659 HAL Id: tel-02310659 https://tel.archives-ouvertes.fr/tel-02310659 Submitted on 10 Oct 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITÉ DE STRASBOURG ÉCOLE DOCTORALE DES SCIENCES DE LA VIE ET DE LA SANTÉ [Institut de Biologie Moléculaire des Plantes, UPR2357 CNRS] THÈSE présentée par : [Qiannan WANG] soutenue le : 14 Décembre 2018 pour obtenir le grade de : Docteur de l’université de Strasbourg Discipline/ Spécialité : Aspects Moléculaires et Cellulaires de la Biologie Investigation du mécanisme fonctionnel des gènes AtRING1 et AtZRF1 dans la régulation de la croissance et du développement chez les plantes THÈSE dirigée par : [M. SHEN Wen-Hui] Directeur de Recherche CNRS, Université de Strasbourg RAPPORTEURS : [Mme. PROBST Aline] Directeur de Recherche CNRS, Université Clermont Auvergne [Mme. DELARUE Marianne] Professeur, Université Paris-Sud, Université Evry et, Université Paris-Saclay AUTRES MEMBRES DU JURY : [M. OTTEN Léon] Professeur, Université de Strasbourg ACKNOWLEDGMENTS First, I would like to express my sincere gratitude to my supervisor, Dr.
    [Show full text]
  • High-Density Single Nucleotide Polymorphism Array Analysis and ASXL1 Gene Mutation Screening in Chronic Myeloid Leukemia During Disease Progression
    Leukemia (2010) 24, 1139–1145 & 2010 Macmillan Publishers Limited All rights reserved 0887-6924/10 www.nature.com/leu ORIGINAL ARTICLE High-density single nucleotide polymorphism array analysis and ASXL1 gene mutation screening in chronic myeloid leukemia during disease progression J Boultwood1, J Perry1, R Zaman1, C Fernandez-Santamaria1, T Littlewood1, R Kusec2, A Pellagatti1, L Wang3, RE Clark3 and JS Wainscoat1 1LRF Molecular Haematology Unit, NDCLS, University of Oxford, John Radcliffe Hospital, Oxford, UK; 2Department of Clinical Sciences, Department of Haematology, University Hospital Merkur, Zagreb, Croatia and 3University Department of Haematology, Royal Liverpool University Hospital, Liverpool, UK We have undertaken a genome-wide single nucleotide poly- patients not treated with imatinib and also in those who have morphism (SNP) array analysis of 41 chronic myeloid leukemia become resistant to the drug.6,7 (CML) patients. In total, 44 regions of uniparental disomy (UPD) Although it is recognized that cytogenetic and molecular 43 Mb were identified in 24 of 32 patients in chronic phase (CP), and 21 regions of UPD 43 Mb were identified in 13 of 21 patients changes occur in the majority of CML patients during evolution in blast crisis (BC). Chromosome 8 had the highest frequency of to BC, the molecular events responsible for leukemic transfor- UPD regions in both CP and BC samples. Eight recurrent regions mation remain unclear. It has been suggested that BCR/ABL may of UPD were observed among the 41 patients, with chromosome have a direct or an indirect role in promoting genomic instability 8 showing the highest frequency. Ten regions of copy number and 60–80% of patients with CML develop additional non- change (CNC) 43 Mb were observed in 4 of 21 patients in BC, random chromosomal abnormalities involving chromosomes 8, whereas none were observed in CP.
    [Show full text]