Nucleotide Excision Repair: Interplay Between Nuclear Compartmentalization, Histone Modifications and Signaling
Total Page:16
File Type:pdf, Size:1020Kb
Nucleotide Excision Repair: Interplay between nuclear compartmentalization, histone modifications and signaling Dissertation zur Erlangung des Grades "Doktor der Naturwissenschaften" am Fachbereich Biologie der Johannes Gutenberg-Universität in Mainz Shalaka Chitale geb. am 20.06.1988 in Pune, India Mainz, 2017 Tag der mündlichen Prüfung: 20.06.2017 1 1 Table of Contents SUMMARY 4 ZUSSAMENFASSUNG 5 INTRODUCTION 7 THE NEED FOR EFFICIENT DNA REPAIR: 7 TYPES OF DNA DAMAGE: 7 Double strand break repair 9 Mismatch repair 10 Base excision repair 11 Nucleotide excision repair 12 DNA REPAIR IN THE CONTEXT OF CHROMATIN 17 Mechanisms of regulation of chromatin structure at site of DNA damage 18 Histone modifications: 19 ATP dependent Chromatin remodeling 22 SPATIAL NUCLEAR ORGANIZATION OF NER 23 REFERENCES 26 AIMS OF THE STUDY 34 ZRF1 MEDIATES REMODELING OF E3 LIGASES AT DNA LESION SITES DURING NUCLEOTIDE EXCISION REPAIR 35 INTRODUCTION 36 RESULTS 38 DISCUSSION 52 MATERIALS AND METHODS 57 AUTHOR CONTRIBUTION 63 REFERENCES 63 NUCLEAR ORGANIZATION OF NUCLEOTIDE EXCISION REPAIR IS MEDIATED BY RING1B DEPENDENT H2A-UBIQUITYLATION 69 SUMMARY 70 INTRODUCTION 70 RESULTS 72 NER is partially routed to the nucleolus and involves reorganization of chromatin 72 DDB2 causes repositioning of chromatin to the vicinity of the nucleolus 77 Nucleolar repositioning requires presence of a functional UV-RING1B complex and H2A-K119 ubiquitylation 80 ZRF1 is present in the nucleolus and facilitates relocalization of chromatin 85 DISCUSSION 88 EXPERIMENTAL PROCEDURES 90 REFERENCES 93 SUPPLEMENTARY FIGURES 97 DICER AND ZRF1 CONTRIBUTE TO CHROMATIN DECONDENSATION DURING NUCLEOTIDE EXCISION REPAIR 106 ABSTRACT 107 INTRODUCTION 108 MATERIALS AND METHODS 109 RESULTS 113 2 DICER is essential for nucleotide excision repair and is recruited to DNA damage sites 113 DICER interacts with ZRF1 and its recruitment to chromatin is dependent on ZRF1 115 DICER and ZRF1 interactions with chromatin are RNA dependent 116 DICER and ZRF1 are required for chromatin decondensation after UV damage 117 DICER and ZRF1 mediated decondensation requires PARP activity 124 DISCUSSION 127 REFERENCES 129 SUPPLEMENTARY DATA 133 XPA RECRUITMENT TO DNA DAMAGE SITES IS MEDIATED BY DICER AND MMSET-CATALYZED DIMETHYLATION OF H4K20 138 INTRODUCTION 139 RESULTS 141 DICER is associated with setting of H4K20me2 during NER 141 H4K20me2 is catalyzed by MMSET during NER 144 MMSET is recruited to chromatin by DICER 147 H4K20me2 provides a tethering platform for XPA recruitment 148 DISCUSSION 151 REFERENCES 153 SUPPLEMENTARY FIGURES: 156 DISCUSSION: 160 UBIQUITIN SIGNALING IN THE NER PATHWAY. 162 COMPARTMENTALIZATION OF CELLULAR PROCESSES: HOW IS NER COMPARTMENTALIZED? HOW UNIVERSAL ARE METHODS OF CHROMATIN COMPARTMENTALIZATION USED IN NER? 182 CHROMATIN ACCESSIBILITY DURING NER: NOVEL PLAYERS REGULATING CHROMATIN ACCESSIBILITY AND THEIR IMPLICATION IN MAINTENANCE OF CELLULAR CHROMATIN CONFORMATION 188 SIGNALING THROUGH HISTONE MODIFICATIONS 190 REFERENCES 192 ACKNOWLEDGEMENTS 194 3 Summary Maintaining the integrity of genetic information is one of the crucial functions of the cell. Depending on the type of DNA damage, there are several repair pathways dedicated to a quick and efficient repair of the damage. A major source of DNA damage is exposure to UV light, which causes formation of 6’-4’photoproducts and pyrimidine dimers. These are bulky DNA adducts that cause distortion of the helix structure. Such lesions are repaired by Nucleotide Excision Repair (NER). Nucleotide Excision Repair occurs by two sub-pathways, depending on the genomic location of the lesion. Transcription coupled NER (TC-NER) repairs lesions in actively transcribed genes, which global genomic NER (GG-NER) can repair all types of lesions. These two pathways differ in their recognition step. Lesion recognition is followed by verification of damage, excision of the damaged strand, and refilling of the gap by DNA synthesis. An important unanswered question in the field of NER is how the removal of lesions occurs in the context of chromatin structure. Recognition of lesions in heterochromatin requires a decondensation of chromatin to enable access by repair factors. Additionally, lesion recognition requires cascades of recruitment of the various proteins, in a tightly regulated and synchronized manner. We show that the recognition step during GG-NER consists of a ZRF1-DICER-MMSET axis linking lesion recognition via DDB2 to lesion verification via XPA followed by subsequent repair. ZRF1 recognizes the H2AK119 ub mark set by the UV-RING1B complex. This results in translocation of the lesion to the nucleolus, and remodeling of the complex to the UV-CUL4A complex. Formation of this complex enables the next phase of ubiquitylation that regulates NER repair proteins. ZRF1 in turn also contributed to chromatin decondensation through recruitment of DICER. DICER enables relaxation of chromatin structure in a PARP1 dependent manner. It also recruits MMSET, which sets the H4K20me2 mark. This histone mark serves as a tethering platform for recruitment of XPA, a core NER component which is essential for further repair to take place. Thus, we have discovered a novel and essential function for these proteins in NER. 4 Zussamenfassung FACHBEREICH BIOLOGIE DER JOHANNES GUTENBERG-UNIVERSITÄT MAINZ Nr. / 20 Zusammenfassung der Dissertation von __Shalaka Chitale Thema: Eine wesentliche Aufgabe der Zelle ist es die Integrität ihrer DNA zu schützen, um die darin enthaltene genetische Information zu erhalten. Abhängig von der Art der DNA-Schädigung werden in der Zelle unterschiedliche DNA-Reparaturmechanismen angeschaltet, die eine schnelle und effiziente Reparatur des Schadens gewährleisten. Eine der zahlreichen zellulären DNA Reparaturmechanismen ist die Nukleotidexzisionsreparatur (NER), welche unterschiedliche Schäden wie zum Beispiel Cyclobutanpyrimidin Dimere (CPD) und 6-4 Photoprodukte repariert, die nach der Bestrahlung mit UV Licht entstehen. In Säugerzellen werden in der NER Schäden durch zwei unterschiedliche Mechanismen repariert. Schäden in transkribierten genomischen Bereichen werden durch die sogenannte transcription-coupled NER (TC-NER) repariert, alle anderen genomische Bereiche werden durch global genomic NER (GG-NER) repariert. Diese beiden DNA Reparaturmechanismen unterscheiden sich lediglich in der Schadenserkennung. In deren Anschluss nutzen TC-NER und GG-NER einen gemeinsamen Mechanismus zur Verifizierung, zur Exzsion des Schadens und zur Auffüllung der entstandenen etwa 30 Nukleotide umfassenden Lücke durch DNA Synthese. Wie NER im Kontext der Chromatinstruktur verläuft ist eine bislang noch offene Frage. Die Schadenserkennung im Heterochromatin benötigt eine Dekondensierung bzw. Öffnung der Chromatinkonformation, um die Rekrutierung von DNA Reparaturfaktoren zu ermöglichen. Ausserdem werden während der Schadenserkennung unterschiedliche Proteinkomplexe in einer synchronisierten bzw. zeitlich festgelegten Folge zur DNA-Läsion rekrutiert. In der vorliegenden Arbeit wird gezeigt, dass während der GG-NER die Schadenserkennung durch das Zusammenspiel der Faktoren ZRF1, DICER und MMSET mit dem DNA Reparturerkennungsfaktor DDB2 geprägt ist, welches die Rekrutierung des DNA Reparaturfaktors XPA ermöglicht. Dabei bindet ZRF1 mono- ubiquitiniertes histone H2A (H2A-K119-Ub), welches durch den UV-RING1B Komplex katalysiert wird. Derart modifiziertes Chromatin wird zum Nukleolus transloziert, wo durch molekulares Remodeling der UV-RING1B Komplex in den UV-CUL4A Komplex umgebaut wird. Die Herstellung des UV-CUL4A Komplexes leitet dann die nächste Phase von Ubiquitinierungsreaktionen ein, welche wiederum nachfolgende Reparaturreaktionen regulieren. Weiterhin ist ZRF1 an der Chromatin-Dekondensierung beteiligt, da es über die Rekruiterung von DICER eine PARP1-abhängige Relaxation der Chromatin-Konformation hervorruft. DICER wiederum ist für die Rekruiterung des Methyltransferase MMSET essentiell, welche ein Methylierung am Histone H4 (H4K20me2) bedingt. Diese Histonmodifizierung dient als eine Art 5 Bindeplattform für den Reparaturfaktor XPA, eine der Hauptkomponenten der NER. Zusammengenommen konnte eine neue und essentielle Funktion der obengenannten Proteine bzw. deren Zusammenspiel während der NER entdeckt werden. Genehmigt vom 1. Gutachter / von der 1. Gutachterin _______________________________________ (Unterschrift) 6 Introduction The need for efficient DNA repair: One of the major biological discoveries in recent times, has been the central dogma that governs all biological systems. DNA uses a specific sequence of the four bases A,T,G,C to encode genetic information, this information is transmitted via RNA, and thus leads to formation of the specific proteins needed by an organism to survive. Considering the major role of DNA as a repository of the genetic information of an organism, maintaining the sequence integrity of DNA is one of the major functions of a cell. DNA is under threat from a variety of internal and external agents, that can directly or indirectly lead to changes in the DNA sequence. Persistent DNA damage can lead to mutations, cell cycle stalling and ultimately even cell death. Thus, the cell has devised a variety of pathways to ensure efficient repair of its DNA. Types of DNA damage: DNA damage can occur due to a variety of endogenous and exogenous factors. Depending on the type of damage, the cell has evolved a corresponding variety of repair pathways that repair the damage. (Table 1) (reviewed in De Bont and van Larebeke,