The Role of Mendeleev in the Construction of the Periodic Table of Chemical Elements
Total Page:16
File Type:pdf, Size:1020Kb
Bernadette Bensaude-Vincent The role of Mendeleev in the construction of the periodic table of chemical elements Passion for Science International Symposium on the occasion of the International Year of the Periodic Table BOLOGNA, November 6-7, 2019 GROUPE 1 IA TABLEAUPÉRIODIQUEDESÉLÉMENTS 18 VIIIA 1 1.0079 http://www.periodni.com /fr/ 2 4.0026 1 H MASSE ATOMIQUERELATIVE(1) Métaux Métalloïdes Non-métaux He GROUPEIUPAC GROUPECAS PÉRIODE Métauxalcalins Chalcogènes HYDROGÈNE 2 IIA 13 IIIA 14 IVA 15VA 16 VIA 17 VIIA HÉLIUM 13 Métauxalcalino-terreux Halogènes 3 6.941 4 9.0122 NOMBRE ATOMIQUE 5 10.811 6 12.011 7 14.007 8 15.999 9 18.998 10 20.180 5 10.811 2 Métauxdetransition Gaznobles Li Be SYMBOLE Lanthanides B C N O F Ne B ETAT PHYSIQUE (25 °C;101kPa) LITHIUM BÉRYLLIUM BORE CARBONE AZOTE OXYGÈNE FLUOR NÉON BORE Actinides Ne -gaz Fe -solide 11 22.990 12 24.305 Hg -liquide Tc -synthétique 13 26.982 14 28.086 15 30.974 16 32.065 17 35.453 18 39.948 3 NOMDEL'ÉLÉMENT Na Mg VIIIB Al Si P S Cl Ar SODIUM MAGNÉSIUM 3 IIIB 4 IVB 5 VB 6 VIB 7 VIIB 8 9 10 11IB 12 IIB ALUMINIUM SILICIUM PHOSPHORE SOUFRE CHLORE ARGON 19 39.098 20 40.078 21 44.956 22 47.867 23 50.942 24 51.996 25 54.938 26 55.845 27 58.933 28 58.693 29 63.546 30 65.38 31 69.723 32 72.64 33 74.922 34 78.96 35 79.904 36 83.798 4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr POTASSIUM CALCIUM SCANDIUM TITANE VANADIUM CHROME MANGANÈSEFER COBALT NICKEL CUIVRE ZINC GALLIUM GERMANIUM ARSENIC SÉLÉNIUM BROME KRYPTON 37 85.468 38 87.62 39 88.906 40 91.224 41 92.906 42 95.96 43 (98) 44 101.07 45 102.91 46 106.42 47 107.87 48 112.41 49 114.82 50 118.71 51 121.76 52 127.60 53 126.90 54 131.29 5 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe RUBIDIUM STRONTIUM YTTRIUM ZIRCONIUM NIOBIUM MOLYBDÈNE TECHNÉTIUM RUTHÉNIUM RHODIUM PALLADIUM ARGENT CADMIUM INDIUM ETAIN ANTIMOINE TELLURE IODE XÉNON 55 132.91 56 137.33 57-71 72 178.49 73 180.95 74 183.84 75 186.21 76 190.23 77 192.22 78 195.08 79 196.97 80 200.59 81 204.38 82 207.2 83 208.98 84 (209) 85 (210) 86 (222) 6 Cs Ba La-Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Lanthanides CÉSIUM BARYUM HAFNIUM TANTALE TUNGSTÈNE RHÉNIUM OSMIUM IRIDIUM PLATINE ORMERCURE THALLIUM PLOMB BISMUTH POLONIUM ASTATE RADON 87 (223) 88 (226) 89-103 104 (26 )7 105 (26 )8 106 (2 )71 107 (2 )72 108 (277) 109 (2 )76 110 (2 1)8 111 (2 )80 112 (2 )85 113()... 114 (2 )87 115 ()... 116 (2 )91 117 ()... 118 ()... 7 Fr Ra Ac-Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Uut Fl Uup Lv Uus Uuo Actinides FRANCIUM RADIUM RUTHERFORDIUM DUBNIUM SEABORGIUM BOHRIUM HASSIUM MEITNERIUM DARMSTADTIUM ROENTGENIUM COPERNICIUM UNUNTRIUM FLEROVIUM UNUNPENTIUM LIVERMORIUM UNUNSEPTIUM UNUNOCTIUM Copyright©2012 EniG eneralić LANTHANIDES 57 138.91 58 140.12 59 140.91 60 144.24 61 (145) 62 150.36 63 151.96 64 157.25 65 158.93 66 162.50 67 164.93 68 167.26 69 168.93 70 173.05 71 174.97 (1) Pure Appl.Chem.,81 ,No.112131-2156 , (200 9 ) La masse atomique relative est donnée avec cinq chiffres significatifs. Pour les éléments La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu qui n'ont pas de nucléides stables, la valeur LANTHANE CÉRIUM PRASÉODYME NÉODYME PROMÉTHIUM SAMARIUM EUROPIUM GADOLINIUM TERBIUM DYSPROSIUM HOLMIUM ERBIUM THULIUM YTTERBIUM LUTÉTIUM entre parenthèses indique le nombre de masse ACTINIDES del'isotopedel'élémentayantladuréedeviela plus grande. Toutefois, pour les trois éléments 89 (227) 90 232.04 91 231.04 92 238.03 93 (237) 94 (244) 95 (243) 96 (247) 97 (247) 98 (251) 99 (252) 100 (257) 101 (258) 102 (259) 103 (262) (Th, Pa et U) qui ont une composition isotopique terrestre connue, une masse Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr atomiqueestindiquée. ACTINIUM THORIUM PROTACTINIUM URANIUM NEPTUNIUM PLUTONIUM AMÉRICIUM CURIUM BERKÉLIUM CALIFORNIUM EINSTEINIUM FERMIUM MENDELÉVIUM NOBÉLIUM LAWRENCIUM Chart of Nature • It contains all of the atomic building blocks found so far • It provides a framework for future elements. A revolutionary genius? “REVOLUTIONARY Russian chemist Dmitrii Mendeleev (shown around 1880) was the first to publish a periodic table, which put the known elements into a logical order and left room for elements not yet discovered” (ScienceNews, 1, 8, 2019 ). A prophet? • François Dagognet • in 1869 only 63 of the 105 elements known in 1969=> discovery of the periodic law extremely improbable • With so few pieces of the puzzle in hands, how did Mendeleev manage to construct a whole picture ? • (François Dagognet, 1969) Neither revolutionary…nor Prophet Mendeleev = one among 6 independent co-discoverers • Alexandre Béguyer de Chancourtois (1862) vis tellurique • John Newlands (1864) law of octaves • William Odling (1864) system of 57 of the 60 elements known in 1964+ vacant spaces) • Gustav Hinrichs spiral(1867) “natural classification based on spectral lines” • Julius Lothar Meyer (1864 and 1868) system including all known elements. Why Mendeleev’s Table? • Contemporary system is quite different from Mendeleev’s table • Apart from nationalistic claims (cf St Petersburg conference) • Individual discovery or collective endeavour & world heritage Overall argument • More normal science than revolutionary discovery • Mendeleev’s originality: clear definition of what was to be ordered (element vs simple substance) = key in the process of construction of the periodic system • Feedback of the periodic system on the definition of chemical element Demographic pressure Facing an increasing number of simple substances Teaching Pressure • Course of general chemistry taught at St Petersburg University beginning in 1867 • Writing a textbook => Principles of Chemistry (1871). How to order the chapters? • Ch 1: water, Ch 2: composition of water, Ch 3: Oxygen, Ch 4: ozone. Dalton’s Law, • Ch 5:Nitrogen & Air, Ch 6: Hydrogenated compounds of N, Ch 7: atoms & molecules, Ch 8: carbon & hydrocarbons, Ch 9: Compounds of C, O & N • Ch 10: table salt NaCl. Berthollet’s Law. Ch 11: Halogens • Ch 12: Na, Ch 13: K, Rb, Cs, Li, Ch 14: Equivalents, Mg, Ca, Sr, Ba, Be • Ch 15: analogies between elements. Periodic Law Teachers’ dilemma Chemistry professors’ puzzle since Lavoisier. • How to reconcile didactic constraints with natural order? • From simple to complex => Which simple substances? Alphabetic order? • Taking into account all properties (natural classification) or one single criterion (artificial classification)? Natural vs artificial classifications Ampère’s natural classification Thenard’s artificial classification (1816) (1813-16) • Gazolytes (Anthacides, • One single criterion (oxygen borides, thionides, arsenides) reactivity) applied everywhere • Leucocytes (argirides, calcides, cassitérides, téphralides, zirconïdes) • Chroïcolytes (titanides, cérides, chromides, sidérides) 1850s Textbooks: Hybrid classifications • Artificial for metals (revised version of Thenard’s) • Natural for non- metals (Jean-Baptiste Dumas) 1871: Mendeleev ‘s Principles of Chemistry Introduction: alphabetic list of simple substances with reference to Lavoisier. Lavoisier’s definition Elements= “all the substances into which we are able to reduce bodies by decomposition. […] since these principles cannot be separated, rather since we have not hitherto discovered the means of separating them, they act with regard to us as simple substances, and we ought never to suppose them compounded until experiment and observation has proved them to be so” (Lavoisier 1799, xxiii). • Negative criterion deprived the element of positive features=> weak explanatory power of individual behaviour. • reorganized chemistry along the simple/compound axis • generated doubts about the simplicity of chemical elements => quest for a reduction of the multiplicity of elements. Impact of Dalton’s atomic theory • Atomic weight gradually provided a positive attribute to definition of elements • Speculations about the number of elements William Prout’s hypothesis: simple bodies emerged from one single, primary element, hydrogen. Impetus for classifications based on on atomic weights. • Looking for arithmetic relations (Johan Döbereiner (1819) Br=Cl+ 1/2 ; Na= Li+K/2 ; Se= S+Te/2) • Looking for analogies to detect family features and establish a family tree Béguyer de Chancourtois • Vis tellurique (CRAS, 1862) “ c’est seulement par la prise en considération de la loi de Prout que j’arrive à une théorie parfaitement démontrée” Mendeleev’s alternative approach • Against Prout’s hypothesis (“obscurantism”, “torments of alchemy”) • Searching unity in a general law rather than in matter itself: Conceptual clarification “[I]t is necessary to distinguish the concept of a simple body from that of an element. A simple body substance, as we already know, is a substance, which taken individually, cannot be altered chemically by any means produced up until now or be formed through the transformation of any other kinds of bodies. An element, on the other hand, is an abstract concept; it is the material that is contained in a simple body and that can, without any change in weight, be converted into all the bodies that can be obtained from this simple body” (Mendeleev’s lecture notes St Petersburg University 1867, quoted in Kaji 2002, 6). 3 distinctive features • conservation > composition • Abstract and material entity • No mention of atoms 1871 Building a conceptual framework Just as the words ‘molecule’, ‘atom’, and ‘equivalent’ were used interchangeably, even as recently as the time of Laurent and Gerhardt, so now the terms ‘simple substance’ and ‘element’ are often confounded with one another.