SOSP'03 Proceedings of the 19Th ACM Symposium on Operating Systems Principles

Total Page:16

File Type:pdf, Size:1020Kb

SOSP'03 Proceedings of the 19Th ACM Symposium on Operating Systems Principles SOSP'03 Proceedings of the 19th ACM Symposium on Operating Systems Principles The Sagamore Bolton Landing (Lake George), New York, USA October 19-22, 2003 Sponsored by: ACM SIGOPS (Association for Computing Machinery Special Interest Group on Operating Systems) and supported by Goo~gle ~,earch invent IBM Research intel. ,¢'/~:.~/~ OUALCO'WW"~ w nware The Association for Computing Machinery 1515 Broadway New York, New York 10036 Copyright © 2003 by the Association for Computing Machinery, Inc. (ACM). Permission to make digital or hard copies of portions of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyright for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permission to republish from: Publications Dept., ACM, Inc. Fax +1 (212) 869-0481 or <[email protected]>. For other copying of articles that carry a code at the bottom of the first or last page, copying is permitted provided that the per-copy fee indicated in the code is paid through the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923. Notice to Past Authors of ACM-Published Articles ACM intends to create a complete electronic archive of all articles and/or other material previously published by ACM. If you have written a work that has been previously published by ACM in any journal or conference proceedings prior to 1978, or any SIG Newsletter at any time, and you do NOT want this work to appear in the ACM Digital Library, please inform [email protected], stating the title of the work, the author(s), and where and when published. ISBN: 1-58113-757-5 Additional copies may be ordered prepaid from: ACM Order Department PO Box 11405 New York, NY 10286-1405 Phone: 1-800-342-6626 (US and Canada) + 1-212 -626-0500 (all other countries) Fax: +1-212-944-1318 E-mail: [email protected] ACM Order Number 534030 Printed in the USA ii Message from the General Chair Welcome to the 19th SOSP, and to the beautiful Adirondack mountains of New York State! Larry Peterson and his committee have put together a strong and varied technical program, showcasing the most significant and influential work in operating systems today. Other program highlights include the poster and work-in-progress sessions, the Anita Borg luncheon and the evening banquet on Monday, and the SIGOPS business meeting Tuesday evening. The banquet will include presentation of the third annual Mark Weiser award, and eulogies for Roger Needham and Anita Borg, both of whom were lost to us this year. The business meeting will include presentation of awards in the first-ever SIGOPS division of the ACM Student Research Competition (SRC). Entrants in the SRC include all the regular papers and posters on which a student is principal author. To help to put the competition on an equal footing, four poster finalists will be making formal presentations during the session on Monday afternoon. Many thanks to Kevin Jeffay and his subcommittee for organizing the poster session and judging the submissions, and to Ann Sobel for her help in bringing SIGOPS into the SRC. Continuing the tradition of past SOSPs, we have encouraged student attendance through reduced registration fees and a strong program of financial scholarships. Generous support for this program has come from Microsoft via the SRC, from the National Science Foundation (CISE CCR), from Hewlett-Packard Labs, and from SIGOPS itself. Thanks to Cary Gray and his scholarship committee (John Carter, Norm Hutchinson, Marc Shapiro, and Bob Wisniewski) for their outstanding work under very tight time constraints. Other corporate supporters have made an enormous difference in the financial health of the conference. Google is underwriting the Monday banquet, IBM Research the poster/SRC session, and VMware the work-in-progress session. Microsoft Research, Intel, Mercury, and Qualcomm all made generous unrestricted gifts. Last, and most important, I am indebted to the many volunteers who made SOSP possible. Leonidas Kontothanassis handled local arrangements with his trademark infectious good cheer. Galen Hunt worked miracles in shielding the rest of us from budgetary details. Amy Murphy kept publicity not only timely and informative, but artistically pleasing as well; Kai Shen carried registration off without a hitch; and Chris Small went above the call of duty in assembling historical materials for our two-disc CD set. Thanks also to Alan Cox and Lisa Tolles for assembling the proceedings; to Cindy Sullivan, Mike Ryan, and the entire Sagamore staff; to David Kotz, Keith Marzullo, and the rest of the SIGOPS leadership; and to Donna Baglio, Irene Frawley, Maritza Nichols, and Jessica Wilmers of the ACM for their oversight and assistance. Michael L. Scott General Chair, SOSP-19 August 2003 iii Message from the Program Chair I am pleased to introduce this collection of 22 papers selected for inclusion in the 19th Symposium on Operating System Principles. We received 128 papers, a 50% increase over two years ago, and as far as I can determine, a record number of submissions for SOSP. It seems that the systems research community has returned from its dot-corn adventures, and is back to producing high-quality research results. Due to the relatively high number of submissions, the reviewing process was a slight modification of ones used in past years. Each paper was initially assigned to three committee members, each of whom wrote their own review and solicited an external review. We used these reviews to cull the set of papers under consideration by half. The remaining papers were assigned to a fourth committee member, who again wrote a review and solicited an external review. Also, all committee members read the remaining 64 papers and produced a quartile ranking, ensuring that the entire committee was familiar with all the papers discussed at the PC meeting. Selecting the final set of papers for SOSP is always a balancing act between preserving the tradition of accepting only the highest quality work in the field, and taking a chance on innovative but less mature work. I hope you'll agree that we struck the right balance. As you'll see throughout the course of the program, the topics covered by the papers are as wide-ranging as ever, but all the papers are in the mold that defines this community-- they give the "systems perspective" of whatever problem area is being addressed. I am greatly indebted to the members of the program committee. They were diligent and conscientious in their reviews and deliberations, and without exception, a wonderful group of people to work with. Thank you! I would also like to acknowledge all the hard work and care General Chair Michael Scott, and the rest of the organizing committee, put into the conference, especially Michael's efforts to make the Student Research Competition a reality. Finally, a special thanks to Publicity Chair, Amy Murphy, for keeping the conference's web presence accurate and complete. Larry Peterson Program Chair, SOSP-19 August 2003 iv Table of Contents SOSP'03 Organization ................................................................................................................... vii Referees .................................................................................................................................................. ix Safely Executing Untrusted Code Chair: K. Birman • Upgrading Transport Protocols using Untrusted Mobile Code ............................................... 1 P. Patel (University of Utah), A. Whitaker, D. Wetherall (University of Washington), J. Lepreau, T. Stack (University of Utah) • Model-Carrying Code: A Practical Approach for Safe Execution of Untrusted Applications ............................................................................................................... 15 R. Sekar, V. N. Venkatakrishnan, S. Basu, S. Bhatkar, D. C. DuVarney (Stony Brook University) File and Storage Systems Chair: T. Wobber • The Google File System ................................................................................................................... 29 s. Ghemawat, H. Gobioff, S.-T. Leung (Google) • Preserving Peer Replicas By Rate-Limited Sampled Voting .................................................. 44 P. Maniatis, M. Roussopoulos, TJ Giuli, D. S. H. Rosenthal, M. Baker, Y. Muliadi (Stanford University) • Decentralized User Authentication in a Global File System ................................................... 60 M. Kaminsky (Massachusetts Institute of Technology), G. Savvides (McGill University), D. Mazi6res (New York University), M. F. Kaashoek (Massachusetts Institute of Technology) Probing The Black Box Chair: D. Engler • Performance Debugging for Distributed Systems of Black Boxes ...................................... 74 M. K. Aguilera, J. C. Mogul, J. L. Wiener (Hewlett Packard Laboratories), P. Reynolds (Duke University), A. Muthitacharoen (Massachusetts Institute of Technology) • Transforming Policies into Mechanisms with Infokernel ....................................................... 90 A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, N. C. Burnett, T. E. Denehy, T. J. Engle, H. S. Gunawi, J. A. Nugent, F. I. Popovici (University of Wisconsin at Madison) • User-level Internet Path Diagnosis
Recommended publications
  • SIGOPS Annual Report 2012
    SIGOPS Annual Report 2012 Fiscal Year July 2012-June 2013 Submitted by Jeanna Matthews, SIGOPS Chair Overview SIGOPS is a vibrant community of people with interests in “operatinG systems” in the broadest sense, includinG topics such as distributed computing, storaGe systems, security, concurrency, middleware, mobility, virtualization, networkinG, cloud computinG, datacenter software, and Internet services. We sponsor a number of top conferences, provide travel Grants to students, present yearly awards, disseminate information to members electronically, and collaborate with other SIGs on important programs for computing professionals. Officers It was the second year for officers: Jeanna Matthews (Clarkson University) as Chair, GeorGe Candea (EPFL) as Vice Chair, Dilma da Silva (Qualcomm) as Treasurer and Muli Ben-Yehuda (Technion) as Information Director. As has been typical, elected officers agreed to continue for a second and final two- year term beginning July 2013. Shan Lu (University of Wisconsin) will replace Muli Ben-Yehuda as Information Director as of AuGust 2013. Awards We have an excitinG new award to announce – the SIGOPS Dennis M. Ritchie Doctoral Dissertation Award. SIGOPS has lonG been lackinG a doctoral dissertation award, such as those offered by SIGCOMM, Eurosys, SIGPLAN, and SIGMOD. This new award fills this Gap and also honors the contributions to computer science that Dennis Ritchie made durinG his life. With this award, ACM SIGOPS will encouraGe the creativity that Ritchie embodied and provide a reminder of Ritchie's leGacy and what a difference a person can make in the field of software systems research. The award is funded by AT&T Research and Alcatel-Lucent Bell Labs, companies that both have a strong connection to AT&T Bell Laboratories where Dennis Ritchie did his seminal work.
    [Show full text]
  • Stanford University
    The first digit of a CS course number indicates its general level of sophistication: 001-099 Service courses for nontechnical majors 100-199 Other service courses, basic undergraduate 200-299 Advanced undergraduate/beginning graduate 300-399 Advanced graduate 400-499 Experimental 500-599 Graduate seminars Emeriti: (Professors) Tom Binford, Edward Feigenbaum, Richard The tens digit indicates the area of Computer Science it addresses: Fikes, Donald E. Knuth,* John McCarthy, Edward J. 00-09 Introductory, miscellaneous McCluskey, William F. Miller, Nils J. Nilsson, Vaughan Pratt,* 10-19 Hardware Systems Jeffrey D. Ullman, Gio Wiederhold* 20-29 Artificial Intelligence Chair: Jennifer Widom 30-39 Numerical Analysis Associate Chair for Education: Mehran Sahami 40-49 Software Systems Professors: Alex Aiken, Dan Boneh, David Cheriton, William J. 50-59 Mathematical Foundations of Computing Dally, David Dill, Hector Garcia-Molina, Leonidas J. Guibas, 60-69 Analysis of Algorithms Patrick Hanrahan, John Hennessy, Mark A. Horowitz, Oussama 70-79 Computational Biology and Interdisciplinary Topics Khatib, Daphne Koller, Monica Lam, Jean-Claude Latombe, 90-99 Independent Study and Practicum Marc Levoy, Zohar Manna, Teresa Meng, John Mitchell, Kunle Olukotun, Yoav Shoham, Sebastian Thrun, Jennifer Widom, Terry Winograd Associate Professors: Serafim Batzoglou, Dawson Engler, Ronald The mission of Stanford‟s undergraduate program in Computer P. Fedkiw, Michael Genesereth, Christoforos Kozyrakis, Chris- Science is to provide a foundation of mathematics, science,
    [Show full text]
  • Shanlu › About › Cv › CV Shanlu.Pdf Shan Lu
    Shan Lu University of Chicago, Dept. of Computer Science Phone: +1-773-702-3184 5730 S. Ellis Ave., Rm 343 E-mail: [email protected] Chicago, IL 60637 USA Homepage: http://people.cs.uchicago.edu/~shanlu RESEARCH INTERESTS Tool support for improving the correctness and efficiency of large scale software systems EMPLOYMENT 2019 – present Professor, Dept. of Computer Science, University of Chicago 2014 – 2019 Associate Professor, Dept. of Computer Sciences, University of Chicago 2009 – 2014 Assistant Professor, Dept. of Computer Sciences, University of Wisconsin – Madison EDUCATION 2008 University of Illinois at Urbana-Champaign, Urbana, IL Ph.D. in Computer Science Thesis: Understanding, Detecting, and Exposing Concurrency Bugs (Advisor: Prof. Yuanyuan Zhou) 2003 University of Science & Technology of China, Hefei, China B.S. in Computer Science HONORS AND AWARDS 2019 ACM Distinguished Member Among 62 members world-wide recognized for outstanding contributions to the computing field 2015 Google Faculty Research Award 2014 Alfred P. Sloan Research Fellow Among 126 “early-career scholars (who) represent the most promising scientific researchers working today” 2013 Distinguished Alumni Educator Award Among 3 awardees selected by Department of Computer Science, University of Illinois 2010 NSF Career Award 2021 Honorable Mention Award @ CHI for paper [C71] (CHI 2021) 2019 Best Paper Award @ SOSP for paper [C62] (SOSP 2019) 2019 ACM SIGSOFT Distinguished Paper Award @ ICSE for paper [C58] (ICSE 2019) 2017 Google Scholar Classic Paper Award for
    [Show full text]
  • Pivot Tracing: Dynamic Causal Monitoring for Distributed Systems Pdfauthor=Jonathan Mace, Ryan Roelke, Rodrigo Fonseca
    PivoT Tracing:Dynamic Causal MoniToring for DisTribuTed SysTems JonaThan Mace Ryan Roelke Rodrigo Fonseca Brown UniversiTy AbsTracT MoniToring and TroubleshooTing disTribuTed sysTems is noToriously diõcult; poTenTial prob- lems are complex, varied, and unpredicTable. _e moniToring and diagnosis Tools commonly used Today – logs, counTers, and meTrics – have Two imporTanT limiTaTions: whaT gets recorded is deûned a priori, and The informaTion is recorded in a componenT- or machine-cenTric way, making iT exTremely hard To correlaTe events ThaT cross These boundaries. _is paper presents PivoT Tracing, a moniToring framework for disTribuTed sysTems ThaT addresses boTh limiTaTions by combining dynamic insTrumenTaTion wiTh a novel relaTional operaTor: The happened-before join. PivoT Tracing gives users, aT runTime, The abiliTy To deûne arbiTrary meTrics aT one poinT of The sysTem, while being able To selecT, ûlTer, and group by events mean- ingful aT oTher parts of The sysTem, even when crossing componenT or machine boundaries. We have implemenTed a proToType of PivoT Tracing for Java-based sysTems and evaluaTe iT on a heTerogeneous Hadoop clusTer comprising HDFS, HBase, MapReduce, and YARN. We show ThaT PivoT Tracing can eòecTively idenTify a diverse range of rooT causes such as soware bugs, misconûguraTion, and limping hardware. We show ThaT PivoT Tracing is dynamic, exTensible, and enables cross-Tier analysis beTween inTer-operaTing applicaTions, wiTh low execuTion overhead. Ë. InTroducTion MoniToring and TroubleshooTing disTribuTed sysTems
    [Show full text]
  • A ACM Transactions on Trans. 1553 TITLE ABBR ISSN ACM Computing Surveys ACM Comput. Surv. 0360‐0300 ACM Journal
    ACM - zoznam titulov (2016 - 2019) CONTENT TYPE TITLE ABBR ISSN Journals ACM Computing Surveys ACM Comput. Surv. 0360‐0300 Journals ACM Journal of Computer Documentation ACM J. Comput. Doc. 1527‐6805 Journals ACM Journal on Emerging Technologies in Computing Systems J. Emerg. Technol. Comput. Syst. 1550‐4832 Journals Journal of Data and Information Quality J. Data and Information Quality 1936‐1955 Journals Journal of Experimental Algorithmics J. Exp. Algorithmics 1084‐6654 Journals Journal of the ACM J. ACM 0004‐5411 Journals Journal on Computing and Cultural Heritage J. Comput. Cult. Herit. 1556‐4673 Journals Journal on Educational Resources in Computing J. Educ. Resour. Comput. 1531‐4278 Transactions ACM Letters on Programming Languages and Systems ACM Lett. Program. Lang. Syst. 1057‐4514 Transactions ACM Transactions on Accessible Computing ACM Trans. Access. Comput. 1936‐7228 Transactions ACM Transactions on Algorithms ACM Trans. Algorithms 1549‐6325 Transactions ACM Transactions on Applied Perception ACM Trans. Appl. Percept. 1544‐3558 Transactions ACM Transactions on Architecture and Code Optimization ACM Trans. Archit. Code Optim. 1544‐3566 Transactions ACM Transactions on Asian Language Information Processing 1530‐0226 Transactions ACM Transactions on Asian and Low‐Resource Language Information Proce ACM Trans. Asian Low‐Resour. Lang. Inf. Process. 2375‐4699 Transactions ACM Transactions on Autonomous and Adaptive Systems ACM Trans. Auton. Adapt. Syst. 1556‐4665 Transactions ACM Transactions on Computation Theory ACM Trans. Comput. Theory 1942‐3454 Transactions ACM Transactions on Computational Logic ACM Trans. Comput. Logic 1529‐3785 Transactions ACM Transactions on Computer Systems ACM Trans. Comput. Syst. 0734‐2071 Transactions ACM Transactions on Computer‐Human Interaction ACM Trans.
    [Show full text]
  • An Oral History of Computer Science Cornell University
    An Oral History of Computer Science at Cornell University https://ecommons.cornell.edu/handle/1813/40569 Gates Hall, Cornell University Twelve senior faculty members share their personal journeys and their recollections of the early days of computer science at Cornell University and the leadership role in bringing a new field of study into existence. Birman, Ken Hopcroft, John E Cardie, Claire Kozen, Dexter Constable, Robert Nerode, Anil Conway, Richard W. Schneider, Fred B Gries, David Teitelbaum, Tim Hartmanis, Juris Van Loan, Charlie (Click on a name above to scroll to an abstract and a live link to the associated streaming video.) version: 16Jun16 1. KEN BIRMAN Ken Birman, who joined CS in 1981, exemplifies the successful synergy of research and entrepreneurial activities. His research in distributed systems led to his founding ISIS Distributed Systems, Inc., in 1988, which developed software used by the New York Stock Exchange (NYSE) and Swiss Exchange, the French Air Traffic Control sys- tem, the AEGIS warship, and others. He started two other companies, Reliable Network Solutions and Web Sci- ences LLC. This entrepreneurship has in turn generated new research ideas and has also led to Ken’s advising various organi- zations on distributed systems and cloud computing, including the French Civil Aviation Organization, the north- eastern electric power grid, NATO, the US Treasury, and the US Air Force. Ken has received several awards for his research, among them the IEEE Tsutomu Kanai Award for his work on trustworthy computing, the Cisco “Technology Visionary” award, and the ACM SIGOPS Hall of Fame Award. He also has written two successful texts.
    [Show full text]
  • ACM JOURNALS S.No. TITLE PUBLICATION RANGE :STARTS PUBLICATION RANGE: LATEST URL 1. ACM Computing Surveys Volume 1 Issue 1
    ACM JOURNALS S.No. TITLE PUBLICATION RANGE :STARTS PUBLICATION RANGE: LATEST URL 1. ACM Computing Surveys Volume 1 Issue 1 (March 1969) Volume 49 Issue 3 (October 2016) http://dl.acm.org/citation.cfm?id=J204 Volume 24 Issue 1 (Feb. 1, 2. ACM Journal of Computer Documentation Volume 26 Issue 4 (November 2002) http://dl.acm.org/citation.cfm?id=J24 2000) ACM Journal on Emerging Technologies in 3. Volume 1 Issue 1 (April 2005) Volume 13 Issue 2 (October 2016) http://dl.acm.org/citation.cfm?id=J967 Computing Systems 4. Journal of Data and Information Quality Volume 1 Issue 1 (June 2009) Volume 8 Issue 1 (October 2016) http://dl.acm.org/citation.cfm?id=J1191 Journal on Educational Resources in Volume 1 Issue 1es (March 5. Volume 16 Issue 2 (March 2016) http://dl.acm.org/citation.cfm?id=J814 Computing 2001) 6. Journal of Experimental Algorithmics Volume 1 (1996) Volume 21 (2016) http://dl.acm.org/citation.cfm?id=J430 7. Journal of the ACM Volume 1 Issue 1 (Jan. 1954) Volume 63 Issue 4 (October 2016) http://dl.acm.org/citation.cfm?id=J401 8. Journal on Computing and Cultural Heritage Volume 1 Issue 1 (June 2008) Volume 9 Issue 3 (October 2016) http://dl.acm.org/citation.cfm?id=J1157 ACM Letters on Programming Languages Volume 2 Issue 1-4 9. Volume 1 Issue 1 (March 1992) http://dl.acm.org/citation.cfm?id=J513 and Systems (March&#8211;Dec. 1993) 10. ACM Transactions on Accessible Computing Volume 1 Issue 1 (May 2008) Volume 9 Issue 1 (October 2016) http://dl.acm.org/citation.cfm?id=J1156 11.
    [Show full text]
  • Semperos: a Distributed Capability System
    SemperOS: A Distributed Capability System Matthias Hille† Nils Asmussen† ∗ Pramod Bhatotia‡ Hermann Härtig† ∗ †Technische Universität Dresden ‡The University of Edinburgh ∗ Barkhausen Institut Abstract systems have received renewed attention recently to provide Capabilities provide an efficient and secure mechanism for an efficient and secure mechanism for resource management fine-grained resource management and protection. However, in modern hardware architectures [5, 24, 30, 36, 44, 64, 67]. as the modern hardware architectures continue to evolve Today the main improvements in compute capacity with large numbers of non-coherent and heterogeneous cores, are achieved by either adding more cores or integrating we focus on the following research question: can capability accelerators into the system. However, the increasing core systems scale to modern hardware architectures? counts exacerbate the hardware complexity required for global In this work, we present a scalable capability system to drive cache coherence. While on-chip cache coherence is likely to future systems with many non-coherent heterogeneous cores. remain a feature of future hardware architectures [45], we see More specifically, we have designed a distributed capability characteristics of distributed systems added to the hardware system based on a HW/SW co-designed capability system. by giving up on global cache coherence across a whole We analyzed the pitfalls of distributed capability operations machine [6, 28]. Additionally, various kinds of accelerators running concurrently and built the protocols in accordance are added like the Xeon Phi Processor, the Matrix-2000 accel- with the insights. We have incorporated these distributed erator, GPUs, FPGAs, or ASICs, which are used in numerous capability management protocols in a new microkernel-based application fields [4,21,32,34,43,60].
    [Show full text]
  • Robust Computer Algebra, Theorem Proving, and Oracle AI
    Robust Computer Algebra, Theorem Proving, and Oracle AI Gopal P. Sarma∗ Nick J. Hayyz School of Medicine, Emory University, Atlanta, GA USA Vicarious FPC, San Francisco, CA USA Abstract In the context of superintelligent AI systems, the term “oracle” has two meanings. One refers to modular systems queried for domain-specific tasks. Another usage, referring to a class of systems which may be useful for addressing the value alignment and AI control problems, is a superintelligent AI system that only answers questions. The aim of this manuscript is to survey contemporary research problems related to oracles which align with long-term research goals of AI safety. We examine existing question answering systems and argue that their high degree of architectural heterogeneity makes them poor candidates for rigorous analysis as oracles. On the other hand, we identify computer algebra systems (CASs) as being primitive examples of domain-specific oracles for mathematics and argue that efforts to integrate computer algebra systems with theorem provers, systems which have largely been developed independent of one another, provide a concrete set of problems related to the notion of provable safety that has emerged in the AI safety community. We review approaches to interfacing CASs with theorem provers, describe well-defined architectural deficiencies that have been identified with CASs, and suggest possible lines of research and practical software projects for scientists interested in AI safety. I. Introduction other hand, issues of privacy and surveillance, access and inequality, or economics and policy are Recently, significant public attention has been also of utmost importance and are distinct from drawn to the consequences of achieving human- the specific technical challenges posed by most level artificial intelligence.
    [Show full text]
  • List of Related Organizations and Conferences
    List of Related Organizations and Conferences Organization/Event Name Sponsor Description # of days With approx. 80,000 members, ACM delivers resources that advance computing as a science and a profession. ACM provides the computing field's premier Digital ACM Library and serves its members and the computing profession with leading-edge publications, conferences, and career resources. With nearly 85,000 members, the IEEE Computer Society is the world’s leading organization of computing professionals. Founded in 1946, and the largest of the IEEE Computer Society 39 societies of the Institute of Electrical and Electronics Engineers (IEEE), the CS is dedicated to advancing the theory and application of computer and information- processing technology. ASPLOS is a multi-disciplinary conference for research that spans the boundaries of hardware, computer architecture, compilers, languages, operating systems, networking, and applications. ASPLOS provides a high quality forum for scientists and engineers to present their latest research findings in these rapidly changing ASPLOS XIII ACM SIGARCH, SIGPLAN, SIGOPS 3 days fields. It has captured some of the major computer systems innovations of the past two decades (e.g., RISC and VLIW processors, small and large-scale multiprocessors, clusters and networks-of-workstations, optimizing compilers, RAID, and network-storage system designs). BSDCan, a BSD conference held in Ottawa, Canada, has quickly established itself as the technical conference for people working on and with 4.4BSD based operating BSDCanada 4 days systems and related projects. The organizers have found a fantastic formula that appeals to a wide range of people from extreme novices to advanced The Federated Computer Research Conference (FCRC) assembles a spectrum of affiliated research conferences and workshops into a week long coordinated meeting 7 day mix of held at a common time in a common place.
    [Show full text]
  • Title Publisher 3C ON-LINE ACM / Association for Computing Machinery 3DOR
    Title Publisher 3C ON-LINE ACM / Association for Computing Machinery 3DOR: 3D Object Retrieval ACM / Association for Computing Machinery 3DVP: 3D Video Processing ACM / Association for Computing Machinery A2CWiC: Conference of Women in Computing in India ACM / Association for Computing Machinery AAA-IDEA : Advanced Architectures and Algorithms for Internet Delivery and ApplicationsACM / Association for Computing Machinery AADEBUG: Automated analysis-driven debugging ACM / Association for Computing Machinery AAMAS: Autonomous Agents and Multiagent Systems ACM / Association for Computing Machinery ACDC: Automated Control for Datacenters and Clouds ACM / Association for Computing Machinery AcessNets: Access Networks ACM / Association for Computing Machinery ACET: Advances in Computer Enterntainment Technology ACM / Association for Computing Machinery ACISNR: Applications of Computer and Information Sciences to Nature Research ACM / Association for Computing Machinery ACL2: ACL2 Theorem Prover and its Applications ACM / Association for Computing Machinery ACM Communications in Computer Algebra ACM / Association for Computing Machinery ACM Computing Surveys ACM / Association for Computing Machinery ACM DEV: Computing for Development ACM / Association for Computing Machinery ACM Inroads ACM / Association for Computing Machinery ACM Journal of Computer Documentation ACM / Association for Computing Machinery ACM Journal of Data and Information Quality (JDIQ) ACM / Association for Computing Machinery ACM journal on emerging technologies in computing
    [Show full text]
  • Hints and Principles for Computer System Design Butler Lampson May 14, 2021
    Hints and Principles for Computer System Design Butler Lampson May 14, 2021 Abstract This new long version of my 1983 paper suggests the goals you might have for your system— Simple, Timely, Efficient, Adaptable, Dependable, Yummy (STEADY)—and techniques for achieving them—Approximate, Incremental, Divide & Conquer (AID). It also gives some princi- ples for system design that are more than just hints, and many examples of how to apply the ideas. Table of Contents 1. Introduction 3 1.1 Oppositions and slogans 4 2. Principles 6 2.1 Abstraction 6 2.1.1 Safety and liveness 8 2.1.2 Operations 9 2.2 Writing a spec 9 2.2.1 Leaky specs and bad specs 12 2.2.2 Executable specs 13 2.3 Writing the code: Correctness 13 2.3.1 Types 16 2.3.2 Languages 16 2.4 Modules and interfaces 17 2.4.1 Classes and objects 18 2.4.2 Layers and platforms 20 2.4.3 Components 21 2.4.4 Open systems 21 2.4.5 Robustness 22 2.4.6 Standards 23 2.5 Points of view 23 2.5.1 Notation 24 3. Goals and Techniques 25 3.1 Overview 25 3.1.1 Goals 25 3.1.2 Techniques 26 3.2 Simple 27 3.2.1 Do one thing well 27 3.2.2 Brute force 29 3.2.3 Reduction 30 3.3 Timely 30 3.4 Efficient 31 3.4.1 Before the ABCs 31 3.4.2 Algorithms 36 3.4.3 Approximate 37 3.4.4 Batch 42 1 3.4.5 Cache 43 3.4.6 Concurrency 44 3.5 Adaptable 50 3.5.1 Scaling 51 3.5.2 Inflection points 52 3.6 Dependable 53 3.6.1 Correctness 55 3.6.2 Retry 56 3.6.3 Replication 57 3.6.4 Detecting failures: real time 59 3.6.5 Recovery and repair 60 3.6.6 Transactions 60 3.6.7 Security 61 3.7 Yummy 64 3.7.1 User interfaces 64 3.8 Incremental 66 3.8.1 Being and becoming 66 3.8.2 Indirection 70 4.
    [Show full text]