Upcoming Events

Total Page:16

File Type:pdf, Size:1020Kb

Upcoming Events UPCOMING EVENTS 10th USENIX Conference on File and Storage 2012 USENIX Federated Conferences Week Technologies (FAST ’12) June 12–15, 2012, Boston, MA, USA SPONSORED BY USENIX IN COOPERATION WITH ACM SIGOPS 2012 USENIX Annual Technical Conference February 14–17, 2012, San Jose, CA, USA (USENIX ATC ’12) http://www.usenix.org/fast12 June 13–15, 2012 http://www.usenix.org/atc12 In Cooperation: EuroSys 2012 SPONSORED BY ACM SIGOPS IN COOPERATION WITH USENIX 3rd USENIX Conference on Web Application Development (WebApps ’12) April 10–13, 2012, Bern, Switzerland June 13–14, 2012 http://eurosys2012.unibe.ch http://www.usenix.org/webapps12 2nd USENIX Workshop on Hot Topics in 4th USENIX Workshop on Hot Topics in Cloud Management of Internet, Cloud, and Enterprise Computing (HotCloud ’12) Networks and Services (Hot-ICE ’12) June 12–13, 2012 CO-LOCATED WITH NSDI ’12 http://www.usenix.org/hotcloud12 April 24, 2012, San Jose, CA, USA Submissions due: March 8, 2012 http://www.usenix.org/hotice12 4th USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage ’12) 5th USENIX Workshop on Large-Scale Exploits June 13–14, 2012 and Emergent Threats (LEET ’12) http://www.usenix.org/hotstorage12 CO-LOCATED WITH NSDI ’12 Submissions due: March 12, 2012 April 24, 2012, San Jose, CA, USA http://www.usenix.org/leet12 4th USENIX Workshop on the Theory and Submissions due: February 23, 2012 Practice of Provenance (TaPP ’12) June 14–15, 2012 9th USENIX Symposium on Networked Systems http://www.usenix.org/tapp12 Design and Implementation (NSDI ’12) Submissions due: March 31, 2012 SPONSORED BY USENIX IN COOPERATION WITH ACM SIGCOMM AND 6th Workshop on Networked Systems for ACM SIGOPS Developing Regions (NSDR ’12) April 25–27, 2012, San Jose, CA, USA June 15, 2012 http://www.usenix.org/nsdi12 5th Workshop on Cyber Security Experimenta- In Cooperation: 5th Annual International tion and Test (CSET ’12) Systems and Storage Conference (SYSTOR 2012) CO-LOCATED WITH USENIX SECURITY ’12 IN COOPERATION WITH ACM SIGOPS (PENDING) AND USENIX August 6, 2012, Bellevue, WA, USA June 4–6, 2012, Haifa, Israel http://www.usenix.org/cset12 http://www.research.ibm.com/haifa/conferences/ Submissions due: April 19, 2012 systor2012 3rd USENIX Workshop on Health Security and 4th USENIX Workshop on Hot Topics in Privacy (HealthSec ’12) Parallelism (HotPar ’12) CO-LOCATED WITH USENIX SECURITY ’12 SPONSORED BY USENIX IN COOPERATION WITH ACM SIGMETRICS, ACM SIGSOFT, ACM SIGOPS, ACM SIGARCH, AND ACM SIGPLAN August 6–7, 2012, Bellevue, WA, USA June 7–8, 2012, Berkeley, CA, USA http://www.usenix.org/healthsec12 http://www.usenix.org/hotpar12 Submissions due: April 10, 2012 FOR A COMPLETE LIST OF ALL USENIX AND 21st USENIX Security Symposium USENIX CO-SPONSORED EVENTS, (USENIX Security ’12) SEE HTTP://WWW.USENIX.ORG/EVENTS August 8–10, 2012, Bellevue, WA, USA http://www.usenix.org/sec12 Submissions due: February 16, 2012.
Recommended publications
  • SIGOPS Annual Report 2012
    SIGOPS Annual Report 2012 Fiscal Year July 2012-June 2013 Submitted by Jeanna Matthews, SIGOPS Chair Overview SIGOPS is a vibrant community of people with interests in “operatinG systems” in the broadest sense, includinG topics such as distributed computing, storaGe systems, security, concurrency, middleware, mobility, virtualization, networkinG, cloud computinG, datacenter software, and Internet services. We sponsor a number of top conferences, provide travel Grants to students, present yearly awards, disseminate information to members electronically, and collaborate with other SIGs on important programs for computing professionals. Officers It was the second year for officers: Jeanna Matthews (Clarkson University) as Chair, GeorGe Candea (EPFL) as Vice Chair, Dilma da Silva (Qualcomm) as Treasurer and Muli Ben-Yehuda (Technion) as Information Director. As has been typical, elected officers agreed to continue for a second and final two- year term beginning July 2013. Shan Lu (University of Wisconsin) will replace Muli Ben-Yehuda as Information Director as of AuGust 2013. Awards We have an excitinG new award to announce – the SIGOPS Dennis M. Ritchie Doctoral Dissertation Award. SIGOPS has lonG been lackinG a doctoral dissertation award, such as those offered by SIGCOMM, Eurosys, SIGPLAN, and SIGMOD. This new award fills this Gap and also honors the contributions to computer science that Dennis Ritchie made durinG his life. With this award, ACM SIGOPS will encouraGe the creativity that Ritchie embodied and provide a reminder of Ritchie's leGacy and what a difference a person can make in the field of software systems research. The award is funded by AT&T Research and Alcatel-Lucent Bell Labs, companies that both have a strong connection to AT&T Bell Laboratories where Dennis Ritchie did his seminal work.
    [Show full text]
  • Shanlu › About › Cv › CV Shanlu.Pdf Shan Lu
    Shan Lu University of Chicago, Dept. of Computer Science Phone: +1-773-702-3184 5730 S. Ellis Ave., Rm 343 E-mail: [email protected] Chicago, IL 60637 USA Homepage: http://people.cs.uchicago.edu/~shanlu RESEARCH INTERESTS Tool support for improving the correctness and efficiency of large scale software systems EMPLOYMENT 2019 – present Professor, Dept. of Computer Science, University of Chicago 2014 – 2019 Associate Professor, Dept. of Computer Sciences, University of Chicago 2009 – 2014 Assistant Professor, Dept. of Computer Sciences, University of Wisconsin – Madison EDUCATION 2008 University of Illinois at Urbana-Champaign, Urbana, IL Ph.D. in Computer Science Thesis: Understanding, Detecting, and Exposing Concurrency Bugs (Advisor: Prof. Yuanyuan Zhou) 2003 University of Science & Technology of China, Hefei, China B.S. in Computer Science HONORS AND AWARDS 2019 ACM Distinguished Member Among 62 members world-wide recognized for outstanding contributions to the computing field 2015 Google Faculty Research Award 2014 Alfred P. Sloan Research Fellow Among 126 “early-career scholars (who) represent the most promising scientific researchers working today” 2013 Distinguished Alumni Educator Award Among 3 awardees selected by Department of Computer Science, University of Illinois 2010 NSF Career Award 2021 Honorable Mention Award @ CHI for paper [C71] (CHI 2021) 2019 Best Paper Award @ SOSP for paper [C62] (SOSP 2019) 2019 ACM SIGSOFT Distinguished Paper Award @ ICSE for paper [C58] (ICSE 2019) 2017 Google Scholar Classic Paper Award for
    [Show full text]
  • Software Engineering 0835
    Software Engineering 0835 1. Objectives In order to cultivate top creative talents in the field of software engineering, this discipline is designed to help students develop awareness of innovation and innovation capacity. Focusing on relevant software engineering research, students are expected to master the solid and broad basic theory and in-depth expertise and to achieve innovative research results. Doctoral students in this field should have a rigorous scientific attitude, good scientific style and scientific ethics, a wide range of disciplinary perspectives, a pioneering spirit and the overall quality for independently conducting scientific research. 2. Length of Study Period Postgraduate classification Normal length of study period Length of study period 4 years full-time 3 to 5 years full-time Doctoral students or 5 years part-time or 5 to 7 years part-time Direct Doctoral students I 5 years full-time 5 to 7 years full-time Direct Doctoral students II 6 years full-time 5 to 7 years full-time Notes: (1) Direct Doctoral students I: Doctoral students pursuing a doctoral degree directly from a bachelor degree (2) Direct Doctoral students II: Doctoral students of successive postgraduate and doctoral programs of study without a master degree 3. Research Areas (1) Software engineering theory and methods (2) Embedded computing and the Internet of Things (3) Digital media technologies (4) Trustworthy software (5) Computer and network security 4. Curriculums and Credits 4.1 Doctoral students (14 Credits or above) Course Classification Course
    [Show full text]
  • Pivot Tracing: Dynamic Causal Monitoring for Distributed Systems Pdfauthor=Jonathan Mace, Ryan Roelke, Rodrigo Fonseca
    PivoT Tracing:Dynamic Causal MoniToring for DisTribuTed SysTems JonaThan Mace Ryan Roelke Rodrigo Fonseca Brown UniversiTy AbsTracT MoniToring and TroubleshooTing disTribuTed sysTems is noToriously diõcult; poTenTial prob- lems are complex, varied, and unpredicTable. _e moniToring and diagnosis Tools commonly used Today – logs, counTers, and meTrics – have Two imporTanT limiTaTions: whaT gets recorded is deûned a priori, and The informaTion is recorded in a componenT- or machine-cenTric way, making iT exTremely hard To correlaTe events ThaT cross These boundaries. _is paper presents PivoT Tracing, a moniToring framework for disTribuTed sysTems ThaT addresses boTh limiTaTions by combining dynamic insTrumenTaTion wiTh a novel relaTional operaTor: The happened-before join. PivoT Tracing gives users, aT runTime, The abiliTy To deûne arbiTrary meTrics aT one poinT of The sysTem, while being able To selecT, ûlTer, and group by events mean- ingful aT oTher parts of The sysTem, even when crossing componenT or machine boundaries. We have implemenTed a proToType of PivoT Tracing for Java-based sysTems and evaluaTe iT on a heTerogeneous Hadoop clusTer comprising HDFS, HBase, MapReduce, and YARN. We show ThaT PivoT Tracing can eòecTively idenTify a diverse range of rooT causes such as soware bugs, misconûguraTion, and limping hardware. We show ThaT PivoT Tracing is dynamic, exTensible, and enables cross-Tier analysis beTween inTer-operaTing applicaTions, wiTh low execuTion overhead. Ë. InTroducTion MoniToring and TroubleshooTing disTribuTed sysTems
    [Show full text]
  • A ACM Transactions on Trans. 1553 TITLE ABBR ISSN ACM Computing Surveys ACM Comput. Surv. 0360‐0300 ACM Journal
    ACM - zoznam titulov (2016 - 2019) CONTENT TYPE TITLE ABBR ISSN Journals ACM Computing Surveys ACM Comput. Surv. 0360‐0300 Journals ACM Journal of Computer Documentation ACM J. Comput. Doc. 1527‐6805 Journals ACM Journal on Emerging Technologies in Computing Systems J. Emerg. Technol. Comput. Syst. 1550‐4832 Journals Journal of Data and Information Quality J. Data and Information Quality 1936‐1955 Journals Journal of Experimental Algorithmics J. Exp. Algorithmics 1084‐6654 Journals Journal of the ACM J. ACM 0004‐5411 Journals Journal on Computing and Cultural Heritage J. Comput. Cult. Herit. 1556‐4673 Journals Journal on Educational Resources in Computing J. Educ. Resour. Comput. 1531‐4278 Transactions ACM Letters on Programming Languages and Systems ACM Lett. Program. Lang. Syst. 1057‐4514 Transactions ACM Transactions on Accessible Computing ACM Trans. Access. Comput. 1936‐7228 Transactions ACM Transactions on Algorithms ACM Trans. Algorithms 1549‐6325 Transactions ACM Transactions on Applied Perception ACM Trans. Appl. Percept. 1544‐3558 Transactions ACM Transactions on Architecture and Code Optimization ACM Trans. Archit. Code Optim. 1544‐3566 Transactions ACM Transactions on Asian Language Information Processing 1530‐0226 Transactions ACM Transactions on Asian and Low‐Resource Language Information Proce ACM Trans. Asian Low‐Resour. Lang. Inf. Process. 2375‐4699 Transactions ACM Transactions on Autonomous and Adaptive Systems ACM Trans. Auton. Adapt. Syst. 1556‐4665 Transactions ACM Transactions on Computation Theory ACM Trans. Comput. Theory 1942‐3454 Transactions ACM Transactions on Computational Logic ACM Trans. Comput. Logic 1529‐3785 Transactions ACM Transactions on Computer Systems ACM Trans. Comput. Syst. 0734‐2071 Transactions ACM Transactions on Computer‐Human Interaction ACM Trans.
    [Show full text]
  • An Oral History of Computer Science Cornell University
    An Oral History of Computer Science at Cornell University https://ecommons.cornell.edu/handle/1813/40569 Gates Hall, Cornell University Twelve senior faculty members share their personal journeys and their recollections of the early days of computer science at Cornell University and the leadership role in bringing a new field of study into existence. Birman, Ken Hopcroft, John E Cardie, Claire Kozen, Dexter Constable, Robert Nerode, Anil Conway, Richard W. Schneider, Fred B Gries, David Teitelbaum, Tim Hartmanis, Juris Van Loan, Charlie (Click on a name above to scroll to an abstract and a live link to the associated streaming video.) version: 16Jun16 1. KEN BIRMAN Ken Birman, who joined CS in 1981, exemplifies the successful synergy of research and entrepreneurial activities. His research in distributed systems led to his founding ISIS Distributed Systems, Inc., in 1988, which developed software used by the New York Stock Exchange (NYSE) and Swiss Exchange, the French Air Traffic Control sys- tem, the AEGIS warship, and others. He started two other companies, Reliable Network Solutions and Web Sci- ences LLC. This entrepreneurship has in turn generated new research ideas and has also led to Ken’s advising various organi- zations on distributed systems and cloud computing, including the French Civil Aviation Organization, the north- eastern electric power grid, NATO, the US Treasury, and the US Air Force. Ken has received several awards for his research, among them the IEEE Tsutomu Kanai Award for his work on trustworthy computing, the Cisco “Technology Visionary” award, and the ACM SIGOPS Hall of Fame Award. He also has written two successful texts.
    [Show full text]
  • ACM JOURNALS S.No. TITLE PUBLICATION RANGE :STARTS PUBLICATION RANGE: LATEST URL 1. ACM Computing Surveys Volume 1 Issue 1
    ACM JOURNALS S.No. TITLE PUBLICATION RANGE :STARTS PUBLICATION RANGE: LATEST URL 1. ACM Computing Surveys Volume 1 Issue 1 (March 1969) Volume 49 Issue 3 (October 2016) http://dl.acm.org/citation.cfm?id=J204 Volume 24 Issue 1 (Feb. 1, 2. ACM Journal of Computer Documentation Volume 26 Issue 4 (November 2002) http://dl.acm.org/citation.cfm?id=J24 2000) ACM Journal on Emerging Technologies in 3. Volume 1 Issue 1 (April 2005) Volume 13 Issue 2 (October 2016) http://dl.acm.org/citation.cfm?id=J967 Computing Systems 4. Journal of Data and Information Quality Volume 1 Issue 1 (June 2009) Volume 8 Issue 1 (October 2016) http://dl.acm.org/citation.cfm?id=J1191 Journal on Educational Resources in Volume 1 Issue 1es (March 5. Volume 16 Issue 2 (March 2016) http://dl.acm.org/citation.cfm?id=J814 Computing 2001) 6. Journal of Experimental Algorithmics Volume 1 (1996) Volume 21 (2016) http://dl.acm.org/citation.cfm?id=J430 7. Journal of the ACM Volume 1 Issue 1 (Jan. 1954) Volume 63 Issue 4 (October 2016) http://dl.acm.org/citation.cfm?id=J401 8. Journal on Computing and Cultural Heritage Volume 1 Issue 1 (June 2008) Volume 9 Issue 3 (October 2016) http://dl.acm.org/citation.cfm?id=J1157 ACM Letters on Programming Languages Volume 2 Issue 1-4 9. Volume 1 Issue 1 (March 1992) http://dl.acm.org/citation.cfm?id=J513 and Systems (March–Dec. 1993) 10. ACM Transactions on Accessible Computing Volume 1 Issue 1 (May 2008) Volume 9 Issue 1 (October 2016) http://dl.acm.org/citation.cfm?id=J1156 11.
    [Show full text]
  • Semperos: a Distributed Capability System
    SemperOS: A Distributed Capability System Matthias Hille† Nils Asmussen† ∗ Pramod Bhatotia‡ Hermann Härtig† ∗ †Technische Universität Dresden ‡The University of Edinburgh ∗ Barkhausen Institut Abstract systems have received renewed attention recently to provide Capabilities provide an efficient and secure mechanism for an efficient and secure mechanism for resource management fine-grained resource management and protection. However, in modern hardware architectures [5, 24, 30, 36, 44, 64, 67]. as the modern hardware architectures continue to evolve Today the main improvements in compute capacity with large numbers of non-coherent and heterogeneous cores, are achieved by either adding more cores or integrating we focus on the following research question: can capability accelerators into the system. However, the increasing core systems scale to modern hardware architectures? counts exacerbate the hardware complexity required for global In this work, we present a scalable capability system to drive cache coherence. While on-chip cache coherence is likely to future systems with many non-coherent heterogeneous cores. remain a feature of future hardware architectures [45], we see More specifically, we have designed a distributed capability characteristics of distributed systems added to the hardware system based on a HW/SW co-designed capability system. by giving up on global cache coherence across a whole We analyzed the pitfalls of distributed capability operations machine [6, 28]. Additionally, various kinds of accelerators running concurrently and built the protocols in accordance are added like the Xeon Phi Processor, the Matrix-2000 accel- with the insights. We have incorporated these distributed erator, GPUs, FPGAs, or ASICs, which are used in numerous capability management protocols in a new microkernel-based application fields [4,21,32,34,43,60].
    [Show full text]
  • FCRC 2011 June 4 - 11, San Jose, CA TIMELINE SCHEDULE
    FCRC 2011 June 4 - 11, San Jose, CA TIMELINE SCHEDULE Sponsored by Corporate Support Provided by Gold Silver CONFERENCE/WORKSHOP/EVENT ACRONYMS & DATES Dates Full Name Dates Full Name 3DAPAS 8 A Workshop on Dynamic Distrib. Data-Intensive Applications, Programming Abstractions, & Systs (HPDC) IWQoS 6--7 Int. Workshop on Quality of Service (ACM SIGMETRICS and IEEE Communications Society) A4MMC 4 Applications fo Multi and Many Core Processors: Analysis, Implementation, and Performance (ISCA) LSAP 8 P Workshop on Large-Scale System and Application Performance (HPDC) AdAuct 5 Ad Auction Workshop (EC) MAMA 8 Workshop on Mathematical Performance Modeling and Analysis (METRICS) AMAS-BT 4 P Workship on Architectural and Microarchitectural Support for Binary Translation (ISCA) METRICS 7--11 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems BMD 5 Workshop on Bayesian Mechanism Design (EC) MoBS 5 A Workshop on Modeling, Benchmarking, and Simulation (ISCA) CARD 5 P Workshop on Computer Architecture Research Directions (ISCA) MRA 8 Int. Workshop on MapReduce and its Applications (HPDC) CBP 4 P JILP Workshop on Computer Architecture Competitions: Championship Branch Prediction (ISCA) MSPC 5 Memory Systems Performance and Correctness (PLDI) Complex 8--10 IEEE Conference on Computational Complexity (IEEE TCMFC) NDCA 5 A New Directions in Computer Architecture (ISCA) CRA-W 4--5 CRA-W Career Mentoring Workshop NetEcon 6 Workshop on the Economics of Networks, Systems, and Computation (EC) DIDC 8 P Int. Workshop on Data-Intensive Distributed Computing (HPDC) PLAS 5 Programming Languages and Analysis for Security Workshop (PLDI) EAMA 4 Workshop on Emerging Applications and Manycore Architectures (ISCA) PLDI 4--8 ACM SIGPLAN Conference on Programming Language Design and Implementation EC 5--9 ACM Conference on Electronic Commerce (ACM SIGECOM) PODC 6--8 ACM SIGACT-SIGOPT Symp.
    [Show full text]
  • Curriculum Vitae
    Caroline Trippel Assistant Professor of Computer Science and Electrical Engineering, Stanford University Stanford University Phone: (574) 276-6171 Computer Science Department Email: [email protected] 353 Serra Mall, Stanford, CA 94305 Home: https://cs.stanford.edu/∼trippel Education 2013–2019 Princeton University, PhD, Computer Science / Computer Architecture Thesis: Concurrency and Security Verification in Heterogeneous Parallel Systems Advisor: Prof. Margaret Martonosi 2013–2015 Princeton University, MA, Computer Science / Computer Architecture 2009–2013 Purdue University, BS, Computer Engineering PhD Dissertation Research Despite parallelism and heterogeneity being around for a long time, the degree to which both are being simultaneously deployed poses grand challenge problems in computer architecture regarding ensuring the accuracy of event orderings and interleavings in system-wide executions. As it turns out, event orderings form the cornerstone of correctness (e.g., memory consistency models) and security (e.g., speculation-based hardware exploits) in modern processors. Thus, my dissertation work creates formal, automated techniques for specifying and verifying the accuracy of event orderings for programs running on heterogeneous, parallel systems to improve their correctness and security. Awards and Honors [1] Recipient of the 2021 VMware Early Career Faculty Grant [2] Recipient of the 2020 CGS/ProQuest Distinguished Dissertation Award [3] Recipient of the 2020 ACM SIGARCH/IEEE CS TCCA Outstanding Dissertation Award [4] CheckMate chosen as an IEEE MICRO Top Pick of 2018 (top 12 computer architecture papers of 2018) [5] Selected for 2018 MIT Rising Stars in EECS Workshop [6] Selected for 2018 ACM Heidelberg Laureate Forum [7] TriCheck chosen as an IEEE MICRO Top Pick of 2017 (top 12 computer architecture papers of 2017) [8] NVIDIA Graduate Fellowship Recipient, Fall 2017–Spring 2018 [9] NVIDIA Graduate Fellowship Finalist, Fall 2016–Spring 2017 [10] Richard E.
    [Show full text]
  • March 2, 2020 Remzi Arpaci-Dusseau Professor And
    March 2, 2020 Remzi Arpaci-Dusseau Professor and Department Chair UW-Madison Computer Sciences With CC to Lance Potter for Department Files Dear Remzi: I write to formally request emeritus status upon my retirement from the University of Wisconsin-Madison this summer with my last day on the payroll being August 16, 2020. I started at Wisconsin on January 1, 1988. I believe that my 100000.1two years (32.5ten years) have been to both UW’s and my benefit. I feel blessed by my time at this great university. When I started, the following were non-existent or in niche use: world-wide web, laptops, broadband, and smartphones. Universities had no general email, course web pages, or social media presence. Companies like Amazon, Facebook, and Google could not exist. It has been a privilege to witness and modestly contribute to the last three decades of change by advancing computer hardware as the platform for information technology wizardry. On the next page to explain my research, I include the press release from my 2019 ACM - IEEE CS Eckert-Mauchly Award for seminal contributions to the fields of cache memories, memory consistency models, transactional memory, and simulation. It is the highest award in computer architecture and hardware and represents a lifetime of achievement. Note that “memory” refers to computer memory. On the final two pages, I summarize some of my UW accomplishments in the third person. Sincerely, Mark D. Hill John P. Morgridge Professor Gene M. Amdahl Professor of Computer Sciences Professor of Electrical and Computer Engineering (by courtesy) Chair of Computing Community Consortium (CCC) ACM Fellow & Fellow of the IEEE Eckert-Mauchly Award, 2019 CV: http://www.cs.wisc.edu/~markhill/markhill_cv.pdf Prof.
    [Show full text]
  • PERMDNN: Efficient Compressed DNN Architecture with Permuted
    PERMDNN: Efficient Compressed DNN Architecture with Permuted Diagonal Matrices Chunhua Deng∗+ Siyu Liao∗+ Yi Xie+ City University of New York City University of New York City University of New York [email protected] [email protected] [email protected] Keshab K. Parhi Xuehai Qian Bo Yuan+ University of Minnesota, Twin Cities University of Southern California City University of New York [email protected] [email protected] [email protected] Abstract—Deep neural network (DNN) has emerged as the demand intelligence, such as speech recognition [3], object most important and popular artificial intelligent (AI) technique. recognition [4], natural language processing [5] etc. The growth of model size poses a key energy efficiency challenge The extraordinary performance of DNNs with respect to for the underlying computing platform. Thus, model compression becomes a crucial problem. However, the current approaches are high accuracy is mainly attributed to their very large model limited by various drawbacks. Specifically, network sparsification sizes [6]–[8]. As indicated in a number of theoretical anal- approach suffers from irregularity, heuristic nature and large ysis [9] [10] and empirical simulations [11]–[13], scaling indexing overhead. On the other hand, the recent structured up the model sizes can improve the overall learning and matrix-based approach (i.e., CIRCNN) is limited by the rela- representation capability of the DNN models, leading to higher tively complex arithmetic computation (i.e., FFT), less flexible compression ratio, and its inability to fully utilize input sparsity. classification/predication accuracy than the smaller models. To address these drawbacks, this paper proposes PERMDNN, Motivated by these encouraging findings, the state-of-the-art a novel approach to generate and execute hardware-friendly DNNs continue to scale up with the purpose of tackling more structured sparse DNN models using permuted diagonal ma- complicated tasks with higher accuracy.
    [Show full text]