Regulation of Chemokine- Receptor Interactions and Functions

Total Page:16

File Type:pdf, Size:1020Kb

Regulation of Chemokine- Receptor Interactions and Functions International Journal of Molecular Sciences Regulation of Chemokine- Books Receptor Interactions and Functions Edited by Martin J. Stone Printed Edition of the Special Issue Published in IJMS www.mdpi.com/journal/ijms MDPI Regulation of Chemokine-Receptor Interactions and Functions Special Issue Editor Martin J. Stone Books MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade MDPI Special Issue Editor Martin J. Stone Monash University Australia Editorial Office MDPI AG St. Alban-Anlage 66 Basel, Switzerland This edition is a reprint of the Special Issue published online in the open access journal International Journal of Molecular Sciences (ISSN 1422-0067) in 2017 (available at: http://www.mdpi.com/journal/ijms/special_issues/chemokine_receptor_2016). For citation purposes, cite each article independently as indicated on the article Books page online and as indicated below: Lastname, F.M.; Lastname, F.M. Article title. Journal Name. Year. Article number, page range. First Edition 2018 ISBN 978-3-03842-728-5 (Pbk) ISBN 978-3-03842-727-8 (PDF) Cover image: Neutrophil chemotaxis in mouse postcapillary venules, visualised by intravital imaging. Cover photo courtesy of Professor Michael Hickey, Monash University, VIC, Australia. Articles in this volume are Open Access and distributed under the Creative Commons Attribution license (CC BY), which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book taken as a whole is © 2018 MDPI, Basel, Switzerland, distributed under the terms and conditions of the Creative Commons license CC BY-NC-ND (http://creativecommons.org/licenses/by-nc-nd/4.0/). MDPI Table of Contents About the Special Issue Editor ...................................... v Martin J. Stone Regulation of Chemokine–Receptor Interactions and Functions doi: 10.3390/ijms18112415 ....................................... 1 Martin J. Stone, Jenni A. Hayward, Cheng Huang, Zil E. Huma and Julie Sanchez Mechanisms of Regulation of the Chemokine-Receptor Network doi: 10.3390/ijms18020342 ....................................... 6 Michelle C. Miller and Kevin H. Mayo Chemokines from a Structural Perspective doi: 10.3390/ijms18102088 ....................................... 39 Sarah Thompson, Beatriz Martnez-Burgo, Krishna Mohan Sepuru, Krishna Rajarathnam, John A. Kirby, Neil S. Sheerin and Simi Ali Regulation of Chemokine Function: The Roles of GAG-Binding and Post-Translational Nitration doi: 10.3390/ijms18081692 ....................................... 55 Aaron J. Brown, Krishna Mohan Sepuru and Krishna Rajarathnam Structural Basis of Native CXCL7 Monomer Binding to CXCR2 Receptor N-Domain and Glycosaminoglycan Heparin Books doi: 10.3390/ijms18030508 ....................................... 72 Aaron J. Brown, Prem Raj B. Joseph, Kirti V. Sawant and Krishna Rajarathnam Chemokine CXCL7 Heterodimers: Structural Insights, CXCR2 Receptor Function, and Glycosaminoglycan Interactions doi: 10.3390/ijms18040748 ....................................... 88 Mieke Metzemaekers, Anneleen Mortier, Rik Janssens, Daiane Boff, Lotte Vanbrabant, Nicole Lamoen, Jo Van Damme, Mauro M. Teixeira, Ingrid De Meester, Flvio A. Amaral and Paul Proost Glycosaminoglycans Regulate CXCR3 Ligands at Distinct Levels: Protection against Processing by Dipeptidyl Peptidase IV/CD26 and Interference with Receptor Signaling doi: 10.3390/ijms18071513 .......................................106 Anna F. Nguyen, Megan S. Schill, Mike Jian and Patricia J. LiWang The Effect of N-Terminal Cyclization on the Function of the HIV Entry Inhibitor 5P12-RANTES doi: 10.3390/ijms18071575 .......................................130 Natasha A. Moussouras, Anthony E. Getschman, Emily R. Lackner, Christopher T. Veldkamp, Michael B. Dwinell and Brian F. Volkman Differences in Sulfotyrosine Binding amongst CXCR1 and CXCR2 Chemokine Ligands doi: 10.3390/ijms18091894 .......................................145 Andrew J. Phillips, Deni Taleski, Chad A. Koplinski, Anthony E. Getschman, Natasha A. Moussouras, Amanda M. Richard, Francis C. Peterson, Michael B. Dwinell, Brian F. Volkman, Richard J. Payne and Christopher T. Veldkamp CCR7 Sulfotyrosine Enhances CCL21 Binding doi: 10.3390/ijms18091857 .......................................160 iii MDPI Vivian Adamski, Rolf Mentlein, Ralph Lucius, Michael Synowitz, Janka Held-Feindt and Kirsten Hattermann The Chemokine Receptor CXCR6 Evokes Reverse Signaling via the Transmembrane Chemokine CXCL16 doi: 10.3390/ijms18071468 .......................................173 Anna F. Nguyen, Nai-Wei Kuo, Laura J. Showalter, Ricardo Ramos, Cynthia M. Dupureur, Michael E. Colvin and Patricia J. LiWang Biophysical and Computational Studies of the vCCI:vMIP-II Complex doi: 10.3390/ijms18081778 .......................................187 Ryosuke Sakumoto, Ken-Go Hayashi, Shiori Fujii, Hiroko Kanahara, Misa Hosoe, Tadashi Furusawa and Keiichiro Kizaki Possible Roles of CC- and CXC-Chemokines in Regulating Bovine Endometrial Function during Early Pregnancy doi: 10.3390/ijms18040742 .......................................205 Books iv MDPI About the Special Issue Editor Martin J. Stone is a researcher and teacher in the Monash University Department of Biochemistry and Molecular Biology and the Monash Biomedicine Discovery Institute, Melbourne, Australia. He received his BSc and MSc(Hons) degrees from the University of Auckland (New Zealand) and his PhD from the University of Cambridge (UK). He was a postdoctoral research fellow at the Scripps Research Institute in (San Diego, USA) and a faculty member at Indiana University (Bloomington, USA) before moving to Monash in 2007. Associate Professor Stone’s research focuses on the biochem- istry and pharmacology of chemokines and their receptors, which are critical in directing migration of leukocytes in inflammatory responses. Recently, his lab has made important contributions to under- standing the influence of receptor tyrosine sulfation on chemokine recognition, the structural basis by which chemokines differentially activate a shared receptor, and the discovery of tick proteins that suppress chemokine-mediated host defenses. Books v MDPI MDPI Books International Journal of Molecular Sciences Editorial Regulation of Chemokine–Receptor Interactions and Functions Martin J. Stone Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton VIC 3800, Australia; [email protected]; Tel.: +61-3-9902-9246 Received: 6 November 2017; Accepted: 10 November 2017; Published: 14 November 2017 Inflammation is the body’s response to injury or infection. As early as 2000 years ago, the Roman encyclopaedist Aulus Cornelius Celsus recognised four cardinal signs of this response—redness, heat, swelling and pain; a fifth sign is loss of function. The underlying cause of these common symptoms remained a mystery until the 19th century, when Rudolf Virchow “claim(ed) for the leukocyte a place in the field of pathology” [1]. It is now widely recognised that all inflammatory responses involve migration of leukocytes (white blood cells) to the affected tissues, where they accumulate and carry out a plethora of functions including elimination of pathogens, regulation of immunity and tissue repair. While leukocyte recruitment is a beneficial response to pathogen invasion, we are all too familiar Books with the detrimental roles it can play in numerous diseases. As an example, in allergic asthma, the recruited leukocytes include eosinophils, which can then undergo degranulation, releasing toxic proteins that induce airway constriction and difficulty breathing [2]. In this case, the inflammatory response causes more damage than the initial stimulus (the allergen), so it would be beneficial to suppress the leukocyte recruitment. The same is true in many other inflammatory diseases, such as atherosclerosis, rheumatoid arthritis, multiple sclerosis, dermatitis, etc. However, it is essential that such a therapeutic strategy should not suppress inflammation so much as to make the patient susceptible to infections. To successfully achieve the right balance between the “yin and yang” of inflammation, we need to understand the biochemical mechanisms underlying leukocyte recruitment. Enter chemokines and chemokine receptors. Over a period of about 20 years beginning in the late 1980s, researchers discovered a family of related proteins that are secreted by various cell types as an early response to tissue damage and attract leukocytes towards the affected tissues. These proteins were named chemokines (chemotactic cytokines) due to their ability to induce chemotaxis, which is migration of cells towards a chemical stimulus. They elicit this function by activating chemokine receptors, a family of G protein-coupled receptors expressed on the surfaces of leukocytes. Importantly, different types of leukocytes express different chemokine receptors, so much of the selectivity of leukocyte responses, i.e., which types of leukocytes are recruited in a given situation, arises from the complementarity between the specific chemokines expressed in the affected tissues and the specific receptors expressed on the different leukocytes. The chemokine–receptor network was clearly an attractive target to suppress unwanted inflammation while still enabling appropriate responses to pathogens. Following the discovery of chemokines
Recommended publications
  • Protein–Protein Interactions, Dynamics Simulations and Free Energy Calculations
    molecules Article Structural Insight into the Binding of Cyanovirin-N with the Spike Glycoprotein, Mpro and PLpro of SARS-CoV-2: Protein–Protein Interactions, Dynamics Simulations and Free Energy Calculations Devashan Naidoo 1,* , Pallab Kar 2, Ayan Roy 3,*, Taurai Mutanda 1 , Joseph Bwapwa 1, Arnab Sen 2 and Akash Anandraj 1 1 Centre for Algal Biotechnology, Mangosuthu University of Technology, P.O. Box 12363, Durban 4026, South Africa; [email protected] (T.M.); [email protected] (J.B.); [email protected] (A.A.) 2 Bioinformatics Facility, Department of Botany, University of North Bengal, Siliguri 734013, India; [email protected] (P.K.); [email protected] (A.S.) 3 Department of Biotechnology, Lovely Professional University, Phagwara 144411, India * Correspondence: [email protected] (D.N.); [email protected] (A.R.) Abstract: The emergence of COVID-19 continues to pose severe threats to global public health. The pandemic has infected over 171 million people and claimed more than 3.5 million lives to date. Citation: Naidoo, D.; Kar, P.; Roy, A.; We investigated the binding potential of antiviral cyanobacterial proteins including cyanovirin-N, Mutanda, T.; Bwapwa, J.; Sen, A.; scytovirin and phycocyanin with fundamental proteins involved in attachment and replication of Anandraj, A. Structural Insight into SARS-CoV-2. Cyanovirin-N displayed the highest binding energy scores (−16.8 ± 0.02 kcal/mol, the Binding of Cyanovirin-N with the −12.3 ± 0.03 kcal/mol and −13.4 ± 0.02 kcal/mol, respectively) with the spike protein, the main Spike Glycoprotein, Mpro and PLpro of protease (Mpro) and the papainlike protease (PLpro) of SARS-CoV-2.
    [Show full text]
  • Antiviral Cyanometabolites—A Review
    biomolecules Review Antiviral Cyanometabolites—A Review Hanna Mazur-Marzec 1,*, Marta Cegłowska 2 , Robert Konkel 1 and Krzysztof Pyr´c 3 1 Division of Marine Biotechnology, University of Gda´nsk,Marszałka J. Piłsudskiego 46, PL-81-378 Gdynia, Poland; [email protected] 2 Institute of Oceanology, Polish Academy of Science, Powsta´nców Warszawy 55, PL-81-712 Sopot, Poland; [email protected] 3 Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, PL-30-387 Krakow, Poland; [email protected] * Correspondence: [email protected] Abstract: Global processes, such as climate change, frequent and distant travelling and population growth, increase the risk of viral infection spread. Unfortunately, the number of effective and accessible medicines for the prevention and treatment of these infections is limited. Therefore, in recent years, efforts have been intensified to develop new antiviral medicines or vaccines. In this review article, the structure and activity of the most promising antiviral cyanobacterial products are presented. The antiviral cyanometabolites are mainly active against the human immunodeficiency virus (HIV) and other enveloped viruses such as herpes simplex virus (HSV), Ebola or the influenza viruses. The majority of the metabolites are classified as lectins, monomeric or dimeric proteins with unique amino acid sequences. They all show activity at the nanomolar range but differ in carbohydrate specificity and recognize a different epitope on high mannose oligosaccharides. The cyanobacterial lectins include cyanovirin-N (CV-N), scytovirin (SVN), microvirin (MVN), Microcystis viridis lectin (MVL), and Oscillatoria agardhii agglutinin (OAA). Cyanobacterial polysaccharides, peptides, and other metabolites also have potential to be used as antiviral drugs.
    [Show full text]
  • DEVELOPMENT and EVALUATION of HIV Gp120 RESPONSIVE MICROBICIDE
    DEVELOPMENT AND EVALUATION OF HIV gp120 RESPONSIVE MICROBICIDE FORMULATION FOR THE PREVENTION OF HIV SEXUAL TRANSMISSION A DISSERTATION IN Pharmaceutical Sciences and Chemistry Presented to the Faculty of the University Of Missouri-Kansas City in partial fulfillment of The requirements for the degree of DOCTOR OF PHILOSOPHY By Fohona S. Coulibaly B.S Chemical Engineering, INP-HB, Yamoussoukro, Ivory Coast, 2011 Kansas City, Missouri 2018 © 2018 FOHONA S. COULIBALY ALL RIGHTS RESERVED DEVELOPMENT AND EVALUATION OF HIV gp120 RESPONSIVE MICROBICIDE FORMULATION FOR THE PREVENTION OF HIV SEXUAL TRANSMISSION Fohona S. Coulibaly, Candidate for the Doctor of Philosophy Degree University of Missouri-Kansas City, 2018 ABSTRACT Sexual transmission of HIV remains the primary route (75 to 85%) of HIV infection among all new infection cases. Furthermore, women represent the most vulnerable population and are more susceptible to HIV infections than their male counterpart. Thus, there is an urgent need to develop topical (vaginal/rectal) microbicide formulations capable of preventing HIV sexual transmission. The objective of this dissertation is to develop a mannose specific, lectin-based topical microbicide formulation capable of targeting HIV gp120 for the prevention of HIV sexual transmission. In Chapters 1 and 2, the general hypothesis, aims and scope of this work are introduced. Chapter 3 covers the literature review of anti-HIV lectins and current delivery approaches. In Chapter 4, the binding interactions between the mannose specific lectin Concanavalin A (ConA) and glycogen from Oster, as well as mannan from Saccharomyces cerevisiae, were studied using a quartz crystal microbalance (QCM). The equilibrium dissociation constant describing the interaction between Con A and glycogen (KD = 0.25 μM) was 12 fold lower than the equilibrium dissociation constant describing the binding between Con A and mannan (KD = iii 2.89 μM).
    [Show full text]
  • Novel Antiretroviral Structures from Marine Organisms
    molecules Review Novel Antiretroviral Structures from Marine Organisms Karlo Wittine , Lara Safti´c,Željka Peršuri´c and Sandra Kraljevi´cPaveli´c* University of Rijeka, Department of Biotechnology, Centre for high-throughput technologies, Radmile Matejˇci´c2, 51000 Rijeka, Croatia * Correspondence: [email protected]; Tel.: +385-51-584-550 Academic Editor: Kyoko Nakagawa-Goto Received: 2 September 2019; Accepted: 19 September 2019; Published: 26 September 2019 Abstract: In spite of significant advancements and success in antiretroviral therapies directed against HIV infection, there is no cure for HIV, which scan persist in a human body in its latent form and become reactivated under favorable conditions. Therefore, novel antiretroviral drugs with different modes of actions are still a major focus for researchers. In particular, novel lead structures are being sought from natural sources. So far, a number of compounds from marine organisms have been identified as promising therapeutics for HIV infection. Therefore, in this paper, we provide an overview of marine natural products that were first identified in the period between 2013 and 2018 that could be potentially used, or further optimized, as novel antiretroviral agents. This pipeline includes the systematization of antiretroviral activities for several categories of marine structures including chitosan and its derivatives, sulfated polysaccharides, lectins, bromotyrosine derivatives, peptides, alkaloids, diterpenes, phlorotannins, and xanthones as well as adjuvants to the HAART therapy such as fish oil. We critically discuss the structures and activities of the most promising new marine anti-HIV compounds. Keywords: antiretroviral agents; anti-HIV; marine metabolites; natural products; drug development 1. Introduction Human immunodeficiency virus (HIV) infections pose a global challenge given that in 2017, according to the World Health Organization data, 36.9 million people were living with HIV and additional 1.8 million people were becoming newly infected globally (Table1) .
    [Show full text]
  • Algae-Derived Bioactive Molecules for the Potential Treatment of SARS-Cov-2
    molecules Review Algae-Derived Bioactive Molecules for the Potential Treatment of SARS-CoV-2 Md. Asraful Alam 1 , Roberto Parra-Saldivar 2 , Muhammad Bilal 3 , Chowdhury Alfi Afroze 4, Md. Nasir Ahmed 5 , Hafiz M.N. Iqbal 2,* and Jingliang Xu 1,* 1 School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; [email protected] 2 Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; [email protected] 3 School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China; [email protected] 4 Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1209, Bangladesh; chowdhuryalfi[email protected] 5 Biotechnology & Natural Medicine Division, TechB Nutrigenomics, Dhaka 1209, Bangladesh; [email protected] * Correspondence: hafi[email protected] (H.M.N.I.); [email protected] (J.X.) Abstract: The recently emerged COVID-19 disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has adversely affected the whole world. As a significant public health threat, it has spread worldwide. Scientists and global health experts are collaborating to find and execute speedy diagnostics, robust and highly effective vaccines, and therapeutic techniques to Citation: Alam, M..A.; tackle COVID-19. The ocean is an immense source of biologically active molecules and/or com- Parra-Saldivar, R.; Bilal, M.; Afroze, pounds with antiviral-associated biopharmaceutical and immunostimulatory attributes. Some spe- C.A.; Ahmed, M..N.; Iqbal, H.M.N.; cific algae-derived molecules can be used to produce antibodies and vaccines to treat the COVID-19 Xu, J. Algae-Derived Bioactive disease.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,193,157 B2 Balzarini Et Al
    US0081931.57B2 (12) United States Patent (10) Patent No.: US 8,193,157 B2 Balzarini et al. (45) Date of Patent: Jun. 5, 2012 (54) ANTIVIRAL THERAPIES WO WO 97.33622 9, 1997 WO WOO3,0571.76 T 2003 (75) Inventors: Jan Balzarini, Heverlee (BE); Monika WO WOO3,061579 T 2003 Mazik, Braunschweig (DE) WO WO 2005/0244 16 * 3/2005 OTHER PUBLICATIONS (73) Assignees: K.U.Leuven Research & Development, Leuven (BE); Technische Universität Goff, PubMed Abstract (JGene Med3(6):517-28), Nov.-Dec. 2001.* Carolo Wilhelmina Zu Braunschweig, Bosseray et al., PubMed Abstract (Pathol Biol (Paris) 50(8):483-92), Braunschweig (DE) Oct. 2002. Razonable et al., PubMed Abstract (Herpes 10(3):60-5), Dec. 2003.* (*) Notice: Subject to any disclaimer, the term of this Douglas, Jr. Introduction to Viral Diseases, Cecil Textbook of Medi cine, 20th Edition, vol. 2, pp. 1739-1747, 1996.* patent is extended or adjusted under 35 Mizuochi et al., “HIV Infection and Oligosaccharides: A Novel U.S.C. 154(b) by 924 days. Approach to Preventing HIV Infection and the Onset of AIDS.” The Journal of Infection and Chemotherapy, vol. 5, No. 4, pp. 190-195, (21) Appl. No.: 12/067,681 1999. Mizutani et al., “Molecular Recognition of Carbohydrates by Zinc (22) PCT Filed: Sep. 21, 2006 Porphyrins: Lewis Acid Lewis Base Combinations as a Dominant Factor for Their Selectivity.” Journal of the American Chemical (86). PCT No.: PCT/BE2OO6/OOO104 Society, vol. 119, No. 38, pp. 8991-9001, 1997. S371 (c)(1), International Search Report and Written Opinion (PCT/BE2006/ (2), (4) Date: Mar.
    [Show full text]
  • An Update of the Recombinant Protein Expression Systems of Cyanovirin-N
    Lotfi H., et al., BioImpacts, 2018, 8(2), 139-151 doi: 10.15171/bi.2018.16 TUOMS Publishing BioImpacts http://bi.tbzmed.ac.ir/ Group Publish Free ccess An update of the recombinant protein expression systems of Cyanovirin-N and challenges of preclinical development Hajie Lotfi1,2, Roghayeh Sheervalilou3, Nosratollah Zarghami1,2* 1 Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran 2 Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran 3 Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran Article Info Abstract Introduction: Human immunodeficiency virus (HIV) is a debilitating challenge and concern worldwide. Accessibility to highly active antiretroviral drugs is little or none for developing countries. Production of cost-effective microbicides to prevent the infection with HIV is a requirement. Cyanovirin-N (CVN) is known as a promising cyanobacterial lectin, capable Article Type: of inhibiting the HIV cell entry in a highly specific Review manner. Methods: This review article presents an overview Article History: of attempts conducted on different expression systems for the recombinant production of CVN. Received: 10 Aug 2017 We have also assessed the potential of the final recombinant product, as an effective anti-HIV Revised: 5 Nov. 2017 microbicide, comparing prokaryotic and eukaryotic expression systems. Accepted: 7 Nov. 2017 Results: Artificial production of CVN is a challenging task because the desirable anti-HIV ePublished: 16 Nov. 2017 activity (CVN-gp120 interaction) depends on the correct formation of disulfide bonds during Keywords: recombinant production. Thus, inexpensive and functional production of rCVN requires an Anti-HIV protein effective expression system which must be found among the bacteria, yeast, and transgenic plants, Bacteria for the subsequent satisfying medical application.
    [Show full text]
  • UNIVERSITY of CALIFORNIA, MERCED Purification and Study Of
    UNIVERSITY OF CALIFORNIA, MERCED Purification and Study of CC Chemokine-Based Strategies to Combat Chronic Inflammation and HIV A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Quantitative and Systems Biology by Anna Faith Nguyen, B.S., University of California, Davis Committee in charge: Professor Michael Cleary, Chair of Advisory Committee Professor Andy LiWang Professor Patricia J. LiWang, Supervisor Professor Maria Zoghbi 2017 Copyright Anna Faith Nguyen, 2017 All Rights Reserved The dissertation of Anna Faith Nguyen, titled, “Purification and Study of CC Chemokine- Based Strategies to Combat Chronic Inflammation and HIV”, is approved, and is acceptable ion quality and form for publication on microfilm and electronically: _________________________________ Date _______________ Professor Andy LiWang _________________________________ Date _______________ Professor Maria Zoghbi Supervisor _________________________________ Date _______________ Professor Patricia J. LiWang Chair _________________________________ Date _______________ Professor Michael Cleary University of California, Merced 2017 iii To my friends, family, and especially husband. I love you all so much; thank you for your endless support and patience. And Marko, thank you for not popping out too soon. iv Table of Contents I. List of Figures………...…………………………………………………………….…vii II. List of Tables…………………………………………………………………………..x III. List of Abbreviations……………………………………………………..………….xi IV. Acknowledgements...………………………………..…………………………….xiii V. Vita for Anna Faith Nguyen………………………………………………...….......xiv VI. Abstract……………………………………………………………………..………,xv Chapter 1. Introduction…………………………………………………………………….….1 1.1 Introduction to CC Chemokines……………………………………………….….1 1.2 The Role of CC Chemokines in Chronic Inflammation……………………….7 1.3 The Role of CC Chemokines in HIV Infection…………………………….…….10 1.3.2 HIV Entry into Human Cells……………………………………….……10 1.3.2 HIV Latency in Human Cells…………………………………………...14 Chapter 2.
    [Show full text]
  • FY15 NEIDL Annual Report
    Annual Report , 2015 Blank page September 1, 2015 Letter from the Director This is the first annual report since the NEIDL Institute officially became a University Center on October 01, 2014. With this transition, the NEIDL changed its reporting structure from the Dean of the School of Medicine to the Associate Provost and Vice President for Research of Boston University. This change is important for two reasons. First, the change in reporting recognizes the significance of the current and future investments made by the University into the NEIDL, and for the field of emerging infectious diseases, as a focal point of research for the University. Second, it underscores the importance of embracing the breadth of research within in the University into the NEIDL as we recruit faculty. The study of emerging infectious diseases is by its very nature interdisciplinary, and leveraging expertise via joint recruitments with departments across the university will ensure a robust and innovative research portfolio necessary for the future success of the Institute. This diversity of expertise will be an important differentiator for the NEIDL. Coincident with the change, I had the privilege of being appointed as Director of the NEIDL. I do not take this responsibility lightly. With it comes not only the responsibility for establishing the scientific vision for the foreseeable future, together with many stakeholders across Boston University, but to also continue fostering the culture of safety in all that we do. We also have the responsibility to the public to be completely transparent in what we do. Public trust is essential to the future success of the NEIDL.
    [Show full text]
  • The Lectins Griffithsin, Cyanovirin-N and Scytovirin Inhibit HIV-1 Binding
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Virology 423 (2012) 175–186 Contents lists available at SciVerse ScienceDirect Virology journal homepage: www.elsevier.com/locate/yviro The lectins griffithsin, cyanovirin-N and scytovirin inhibit HIV-1 binding to the DC-SIGN receptor and transfer to CD4+ cells Kabamba B. Alexandre a, Elin S. Gray a, Hazel Mufhandu b, James B. McMahon c, Ereck Chakauya b, Barry R. O'Keefe c, Rachel Chikwamba b, Lynn Morris a,⁎ a National Institute for Communicable Diseases, Johannesburg, South Africa b Council for Scientific and Industrial Research, Pretoria, South Africa c Molecular Targets Laboratory, Center for Cancer Research, NCI-Frederick, MD, USA article info abstract Article history: It is generally believed that during the sexual transmission of HIV-1, the glycan-specific DC-SIGN receptor Received 9 September 2011 binds the virus and mediates its transfer to CD4+ cells. The lectins griffithsin (GRFT), cyanovirin-N (CV-N) Accepted 1 December 2011 and scytovirin (SVN) inhibit HIV-1 infection by binding to mannose-rich glycans on gp120. We measured Available online 29 December 2011 the ability of these lectins to inhibit both the HIV-1 binding to DC-SIGN and the DC-SIGN-mediated HIV-1 infection of CD4+ cells. While GRFT, CV-N and SVN were moderately inhibitory to DC-SIGN binding, they Keywords: Griffithsin potently inhibited DC-SIGN-transfer of HIV-1. The introduction of the 234 glycosylation site abolished HIV- Cyanovirin-N 1 sensitivity to lectin inhibition of binding to DC-SIGN and virus transfer to susceptible cells.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2010/0221242 A1 O'keefe Et Al
    US 2010O221242A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0221242 A1 O'Keefe et al. (43) Pub. Date: Sep. 2, 2010 (54) ANTI-VIRAL GRIFFITHSIN COMPOUNDS, Publication Classification COMPOSITIONS AND METHODS OF USE (51) Int. Cl (76) Inventors: Barry R. O'Keefe, Frederick, MD A 6LX 39/395 (2006.01) (US); Toshiyuki Mori, Osaka (JP); A638/16 (2006.01) James B. McMahon. Frederick A638/08 (2006.01) MD (US) s s A638/10 (2006.01) A6II 35/74 (2006.01) Correspondence Address: A6II 35/12 (2006.01) LEYDIG, VOIT & MAYER, LTD. A 6LX 3L/7052 (2006.01) TWO PRUDENTIAL PLAZA, SUITE 4900, 180 CI2N 7/00 (2006.01) NORTH STETSONAVENUE A6IP3L/2 (2006.01) CHICAGO, IL 60601-6731 (US) (52) U.S. Cl. ............ 424/130.1: 514/12: 514/16: 514/15; 514/14: 514/13; 424/93.2; 424/93.21: 514/44 R: (22)22) PCT Fled:1. Dec.ec. 1,1 2006 (57) ABSTRACT (86). PCT No.: PCT/USO6/4593O A method of inhibiting a viral infection of a host comprising 371 1 administering to the host an anti-viral griffithsin polypeptide S (c)( ), comprising SEQID NO: 3 or a fragment thereof comprising (2), (4) Date: Sep. 29, 2008 at least eight contiguous amino acids, a nucleic acid encoding O O the anti-viral polypeptide, or an antibody to the anti-viral Related U.S. Application Data polypeptide. A method of inhibiting a virus in a sample com (60) Provisional application No. 60/741,403, filed on Dec. prising contacting the sample with an anti-viral griffithsin 1, 2005.
    [Show full text]
  • Maize Seeds As a Production and Delivery Platform for HIV Microbicides Maite Sabalza Gallues
    Nom/Logotip de la Universitat on s’ha llegit la tesi Maize seeds as a production and delivery platform for HIV microbicides Maite Sabalza Gallues Dipòsit Legal: L.1327-2013 http://hdl.handle.net/10803/127189 ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs. ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto Refundido de la Ley de Propiedad Intelectual (RDL 1/1996).
    [Show full text]