(12) United States Patent (10) Patent No.: US 8,193,157 B2 Balzarini Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) United States Patent (10) Patent No.: US 8,193,157 B2 Balzarini Et Al US0081931.57B2 (12) United States Patent (10) Patent No.: US 8,193,157 B2 Balzarini et al. (45) Date of Patent: Jun. 5, 2012 (54) ANTIVIRAL THERAPIES WO WO 97.33622 9, 1997 WO WOO3,0571.76 T 2003 (75) Inventors: Jan Balzarini, Heverlee (BE); Monika WO WOO3,061579 T 2003 Mazik, Braunschweig (DE) WO WO 2005/0244 16 * 3/2005 OTHER PUBLICATIONS (73) Assignees: K.U.Leuven Research & Development, Leuven (BE); Technische Universität Goff, PubMed Abstract (JGene Med3(6):517-28), Nov.-Dec. 2001.* Carolo Wilhelmina Zu Braunschweig, Bosseray et al., PubMed Abstract (Pathol Biol (Paris) 50(8):483-92), Braunschweig (DE) Oct. 2002. Razonable et al., PubMed Abstract (Herpes 10(3):60-5), Dec. 2003.* (*) Notice: Subject to any disclaimer, the term of this Douglas, Jr. Introduction to Viral Diseases, Cecil Textbook of Medi cine, 20th Edition, vol. 2, pp. 1739-1747, 1996.* patent is extended or adjusted under 35 Mizuochi et al., “HIV Infection and Oligosaccharides: A Novel U.S.C. 154(b) by 924 days. Approach to Preventing HIV Infection and the Onset of AIDS.” The Journal of Infection and Chemotherapy, vol. 5, No. 4, pp. 190-195, (21) Appl. No.: 12/067,681 1999. Mizutani et al., “Molecular Recognition of Carbohydrates by Zinc (22) PCT Filed: Sep. 21, 2006 Porphyrins: Lewis Acid Lewis Base Combinations as a Dominant Factor for Their Selectivity.” Journal of the American Chemical (86). PCT No.: PCT/BE2OO6/OOO104 Society, vol. 119, No. 38, pp. 8991-9001, 1997. S371 (c)(1), International Search Report and Written Opinion (PCT/BE2006/ (2), (4) Date: Mar. 21, 2008 000 104) mailed Oct. 29, 2007. International Preliminary Report on Patentability (PCT/BE2006/ (87) PCT Pub. No.: WO2007/033444 000 104) mailed Apr. 3, 2008. Office Action for Australian Patent Application No. 2006294358, PCT Pub. Date: Mar. 29, 2007 dated May 19, 2011. Uchimura et al., “Totally Synthetic Polymer with Lectin-Like Func (65) Prior Publication Data tion: Induction of Killer Cells by the Copolymer of US 2009/OO42793 A1 Feb. 12, 2009 3-Acrylamidophenylboronic Acid with N,N-Dimethylacrylamide.” Biotechnol. Bioeng. 72(3): 307-314 (2001). (30) Foreign Application Priority Data Communication for European Patent Application No. 06790 462.3, dated Jun. 9, 2011. Sep. 21, 2005 (GB) ................................... 05191 69.7 * cited by examiner (51) Int. Cl. A6 IK3I/69 (2006.01) Primary Examiner — Deepak Rao (52) U.S. Cl. ............................................ 514/23: 514/64 (74) Attorney, Agent, or Firm — Clark & Elbing LLP (58) Field of Classification Search .................... 514/23, (57) ABSTRACT 514764 See application file for complete search history. The field of the invention relates to the use of carbohydrate binding compounds as a medicine, their use to treat or prevent (56) References Cited viral infections, their use to manufacture a medicine to treator prevent viral infections and their use in a vaccination strategy. U.S. PATENT DOCUMENTS The present invention relates to the use of said compounds to 5, 192,788 A 3, 1993 Dixon et al. manufacture a medicine to treat or prevent viral infections of 6,620,805 B1 9, 2003 Takleet al. Subjects, more in particular infections with viruses having 6,960,654 B2 * 1 1/2005 Crich et al. .................. 536, 18.5 glycosilated envelop proteins such as Retroviridae (i.e. Len FOREIGN PATENT DOCUMENTS tivirinae), like HIV (human immunodeficiency virus), Fla EP O173092 3, 1986 viviridae, like HCV (hepatitis C virus), Hepadnaviridae, like JP O3/264530 11, 1991 HBV (hepatitis B virus), Coronaviridae, like SARS corona WO WO 89/11277 11, 1989 virus, and Orthomyxoviridae, like influenza A, B or C. WO WO92fO2242 2, 1992 WO WO92, 17182 10, 1992 6 Claims, 6 Drawing Sheets U.S. Patent Jun. 5, 2012 Sheet 1 of 6 US 8,193,157 B2 GC Man Ma Man Mar Man Man Man Man Ma Man Ma Man Man N / N / N / t is...ir Till Filar ff, J. faii, N ? Trimming & Processing Y^ Trimming N u? w N s 3 R cy 3 Mar city Gly ors city. 1--- Asn-1-1- -N1--- Asn--- ar/Nara ASh-ra-ra-ra GlcNAc s: A sh Gal Gal Gal GlcNAc GlcNAc GlcNAc GicNAc GlcNAc Man Man N / N / . w fit ar far N / Terminal glycosylation N / Trimming N / fif --- Earl a-r - lvia * if: 2i. GlcNA C Giri, 2 Man Gli Air. Fuc 3 Gal FuG fi”. 3 SA co Giles ^^^ Asn-1- ------ AS ---n- As N-1- Fig. 1 U.S. Patent Jun. 5, 2012 Sheet 2 of 6 US 8,193,157 B2 Figure 2 U.S. Patent Jun. 5, 2012 Sheet 3 of 6 US 8,193,157 B2 Initiation of CBA Extensive pool of -- High amount of -- Virtually no treatment free WTHIV particles WT HIV-infected efficient Natas cells Weeks rProgressive depletion Progressive depletion => t creasing amounts of of WT HIV particles of WTHIV-infected Idals against previously •Progressive appearance cells hioider immunogenic of gp120-mutated HIV •Progressive appearance gp120 epitopes particles of gp120-mutated HIV. infected cets Months Low pools of -- Severely decreased == High argurt of predominant gp120. number of predominant Palas against different Mutated HIV particles mutant HIV-infected g) 2.0 site pes cells Continuous CBA pressure Figure 3 U.S. Patent Jun. 5, 2012 Sheet 5 of 6 US 8,193,157 B2 1000 100 -A-GNA (M) -o-HHA (uM) -0-CA (M) 10 - --UDA (M) k-PRM-A (M) 0.1 !-- " - " - " - " -m-m-m- O,OOOO1 0.0001 0.001 0.01 0.1 10 100 Log compound concentration Figure 5 U.S. Patent Jun. 5, 2012 Sheet 6 of 6 US 8,193,157 B2 5 1 0.2 0.04 10 2 0.4 0.08 uol?q??u?joqueoued)silaoNØIS-OGIJ??ex.AqaunqdeoL-AIH Compound concentration Figure 6 US 8, 193,157 B2 1. 2 ANTIVIRAL THERAPES pounds are mostly used in combination therapies (HAART) wherein different classes of anti-HIV compounds are com CROSS-REFERENCE TO RELATED bined. APPLICATIONS Entry inhibitors are a relatively new class of anti-HIV compounds and the process of HIV entry into host cells This application is the U.S. National Stage of International provides different targets for the development of antiretrovi Application No. PCT/BE2006/000104, filed Sep. 21, 2006, ral drugs. Every step of HIV entry can theoretically be inhib which claims the benefit of British Patent Application No. ited, namely 1. binding of HIV to the CD4 receptor, 2. binding 0519169.7, filed Sep. 21, 2005. to coreceptors and 3. fusion of virus and cell. 10 The envelope protein of HIV is a trimer, with each of the FIELD OF THE INVENTION components consisting of 2 subunits, gp41 and gp120. The gp120 subunit of the viral envelope binds to the cellular CD4 The field of the invention relates to the use of carbohydrate molecule; this receptor binding induces conformational binding compounds as a medicine, their use to treat or prevent changes in the viral envelope protein that include exposure of viral infections, their use to manufacture a medicament to 15 a previously hidden, highly conserved domain that binds to a treat or prevent viral infections and their use in a vaccination second receptor (coreceptor). The viral coreceptors, CCR5 strategy. The present invention relates to the use of said com and CXCR4, are members of the chemokine subfamily of pounds to manufacture a medicine to treat or prevent viral 7-transmembrane domain receptors. Coreceptor binding infections of Subjects, more in particular infections with induces conformational changes in the gp41 subunit that viruses having glycosilated envelop proteins such as Retro result in the insertion of a fusion peptide into the cell mem viridae (i.e. Lentivirinae), like HIV (human immunodefi brane and the binding of gp41 helical region 1 and helical ciency virus), Flaviviridae like, HCV (hepatitis C virus), Hep region 2, which mechanically draws the viral and cell mem adnaviridae, like HBV (hepatitis B virus), Coronaviridae, like branes together and permits membrane fusion. SARS-CoV, and Orthomyxoviridae, like influenza virus A, B Enfluvirtide, a fusion inhibitor, is the only entry inhibitor and C. 25 currently approved by the US Food and Drug Administration for use as an antiretroviral agent. Basically, enfuvirtide mim BACKGROUND OF THE INVENTION ics the structure of helical region 2 of gp41, which binds with helical region 1. By binding with helical region 1, the drug Viral infections remain a major medical problem world molecule prevents binding to helical region 2 and thus pre wide because of a lack of efficient therapy, prevention or 30 vents fusion of the viral and cellular membranes. Other not vaccination strategy and because of the rapid development of yet marketed HIV-inhibiting entry inhibitors are known in the resistance. Many virusses and virus families causing prob art and they interact on different levels of the entry process. lematic disorders can be identified. The family of the Fla These include neutralizing monoclonal antibodies directed viviridae (i.e. Dengue virus, HCV. Yellow Fever virus, West against the native trimeric structure of the viral envelope; Nile virus) can cause major health problems worldwide for 35 CD4 binding inhibitors, including BMS-806 (which binds in mammals including humans. The family of the Herpesviridae a cleft of gp120 and thus prevents CD4 binding); CCR5 includes important human pathogens like Herpes simplex binding inhibitors and CXCR4 binding inhibitors (e.g., virus (HSV) type 1 and 2 and cause disorders like Herpes AMD3100); and fusion inhibitors (e.g., the enfuvirtide Labialis and Herpes Genitalis and so on. Coronaviridae now derivative, T1249). approximately comprises 15 species, causing in humans res 40 There exists a variety of carbohydrate-recognizing plant piratory infections (including Severe Acute Respiratory Syn proteins (agglutinins-lectins) that are endowed with anti-HIV drome (SARS), enteric infections and rarely neurological activity.
Recommended publications
  • Protein–Protein Interactions, Dynamics Simulations and Free Energy Calculations
    molecules Article Structural Insight into the Binding of Cyanovirin-N with the Spike Glycoprotein, Mpro and PLpro of SARS-CoV-2: Protein–Protein Interactions, Dynamics Simulations and Free Energy Calculations Devashan Naidoo 1,* , Pallab Kar 2, Ayan Roy 3,*, Taurai Mutanda 1 , Joseph Bwapwa 1, Arnab Sen 2 and Akash Anandraj 1 1 Centre for Algal Biotechnology, Mangosuthu University of Technology, P.O. Box 12363, Durban 4026, South Africa; [email protected] (T.M.); [email protected] (J.B.); [email protected] (A.A.) 2 Bioinformatics Facility, Department of Botany, University of North Bengal, Siliguri 734013, India; [email protected] (P.K.); [email protected] (A.S.) 3 Department of Biotechnology, Lovely Professional University, Phagwara 144411, India * Correspondence: [email protected] (D.N.); [email protected] (A.R.) Abstract: The emergence of COVID-19 continues to pose severe threats to global public health. The pandemic has infected over 171 million people and claimed more than 3.5 million lives to date. Citation: Naidoo, D.; Kar, P.; Roy, A.; We investigated the binding potential of antiviral cyanobacterial proteins including cyanovirin-N, Mutanda, T.; Bwapwa, J.; Sen, A.; scytovirin and phycocyanin with fundamental proteins involved in attachment and replication of Anandraj, A. Structural Insight into SARS-CoV-2. Cyanovirin-N displayed the highest binding energy scores (−16.8 ± 0.02 kcal/mol, the Binding of Cyanovirin-N with the −12.3 ± 0.03 kcal/mol and −13.4 ± 0.02 kcal/mol, respectively) with the spike protein, the main Spike Glycoprotein, Mpro and PLpro of protease (Mpro) and the papainlike protease (PLpro) of SARS-CoV-2.
    [Show full text]
  • Antiviral Cyanometabolites—A Review
    biomolecules Review Antiviral Cyanometabolites—A Review Hanna Mazur-Marzec 1,*, Marta Cegłowska 2 , Robert Konkel 1 and Krzysztof Pyr´c 3 1 Division of Marine Biotechnology, University of Gda´nsk,Marszałka J. Piłsudskiego 46, PL-81-378 Gdynia, Poland; [email protected] 2 Institute of Oceanology, Polish Academy of Science, Powsta´nców Warszawy 55, PL-81-712 Sopot, Poland; [email protected] 3 Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, PL-30-387 Krakow, Poland; [email protected] * Correspondence: [email protected] Abstract: Global processes, such as climate change, frequent and distant travelling and population growth, increase the risk of viral infection spread. Unfortunately, the number of effective and accessible medicines for the prevention and treatment of these infections is limited. Therefore, in recent years, efforts have been intensified to develop new antiviral medicines or vaccines. In this review article, the structure and activity of the most promising antiviral cyanobacterial products are presented. The antiviral cyanometabolites are mainly active against the human immunodeficiency virus (HIV) and other enveloped viruses such as herpes simplex virus (HSV), Ebola or the influenza viruses. The majority of the metabolites are classified as lectins, monomeric or dimeric proteins with unique amino acid sequences. They all show activity at the nanomolar range but differ in carbohydrate specificity and recognize a different epitope on high mannose oligosaccharides. The cyanobacterial lectins include cyanovirin-N (CV-N), scytovirin (SVN), microvirin (MVN), Microcystis viridis lectin (MVL), and Oscillatoria agardhii agglutinin (OAA). Cyanobacterial polysaccharides, peptides, and other metabolites also have potential to be used as antiviral drugs.
    [Show full text]
  • DEVELOPMENT and EVALUATION of HIV Gp120 RESPONSIVE MICROBICIDE
    DEVELOPMENT AND EVALUATION OF HIV gp120 RESPONSIVE MICROBICIDE FORMULATION FOR THE PREVENTION OF HIV SEXUAL TRANSMISSION A DISSERTATION IN Pharmaceutical Sciences and Chemistry Presented to the Faculty of the University Of Missouri-Kansas City in partial fulfillment of The requirements for the degree of DOCTOR OF PHILOSOPHY By Fohona S. Coulibaly B.S Chemical Engineering, INP-HB, Yamoussoukro, Ivory Coast, 2011 Kansas City, Missouri 2018 © 2018 FOHONA S. COULIBALY ALL RIGHTS RESERVED DEVELOPMENT AND EVALUATION OF HIV gp120 RESPONSIVE MICROBICIDE FORMULATION FOR THE PREVENTION OF HIV SEXUAL TRANSMISSION Fohona S. Coulibaly, Candidate for the Doctor of Philosophy Degree University of Missouri-Kansas City, 2018 ABSTRACT Sexual transmission of HIV remains the primary route (75 to 85%) of HIV infection among all new infection cases. Furthermore, women represent the most vulnerable population and are more susceptible to HIV infections than their male counterpart. Thus, there is an urgent need to develop topical (vaginal/rectal) microbicide formulations capable of preventing HIV sexual transmission. The objective of this dissertation is to develop a mannose specific, lectin-based topical microbicide formulation capable of targeting HIV gp120 for the prevention of HIV sexual transmission. In Chapters 1 and 2, the general hypothesis, aims and scope of this work are introduced. Chapter 3 covers the literature review of anti-HIV lectins and current delivery approaches. In Chapter 4, the binding interactions between the mannose specific lectin Concanavalin A (ConA) and glycogen from Oster, as well as mannan from Saccharomyces cerevisiae, were studied using a quartz crystal microbalance (QCM). The equilibrium dissociation constant describing the interaction between Con A and glycogen (KD = 0.25 μM) was 12 fold lower than the equilibrium dissociation constant describing the binding between Con A and mannan (KD = iii 2.89 μM).
    [Show full text]
  • Novel Antiretroviral Structures from Marine Organisms
    molecules Review Novel Antiretroviral Structures from Marine Organisms Karlo Wittine , Lara Safti´c,Željka Peršuri´c and Sandra Kraljevi´cPaveli´c* University of Rijeka, Department of Biotechnology, Centre for high-throughput technologies, Radmile Matejˇci´c2, 51000 Rijeka, Croatia * Correspondence: [email protected]; Tel.: +385-51-584-550 Academic Editor: Kyoko Nakagawa-Goto Received: 2 September 2019; Accepted: 19 September 2019; Published: 26 September 2019 Abstract: In spite of significant advancements and success in antiretroviral therapies directed against HIV infection, there is no cure for HIV, which scan persist in a human body in its latent form and become reactivated under favorable conditions. Therefore, novel antiretroviral drugs with different modes of actions are still a major focus for researchers. In particular, novel lead structures are being sought from natural sources. So far, a number of compounds from marine organisms have been identified as promising therapeutics for HIV infection. Therefore, in this paper, we provide an overview of marine natural products that were first identified in the period between 2013 and 2018 that could be potentially used, or further optimized, as novel antiretroviral agents. This pipeline includes the systematization of antiretroviral activities for several categories of marine structures including chitosan and its derivatives, sulfated polysaccharides, lectins, bromotyrosine derivatives, peptides, alkaloids, diterpenes, phlorotannins, and xanthones as well as adjuvants to the HAART therapy such as fish oil. We critically discuss the structures and activities of the most promising new marine anti-HIV compounds. Keywords: antiretroviral agents; anti-HIV; marine metabolites; natural products; drug development 1. Introduction Human immunodeficiency virus (HIV) infections pose a global challenge given that in 2017, according to the World Health Organization data, 36.9 million people were living with HIV and additional 1.8 million people were becoming newly infected globally (Table1) .
    [Show full text]
  • Algae-Derived Bioactive Molecules for the Potential Treatment of SARS-Cov-2
    molecules Review Algae-Derived Bioactive Molecules for the Potential Treatment of SARS-CoV-2 Md. Asraful Alam 1 , Roberto Parra-Saldivar 2 , Muhammad Bilal 3 , Chowdhury Alfi Afroze 4, Md. Nasir Ahmed 5 , Hafiz M.N. Iqbal 2,* and Jingliang Xu 1,* 1 School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; [email protected] 2 Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; [email protected] 3 School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China; [email protected] 4 Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1209, Bangladesh; chowdhuryalfi[email protected] 5 Biotechnology & Natural Medicine Division, TechB Nutrigenomics, Dhaka 1209, Bangladesh; [email protected] * Correspondence: hafi[email protected] (H.M.N.I.); [email protected] (J.X.) Abstract: The recently emerged COVID-19 disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has adversely affected the whole world. As a significant public health threat, it has spread worldwide. Scientists and global health experts are collaborating to find and execute speedy diagnostics, robust and highly effective vaccines, and therapeutic techniques to Citation: Alam, M..A.; tackle COVID-19. The ocean is an immense source of biologically active molecules and/or com- Parra-Saldivar, R.; Bilal, M.; Afroze, pounds with antiviral-associated biopharmaceutical and immunostimulatory attributes. Some spe- C.A.; Ahmed, M..N.; Iqbal, H.M.N.; cific algae-derived molecules can be used to produce antibodies and vaccines to treat the COVID-19 Xu, J. Algae-Derived Bioactive disease.
    [Show full text]
  • An Update of the Recombinant Protein Expression Systems of Cyanovirin-N
    Lotfi H., et al., BioImpacts, 2018, 8(2), 139-151 doi: 10.15171/bi.2018.16 TUOMS Publishing BioImpacts http://bi.tbzmed.ac.ir/ Group Publish Free ccess An update of the recombinant protein expression systems of Cyanovirin-N and challenges of preclinical development Hajie Lotfi1,2, Roghayeh Sheervalilou3, Nosratollah Zarghami1,2* 1 Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran 2 Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran 3 Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran Article Info Abstract Introduction: Human immunodeficiency virus (HIV) is a debilitating challenge and concern worldwide. Accessibility to highly active antiretroviral drugs is little or none for developing countries. Production of cost-effective microbicides to prevent the infection with HIV is a requirement. Cyanovirin-N (CVN) is known as a promising cyanobacterial lectin, capable Article Type: of inhibiting the HIV cell entry in a highly specific Review manner. Methods: This review article presents an overview Article History: of attempts conducted on different expression systems for the recombinant production of CVN. Received: 10 Aug 2017 We have also assessed the potential of the final recombinant product, as an effective anti-HIV Revised: 5 Nov. 2017 microbicide, comparing prokaryotic and eukaryotic expression systems. Accepted: 7 Nov. 2017 Results: Artificial production of CVN is a challenging task because the desirable anti-HIV ePublished: 16 Nov. 2017 activity (CVN-gp120 interaction) depends on the correct formation of disulfide bonds during Keywords: recombinant production. Thus, inexpensive and functional production of rCVN requires an Anti-HIV protein effective expression system which must be found among the bacteria, yeast, and transgenic plants, Bacteria for the subsequent satisfying medical application.
    [Show full text]
  • UNIVERSITY of CALIFORNIA, MERCED Purification and Study Of
    UNIVERSITY OF CALIFORNIA, MERCED Purification and Study of CC Chemokine-Based Strategies to Combat Chronic Inflammation and HIV A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Quantitative and Systems Biology by Anna Faith Nguyen, B.S., University of California, Davis Committee in charge: Professor Michael Cleary, Chair of Advisory Committee Professor Andy LiWang Professor Patricia J. LiWang, Supervisor Professor Maria Zoghbi 2017 Copyright Anna Faith Nguyen, 2017 All Rights Reserved The dissertation of Anna Faith Nguyen, titled, “Purification and Study of CC Chemokine- Based Strategies to Combat Chronic Inflammation and HIV”, is approved, and is acceptable ion quality and form for publication on microfilm and electronically: _________________________________ Date _______________ Professor Andy LiWang _________________________________ Date _______________ Professor Maria Zoghbi Supervisor _________________________________ Date _______________ Professor Patricia J. LiWang Chair _________________________________ Date _______________ Professor Michael Cleary University of California, Merced 2017 iii To my friends, family, and especially husband. I love you all so much; thank you for your endless support and patience. And Marko, thank you for not popping out too soon. iv Table of Contents I. List of Figures………...…………………………………………………………….…vii II. List of Tables…………………………………………………………………………..x III. List of Abbreviations……………………………………………………..………….xi IV. Acknowledgements...………………………………..…………………………….xiii V. Vita for Anna Faith Nguyen………………………………………………...….......xiv VI. Abstract……………………………………………………………………..………,xv Chapter 1. Introduction…………………………………………………………………….….1 1.1 Introduction to CC Chemokines……………………………………………….….1 1.2 The Role of CC Chemokines in Chronic Inflammation……………………….7 1.3 The Role of CC Chemokines in HIV Infection…………………………….…….10 1.3.2 HIV Entry into Human Cells……………………………………….……10 1.3.2 HIV Latency in Human Cells…………………………………………...14 Chapter 2.
    [Show full text]
  • FY15 NEIDL Annual Report
    Annual Report , 2015 Blank page September 1, 2015 Letter from the Director This is the first annual report since the NEIDL Institute officially became a University Center on October 01, 2014. With this transition, the NEIDL changed its reporting structure from the Dean of the School of Medicine to the Associate Provost and Vice President for Research of Boston University. This change is important for two reasons. First, the change in reporting recognizes the significance of the current and future investments made by the University into the NEIDL, and for the field of emerging infectious diseases, as a focal point of research for the University. Second, it underscores the importance of embracing the breadth of research within in the University into the NEIDL as we recruit faculty. The study of emerging infectious diseases is by its very nature interdisciplinary, and leveraging expertise via joint recruitments with departments across the university will ensure a robust and innovative research portfolio necessary for the future success of the Institute. This diversity of expertise will be an important differentiator for the NEIDL. Coincident with the change, I had the privilege of being appointed as Director of the NEIDL. I do not take this responsibility lightly. With it comes not only the responsibility for establishing the scientific vision for the foreseeable future, together with many stakeholders across Boston University, but to also continue fostering the culture of safety in all that we do. We also have the responsibility to the public to be completely transparent in what we do. Public trust is essential to the future success of the NEIDL.
    [Show full text]
  • The Lectins Griffithsin, Cyanovirin-N and Scytovirin Inhibit HIV-1 Binding
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Virology 423 (2012) 175–186 Contents lists available at SciVerse ScienceDirect Virology journal homepage: www.elsevier.com/locate/yviro The lectins griffithsin, cyanovirin-N and scytovirin inhibit HIV-1 binding to the DC-SIGN receptor and transfer to CD4+ cells Kabamba B. Alexandre a, Elin S. Gray a, Hazel Mufhandu b, James B. McMahon c, Ereck Chakauya b, Barry R. O'Keefe c, Rachel Chikwamba b, Lynn Morris a,⁎ a National Institute for Communicable Diseases, Johannesburg, South Africa b Council for Scientific and Industrial Research, Pretoria, South Africa c Molecular Targets Laboratory, Center for Cancer Research, NCI-Frederick, MD, USA article info abstract Article history: It is generally believed that during the sexual transmission of HIV-1, the glycan-specific DC-SIGN receptor Received 9 September 2011 binds the virus and mediates its transfer to CD4+ cells. The lectins griffithsin (GRFT), cyanovirin-N (CV-N) Accepted 1 December 2011 and scytovirin (SVN) inhibit HIV-1 infection by binding to mannose-rich glycans on gp120. We measured Available online 29 December 2011 the ability of these lectins to inhibit both the HIV-1 binding to DC-SIGN and the DC-SIGN-mediated HIV-1 infection of CD4+ cells. While GRFT, CV-N and SVN were moderately inhibitory to DC-SIGN binding, they Keywords: Griffithsin potently inhibited DC-SIGN-transfer of HIV-1. The introduction of the 234 glycosylation site abolished HIV- Cyanovirin-N 1 sensitivity to lectin inhibition of binding to DC-SIGN and virus transfer to susceptible cells.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2010/0221242 A1 O'keefe Et Al
    US 2010O221242A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0221242 A1 O'Keefe et al. (43) Pub. Date: Sep. 2, 2010 (54) ANTI-VIRAL GRIFFITHSIN COMPOUNDS, Publication Classification COMPOSITIONS AND METHODS OF USE (51) Int. Cl (76) Inventors: Barry R. O'Keefe, Frederick, MD A 6LX 39/395 (2006.01) (US); Toshiyuki Mori, Osaka (JP); A638/16 (2006.01) James B. McMahon. Frederick A638/08 (2006.01) MD (US) s s A638/10 (2006.01) A6II 35/74 (2006.01) Correspondence Address: A6II 35/12 (2006.01) LEYDIG, VOIT & MAYER, LTD. A 6LX 3L/7052 (2006.01) TWO PRUDENTIAL PLAZA, SUITE 4900, 180 CI2N 7/00 (2006.01) NORTH STETSONAVENUE A6IP3L/2 (2006.01) CHICAGO, IL 60601-6731 (US) (52) U.S. Cl. ............ 424/130.1: 514/12: 514/16: 514/15; 514/14: 514/13; 424/93.2; 424/93.21: 514/44 R: (22)22) PCT Fled:1. Dec.ec. 1,1 2006 (57) ABSTRACT (86). PCT No.: PCT/USO6/4593O A method of inhibiting a viral infection of a host comprising 371 1 administering to the host an anti-viral griffithsin polypeptide S (c)( ), comprising SEQID NO: 3 or a fragment thereof comprising (2), (4) Date: Sep. 29, 2008 at least eight contiguous amino acids, a nucleic acid encoding O O the anti-viral polypeptide, or an antibody to the anti-viral Related U.S. Application Data polypeptide. A method of inhibiting a virus in a sample com (60) Provisional application No. 60/741,403, filed on Dec. prising contacting the sample with an anti-viral griffithsin 1, 2005.
    [Show full text]
  • Maize Seeds As a Production and Delivery Platform for HIV Microbicides Maite Sabalza Gallues
    Nom/Logotip de la Universitat on s’ha llegit la tesi Maize seeds as a production and delivery platform for HIV microbicides Maite Sabalza Gallues Dipòsit Legal: L.1327-2013 http://hdl.handle.net/10803/127189 ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs. ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto Refundido de la Ley de Propiedad Intelectual (RDL 1/1996).
    [Show full text]
  • The Innate Anti-HIV-1 Activity of Human Seminal Plasma
    University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2011 The Innate Anti-HIV-1 Activity of Human Seminal Plasma Julie A. Martellini-Moore University of Central Florida Part of the Other Immunology and Infectious Disease Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Martellini-Moore, Julie A., "The Innate Anti-HIV-1 Activity of Human Seminal Plasma" (2011). Electronic Theses and Dissertations, 2004-2019. 5227. https://stars.library.ucf.edu/etd/5227 THE INNATE ANTI-HIV-1 ACTIVITY OF HUMAN SEMINAL PLASMA by JULIE ANNETTE MARTELLINI-MOORE B.S. University of Central Florida, 2005 M.S. University of Central Florida, 2010 A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Biomedical Sciences from the Burnett School of Biomedical Sciences in the College of Medicine at the University of Central Florida Orlando, Florida Spring Term 2011 Major Professor: Alexander M. Cole ABSTRACT Human immunodeficiency virus (HIV) has become a global pandemic over the past few decades, with new infections and related deaths in the millions each year. There is no cure in sight for HIV-1 infection, and there has been little progress in developing an efficacious vaccine. Heterosexual transmission of HIV-1 remains the principal mode of transmission throughout the world and thus measures, such as topical vaginal microbicides, to prevent infection of the female reproductive tract are actively being explored.
    [Show full text]