Maize Seeds As a Production and Delivery Platform for HIV Microbicides Maite Sabalza Gallues

Total Page:16

File Type:pdf, Size:1020Kb

Maize Seeds As a Production and Delivery Platform for HIV Microbicides Maite Sabalza Gallues Nom/Logotip de la Universitat on s’ha llegit la tesi Maize seeds as a production and delivery platform for HIV microbicides Maite Sabalza Gallues Dipòsit Legal: L.1327-2013 http://hdl.handle.net/10803/127189 ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs. ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización previa y expresa de la persona autora. En cualquier caso, en la utilización de sus contenidos se deberá indicar de forma clara el nombre y apellidos de la persona autora y el título de la tesis doctoral. No se autoriza su reproducción u otras formas de explotación efectuadas con fines lucrativos ni su comunicación pública desde un sitio ajeno al servicio TDR. Tampoco se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al contenido de la tesis como a sus resúmenes e índices. WARNING. Access to the contents of this doctoral thesis and its use must respect the rights of the author. It can be used for reference or private study, as well as research and learning activities or materials in the terms established by the 32nd article of the Spanish Consolidated Copyright Act (RDL 1/1996). Express and previous authorization of the author is required for any other uses. In any case, when using its content, full name of the author and title of the thesis must be clearly indicated. Reproduction or other forms of for profit use or public communication from outside TDX service is not allowed. Presentation of its content in a window or frame external to TDX (framing) is not authorized either. These rights affect both the content of the thesis and its abstracts and indexes. MAIZE SEEDS AS A PRODUCTION AND DELIVERY PLATFORM FOR HIV MICROBICIDES Maite Sabalza Gallues Doctoral dissertation January 2013 School of Agricultural and Forestry Engineering Department of Plant Production and Forest Science University of Lleida MAIZE SEEDS AS A PRODUCTION AND DELIVERY PLATFORM FOR HIV MICROBICIDES by Maite Sabalza Gallues School of Agricultural and Forestry Engineering Department of Plant Production and Forest Science University of Lleida Spain Applied Plant Biotechnology Doctoral dissertation January 2013 Supervisor: Prof. Paul Christou Departement de Producció Vegetal i Ciència Forestal Escola Técnica i Superior d‘Enginyeria Agrària University of Lleida Signature Date Co-supervisor: Prof. Teresa Capell Departement de Producció Vegetal i Ciència Forestal Escola Técnica i Superior d‘Enginyeria Agrària University of Lleida Signature Date DEDICATION To my parents, without their support and efforts this work would not have been possible TABLE OF CONTENTS Page # SUMMARY (ENGLISH) ....................................................................................... I RESUM (CATALÁN) ............................................................................................. III RESUMEN (CASTELLANO) ................................................................................ V ACKNOWELDGEMENTS ................................................................................... VII INDEX OF FIGURES ............................................................................................ IX INDEX OF TABLES ............................................................................................... XIII ABBREVATIONS ................................................................................................... XIV CHAPTER 1: GENERAL INTRODUCTION 1.1 HIV infection statistics ..................................................................................... 3 1.2 Current HIV therapies ...................................................................................... 4 1.3 New preventive strategies: microbicides .......................................................... 6 1.3.1 Types of microbicides and their mechanisms of action ........................ 9 1.3.2 Current microbicide candidates ............................................................. 10 1.4 Molecular pharming ......................................................................................... 16 1.5 Plant expression systems for the production of pharmaceutical proteins ......... 18 1.6 Molecular pharming in maize seeds ................................................................. 19 1.7 References ......................................................................................................... 22 CHAPTER 2: AIMS AND OBJECTIVES .................................................................. 35 CHAPTER 3: FUNCTIONAL CHARACTERIZATION OF THE RECOMBINANT HIV- NEUTRALIZING MONOCLONAL ANTIBODY 2F5 PRODUCED IN MAIZE SEEDS 3.1 Abstract ............................................................................................................. 39 3.2 Introduction ...................................................................................................... 40 3.3 Aim ................................................................................................................... 44 3.4 Materials and methods ...................................................................................... 44 3.4.1 Transformation vectors ........................................................................... 44 3.4.2 Transient expression of mAb 2F5 in N. benthamiana leaves ................. 48 3.4.3 Stable expression of mAb 2F5 in transgenic maize seeds ...................... 48 3.4.4 DNA blot analysis .................................................................................. 48 3.4.5 Enzyme-linked immunosorbent assay (ELISA) ..................................... 49 3.4.6 Western blot analysis .............................................................................. 50 3.5 Results .............................................................................................................. 50 TABLE OF CONTENTS Page # 3.5.1 Functional 2F5 antibody transiently expressed in N. benthamiana leaves ................................................................................... 50 3.5.2 Integration of input genes in transgenic maize plants ............................ 53 3.5.3 Immunoglobulin-specific ELISA and native western blot demonstrate that 2F5 is correctly assembled in maize endosperm ..................... 54 3.5.4 2F5 expression in maize endosperm ....................................................... 58 3.6 Discussion ......................................................................................................... 59 3.7 Conclusions ...................................................................................................... 63 3.8 References ........................................................................................................ 65 CHAPTER 4: NEXT GENERATION COMBINATION MICROBICIDES TO COMBAT HIV THROUGH MULTI-GENE ENGINEERING 4.1 Abstract ............................................................................................................. 75 4.2 Introduction ...................................................................................................... 76 4.2.1 Antiviral lectins ..................................................................................... 77 4.2.1.1 Cyanovirin-N ................................................................................... 80 4.2.1.2 Griffithsin ........................................................................................ 83 4.2.2 Human monoclonal HIV-neutralizing antibody 4E10 ........................... 86 4.2.3 Combination microbicide candidate containing CV-N, GRFT and 4E10 ................................................................... 88 4.3 Aim ................................................................................................................... 90 4.4 Materials and methods ...................................................................................... 90 4.4.1 Transformation vectors .......................................................................... 90 4.4.2 Transient expression of CV-N and GRFT individually, together, and combined with 4E10, in N. benthamiana leaves ......................... 93 4.4.3 Transformation, selection and regeneration of putative transgenic plants ......................................................... 94 4.4.4 Enzyme-linked immunosorbent assay (ELISA) ...................................
Recommended publications
  • Annual Conference Online 2021
    CANDIDAANNUAL CONFERENCEAND ONLINECANDIDIASIS 2021 2021 21–27 March 2021 POSTER ABSTRACT BOOK #Candida2021 001A Candida auris gene expression: modulation upon caspofungin treatment Lysangela Alves1, Rafaela Amatuzzi1, Daniel Zamith-Miranda2, Sharon Martins1, Joshua Nosanchuk2 1Carlos Chagas Institute, Curitiba, Brazil. 2Departments of Medicine (Division of Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, New York, USA Abstract Candida auris has emerged as a serious worldwide threat by causing invasive infections in humans that are frequently resistant to one or more conventional antifungal medications, resulting in high mortality rates. Against this backdrop, health warnings around the world have focused efforts on understanding C. auris fungal biology and effective treatment approaches to combat this fungus. To date, there is little information about C. auris gene expression regulation in response to antifungal treatment. Our integrated analyses focused on the comparative transcriptomics of C. auris in the presence and absence of caspofungin as well as a detailed analysis of the yeast’s extracellular vesicle (EV)-RNA composition. The results showed that genes coding oxidative stress response, ribosomal proteins, cell wall, and cell cycle were significantly up-regulated in the presence of caspofungin, whereas transcriptional regulators and proteins related to nucleus were down-regulated. The mRNAs in the EVs were associated with the stress responses induced by caspofungin and the ncRNA content of the EVs shifted during caspofungin treatment. Altogether, the results provide further insights into the fungal response to caspofungin and demonstrate that analyses of C. auris growth under antifungal stress can elucidate resistance and survival mechanisms of this fungus in response to medical therapy.
    [Show full text]
  • Glossary Terms
    Glossary Terms € 1584 5W6 5501 a 7181, 12203 5’UTR 8126 a-g Transformation 6938 6Q1 5500 r 7181 6W1 5501 b 7181 a 12202 b-b Transformation 6938 A 12202 d 7181 AAV 10815 Z 1584 Abandoned mines 6646 c 5499 Abiotic factor 148 f 5499 Abiotic 10139, 11375 f,b 5499 Abiotic stress 1, 10732 f,i, 5499 Ablation 2761 m 5499 ABR 1145 th 5499 Abscisic acid 9145 th,Carnot 5499 Absolute humidity 893 th,Otto 5499 Absorbed dose 3022, 4905, 8387, 8448, 8559, 11026 v 5499 Absorber 2349 Ф 12203 Absorber tube 9562 g 5499 Absorption, a(l) 8952 gb 5499 Absorption coefficient 309 abs lmax 5174 Absorption 309, 4774, 10139, 12293 em lmax 5174 Absorptivity or absorptance (a) 9449 μ1, First molecular weight moment 4617 Abstract community 3278 o 12203 Abuse 6098 ’ 5500 AC motor 11523 F 5174 AC 9432 Fem 5174 ACC 6449, 6951 r 12203 Acceleration method 9851 ra,i 5500 Acceptable limit 3515 s 12203 Access time 1854 t 5500 Accessible ecosystem 10796 y 12203 Accident 3515 1Q2 5500 Acclimation 3253, 7229 1W2 5501 Acclimatization 10732 2W3 5501 Accretion 2761 3 Phase boundary 8328 Accumulation 2761 3D Pose estimation 10590 Acetosyringone 2583 3Dpol 8126 Acid deposition 167 3W4 5501 Acid drainage 6665 3’UTR 8126 Acid neutralizing capacity (ANC) 167 4W5 5501 Acid (rock or mine) drainage 6646 12316 Glossary Terms Acidity constant 11912 Adverse effect 3620 Acidophile 6646 Adverse health effect 206 Acoustic power level (LW) 12275 AEM 372 ACPE 8123 AER 1426, 8112 Acquired immunodeficiency syndrome (AIDS) 4997, Aerobic 10139 11129 Aerodynamic diameter 167, 206 ACS 4957 Aerodynamic
    [Show full text]
  • Protein–Protein Interactions, Dynamics Simulations and Free Energy Calculations
    molecules Article Structural Insight into the Binding of Cyanovirin-N with the Spike Glycoprotein, Mpro and PLpro of SARS-CoV-2: Protein–Protein Interactions, Dynamics Simulations and Free Energy Calculations Devashan Naidoo 1,* , Pallab Kar 2, Ayan Roy 3,*, Taurai Mutanda 1 , Joseph Bwapwa 1, Arnab Sen 2 and Akash Anandraj 1 1 Centre for Algal Biotechnology, Mangosuthu University of Technology, P.O. Box 12363, Durban 4026, South Africa; [email protected] (T.M.); [email protected] (J.B.); [email protected] (A.A.) 2 Bioinformatics Facility, Department of Botany, University of North Bengal, Siliguri 734013, India; [email protected] (P.K.); [email protected] (A.S.) 3 Department of Biotechnology, Lovely Professional University, Phagwara 144411, India * Correspondence: [email protected] (D.N.); [email protected] (A.R.) Abstract: The emergence of COVID-19 continues to pose severe threats to global public health. The pandemic has infected over 171 million people and claimed more than 3.5 million lives to date. Citation: Naidoo, D.; Kar, P.; Roy, A.; We investigated the binding potential of antiviral cyanobacterial proteins including cyanovirin-N, Mutanda, T.; Bwapwa, J.; Sen, A.; scytovirin and phycocyanin with fundamental proteins involved in attachment and replication of Anandraj, A. Structural Insight into SARS-CoV-2. Cyanovirin-N displayed the highest binding energy scores (−16.8 ± 0.02 kcal/mol, the Binding of Cyanovirin-N with the −12.3 ± 0.03 kcal/mol and −13.4 ± 0.02 kcal/mol, respectively) with the spike protein, the main Spike Glycoprotein, Mpro and PLpro of protease (Mpro) and the papainlike protease (PLpro) of SARS-CoV-2.
    [Show full text]
  • Antiviral Cyanometabolites—A Review
    biomolecules Review Antiviral Cyanometabolites—A Review Hanna Mazur-Marzec 1,*, Marta Cegłowska 2 , Robert Konkel 1 and Krzysztof Pyr´c 3 1 Division of Marine Biotechnology, University of Gda´nsk,Marszałka J. Piłsudskiego 46, PL-81-378 Gdynia, Poland; [email protected] 2 Institute of Oceanology, Polish Academy of Science, Powsta´nców Warszawy 55, PL-81-712 Sopot, Poland; [email protected] 3 Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, PL-30-387 Krakow, Poland; [email protected] * Correspondence: [email protected] Abstract: Global processes, such as climate change, frequent and distant travelling and population growth, increase the risk of viral infection spread. Unfortunately, the number of effective and accessible medicines for the prevention and treatment of these infections is limited. Therefore, in recent years, efforts have been intensified to develop new antiviral medicines or vaccines. In this review article, the structure and activity of the most promising antiviral cyanobacterial products are presented. The antiviral cyanometabolites are mainly active against the human immunodeficiency virus (HIV) and other enveloped viruses such as herpes simplex virus (HSV), Ebola or the influenza viruses. The majority of the metabolites are classified as lectins, monomeric or dimeric proteins with unique amino acid sequences. They all show activity at the nanomolar range but differ in carbohydrate specificity and recognize a different epitope on high mannose oligosaccharides. The cyanobacterial lectins include cyanovirin-N (CV-N), scytovirin (SVN), microvirin (MVN), Microcystis viridis lectin (MVL), and Oscillatoria agardhii agglutinin (OAA). Cyanobacterial polysaccharides, peptides, and other metabolites also have potential to be used as antiviral drugs.
    [Show full text]
  • Potential Drug Candidates Underway Several Registered Clinical Trials for Battling COVID-19
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 April 2020 doi:10.20944/preprints202004.0367.v1 Potential Drug Candidates Underway Several Registered Clinical Trials for Battling COVID-19 Fahmida Begum Minaa, Md. Siddikur Rahman¥a, Sabuj Das¥a, Sumon Karmakarb, Mutasim Billahc* aDepartment of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi-6205, Bangladesh bMolecular Biology and Protein Science Laboratory, University of Rajshahi, Rajshahi-6205, Bangladesh cProfessor Joarder DNA & Chromosome Research Laboratory, University of Rajshahi, Rajshahi-6205, Bangladesh *Corresponding Author: Mutasim Billah, Professor Joarder DNA & Chromosome Research Laboratory, University of Rajshahi, Rajshahi, Bangladesh Corresponding Author Mail: [email protected] ¥Co-second author Abstract The emergence of new type of viral pneumonia cases in China, on December 31, 2019; identified as the cause of human coronavirus, labeled as "COVID-19," took a heavy toll of death and reported cases of infected people all over the world, with the potential to spread widely and rapidly, achieved worldwide prominence but arose without the procurement guidance. There is an immediate need for active intervention and fast drug discovery against the 2019-nCoV outbreak. Herein, the study provides numerous candidates of drugs (either alone or integrated with another drugs) which could prove to be effective against 2019- nCoV, are under different stages of clinical trials. This review will offer rapid identification of a number of repurposable drugs and potential drug combinations targeting 2019-nCoV and preferentially allow the international research community to evaluate the findings, to validate the efficacy of the proposed drugs in prospective trials and to lead potential clinical practices. Keywords: COVID-19; Drugs; 2019-nCoV; Clinical trials; SARS-CoV-2 Introduction A new type of viral pneumonia cases occurred in Wuhan, Hubei Province in China, on December 31, 2019; named "COVID-19" on January 12, 2020 by the World Health Organization (WHO) [1].
    [Show full text]
  • 2019 Annual Report
    2019 Annual Report 1 TABLE OF CONTENTS - 2 DEPARTMENT PHOTO - 3 MISSION - 4 PRIMARY FACULTY PROMOTIONS & DEPARTURES - 5 NEW APPOINTMENTS OF SECONDARY FACULTY-6 SECONDARY FACULTY DEPARTURES – 8 IN MEMORIAM – 9 FACULTY WITH PRIMARY APPOINTMENTS - 10 FACULTY WITH SECONDARY APPOINTMENTS - 21 FACULTY WITH EMERITUS APPOINTMENTS – 31 FACULTY WITH ADJUNCT APPOINTMENTS - 32 ADMINISTRATIVE STAFF - 32 NEW GRADUATE STUDENT CLASS – 33 GRADUATE STUDENTS – 36 GRADUATES– 37 FACULTY HONORS – 39 STUDENT HONORS - 40 PUBLICATIONS - 42 ABSTRACTS - 47 RESEARCH GRANTS ACTIVE - 59 RESEARCH GRANTS SUBMITTED - 68 INVITED SCIENTIFIC PRESENTATIONS - 76 INTELLECTUAL PROPERTY ACTIONS – 80 DEPARTMENTAL COURSES - 81 STANDING COMMITTEES – 82 NCI CANCER EDUCATION PROGRAM - 83 2 3 MISSION The Department of Pharmacology and Toxicology will ensure academic excellence and achievement of regional, national, and international recognition for the quality of its educational, research, and service activities. Guided by the University of Louisville and the School of Medicine Strategic Plans, the mission of the Department of Pharmacology and Toxicology focuses on five broad objectives: • Provide instruction in pharmacology and toxicology of the highest quality for the education and preparation of medical, dental, and other health care professional students. Emphasis is placed on the fundamental principles necessary for life-long learning and the essential knowledge required for rational, effective, and safe use of drug therapy. • Advance biomedical knowledge through high quality research and other scholarly activities, particularly in pharmacology and toxicology and other areas of focus within the University of Louisville and School of Medicine Strategic Plans. • Provide robust research and educational experiences in pharmacology and toxicology for the education and training of future biomedical scientists who will provide and advance biomedical education, research, and service.
    [Show full text]
  • Updates in Hiv Therapeutics and Prevention
    5/17/2018 UPDATES IN HIV THERAPEUTICS AND PREVENTION Sean Kelly, MD Vanderbilt Division of Infectious Diseases May 17, 2018 Agenda • New Agents, Old Classes • Novel Therapies • Updates on long-acting ART • Updates on dual therapy • Updates on adverse events • Prevention/Pre-Exposure Prophylaxis This just in! • Bictegravir/tenofovir alafenamide/emtricitabine • Dolutegravir/rilpivirine • Ibalizumab 1 5/17/2018 New HIV drugs (from existing classes) Doravirine • NNRTI with fewer CNS adverse effects than EFV • Can be used in the setting of the most common NNRTI resistance mutations (K103N, Y181C, G190A) • DRIVE – phase III study • 766 participants randomized to 2 NRTIs + doravirine vs. 2 NRTIs + DVR/r • Doravirine was non-inferior to DRV/r at 48 weeks • Doravirine yielded a more favorable lipid profile than DRV/r Molina JM et al. (Squires K presenting) Doravirine is non-inferior to darunavir/r in phase 3 treatment- naive trial at week 48. Conference on Retroviruses and Opportunistic Infections (CROI 2017), Seattle, abstract 45LB 2017 Doravirine • DRIVE-AHEAD • Phase III study evaluating DOR/TDF/3TC vs TDF/FTC/EFV (Atripla®) in ART-naïve participants • DOR-regimen was non-inferior at 48 weeks • Fewer neuropsychiatric adverse events with DOR-regimen • DRIVE-SHIFT • Phase III study evaluating switch from boosted PI-based regimen to DOR/TDF/3TC • Results pending Squires KE, Molina JM, Sax PE, et al. Fixed dose combination of doravirine/lamivudine/TDF is non-inferior to efavirenz/emtricitabine/TDF in treatment-naïve adults with HIV-1 infection: week 48 results of the Phase 3 DRIVE-AHEAD study. 9th IAS Conference on HIV Science (IAS 2017), July 23- 26, 2017, Paris.
    [Show full text]
  • Viribus Unitis: Drug Combinations As a Treatment Against COVID-19
    Viribus Unitis: Drug Combinations as a Treatment against COVID-19 Eugene N. Muratova,* and Alexey Zakharovb a Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA. b National Center for Advancing Translational Sciences (NCATS), 9800 Medical Center Drive, Rockville, Mar land 20850, United States Corresponding Authors * Address for correspondence: 301 Beard Hall, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA; Telephone: (919) 966-3459; FAX: (919) 966- 0204; E-mail: [email protected] Abstract The opportunities that may be provided by synergistic antiviral action of drugs for battling SARS-CoV2 are currently underestimated. Modern AI technologies realized as text, data, and knowledge mining and analytics tools provide the researchers with unprecedented opportunities for “smart” design of drug combinations with synergistic antiviral activities. The goal of this study is to emphasize the combination therapy as a potential treatment against COVID-19 and to utilize the combination of modern machine learning and AI technologies with our expertise to select the most promising drug combinations with further experimental validation. To the best of our knowledge, we are the first who applied the combination of data, text, and knowledge mining and modeling towards identification of drug combinations against SARS-CoV2. As a result, we have identified 281 combinations of 38 drugs that may serve as potential treatment for COVID-19. Among them, we selected twenty binary combinations that were submitted to experimental testing and twenty treble drug combinations that will be submitted for experimental testing as soon as necessary infrastructure will be developed.
    [Show full text]
  • DEVELOPMENT and EVALUATION of HIV Gp120 RESPONSIVE MICROBICIDE
    DEVELOPMENT AND EVALUATION OF HIV gp120 RESPONSIVE MICROBICIDE FORMULATION FOR THE PREVENTION OF HIV SEXUAL TRANSMISSION A DISSERTATION IN Pharmaceutical Sciences and Chemistry Presented to the Faculty of the University Of Missouri-Kansas City in partial fulfillment of The requirements for the degree of DOCTOR OF PHILOSOPHY By Fohona S. Coulibaly B.S Chemical Engineering, INP-HB, Yamoussoukro, Ivory Coast, 2011 Kansas City, Missouri 2018 © 2018 FOHONA S. COULIBALY ALL RIGHTS RESERVED DEVELOPMENT AND EVALUATION OF HIV gp120 RESPONSIVE MICROBICIDE FORMULATION FOR THE PREVENTION OF HIV SEXUAL TRANSMISSION Fohona S. Coulibaly, Candidate for the Doctor of Philosophy Degree University of Missouri-Kansas City, 2018 ABSTRACT Sexual transmission of HIV remains the primary route (75 to 85%) of HIV infection among all new infection cases. Furthermore, women represent the most vulnerable population and are more susceptible to HIV infections than their male counterpart. Thus, there is an urgent need to develop topical (vaginal/rectal) microbicide formulations capable of preventing HIV sexual transmission. The objective of this dissertation is to develop a mannose specific, lectin-based topical microbicide formulation capable of targeting HIV gp120 for the prevention of HIV sexual transmission. In Chapters 1 and 2, the general hypothesis, aims and scope of this work are introduced. Chapter 3 covers the literature review of anti-HIV lectins and current delivery approaches. In Chapter 4, the binding interactions between the mannose specific lectin Concanavalin A (ConA) and glycogen from Oster, as well as mannan from Saccharomyces cerevisiae, were studied using a quartz crystal microbalance (QCM). The equilibrium dissociation constant describing the interaction between Con A and glycogen (KD = 0.25 μM) was 12 fold lower than the equilibrium dissociation constant describing the binding between Con A and mannan (KD = iii 2.89 μM).
    [Show full text]
  • Anti-Viral Griffithsin Compounds, Compositions, and Methods of Use
    (19) & (11) EP 2 314 349 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 27.04.2011 Bulletin 2011/17 A61P 31/12 (2006.01) A61K 38/16 (2006.01) A61K 39/42 (2006.01) (21) Application number: 10014895.6 (22) Date of filing: 01.12.2006 (84) Designated Contracting States: (72) Inventors: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR • O’Keefe, Barry R. HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI Frederick , MD 21702 (US) SK TR • Mori, Toshiyuki Designated Extension States: San Francisco, CA 94158 (US) AL BA HR MK RS • McMahon, James B. Frederick, MD 21701 (US) (30) Priority: 01.12.2005 US 741403 P (74) Representative: Grünecker, Kinkeldey, (62) Document number(s) of the earlier application(s) in Stockmair & Schwanhäusser accordance with Art. 76 EPC: Anwaltssozietät 06838737.2 / 1 976 596 Leopoldstrasse 4 80802 München (DE) (71) Applicant: The Government of the United States of America, as Remarks: represented by the Secretary, Department of This application was filed on 23-11-2010 as a Health and Human Services divisional application to the application mentioned Rockville, MD 20852 (US) under INID code 62. (54) Anti-viral griffithsin compounds, compositions, and methods of use (57) A method of inhibiting a viral infection of a host or an antibody to the anti-viral polypeptide. A method of comprising administering to the host an anti-viral grif- inhibiting a virus in a sample comprising contacting the fithsin polypeptide comprising SEQ ID NO: 3 or a frag- sample with an anti-viral griffithsin polypeptide or anti- ment thereof comprising at least eight contiguous amino body thereto also is provided.
    [Show full text]
  • Strategies for Targeting SARS Cov-2: Small Molecule Inhibitors—The Current Status
    REVIEW published: 18 September 2020 doi: 10.3389/fimmu.2020.552925 Strategies for Targeting SARS CoV-2: Small Molecule Inhibitors—The Current Status Narasimha M. Beeraka 1†, Surya P. Sadhu 2†, SubbaRao V. Madhunapantula 1,3*, Rajeswara Rao Pragada 2, Andrey A. Svistunov 4, Vladimir N. Nikolenko 4,5, Liudmila M. Mikhaleva 6 and Gjumrakch Aliev 6,7,8,9* 1 Department of Biochemistry, Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), JSS Academy of Higher Education & Research (JSS AHER), Mysore, India, 2 AU College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, India, 3 Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysore, India, 4 I. M. Sechenov First Moscow State Edited by: Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia, 5 Department Denise L. Doolan, of Normal and Topographic Anatomy, M.V. Lomonosov Moscow State University, Moscow, Russia, 6 Research Institute of James Cook University, Australia Human Morphology, Moscow, Russia, 7 Sechenov First Moscow State Medical University (Sechenov University), Moscow, 8 9 Reviewed by: Russia, Institute of Physiologically Active Compounds, Russian Academy of Sciences, Moscow, Russia, GALLY Rong Hai, International Research Institute, San Antonio, TX, United States University of California, Riverside, United States Severe Acute Respiratory Syndrome-Corona Virus-2 (SARS-CoV-2) induced Coronavirus Katie Louise Flanagan, RMIT University, Australia Disease - 19 (COVID-19) cases have been increasing at an alarming rate (7.4 *Correspondence: million positive cases as on June 11 2020), causing high mortality (4,17,956 deaths SubbaRao V.
    [Show full text]
  • Novel Antiretroviral Structures from Marine Organisms
    molecules Review Novel Antiretroviral Structures from Marine Organisms Karlo Wittine , Lara Safti´c,Željka Peršuri´c and Sandra Kraljevi´cPaveli´c* University of Rijeka, Department of Biotechnology, Centre for high-throughput technologies, Radmile Matejˇci´c2, 51000 Rijeka, Croatia * Correspondence: [email protected]; Tel.: +385-51-584-550 Academic Editor: Kyoko Nakagawa-Goto Received: 2 September 2019; Accepted: 19 September 2019; Published: 26 September 2019 Abstract: In spite of significant advancements and success in antiretroviral therapies directed against HIV infection, there is no cure for HIV, which scan persist in a human body in its latent form and become reactivated under favorable conditions. Therefore, novel antiretroviral drugs with different modes of actions are still a major focus for researchers. In particular, novel lead structures are being sought from natural sources. So far, a number of compounds from marine organisms have been identified as promising therapeutics for HIV infection. Therefore, in this paper, we provide an overview of marine natural products that were first identified in the period between 2013 and 2018 that could be potentially used, or further optimized, as novel antiretroviral agents. This pipeline includes the systematization of antiretroviral activities for several categories of marine structures including chitosan and its derivatives, sulfated polysaccharides, lectins, bromotyrosine derivatives, peptides, alkaloids, diterpenes, phlorotannins, and xanthones as well as adjuvants to the HAART therapy such as fish oil. We critically discuss the structures and activities of the most promising new marine anti-HIV compounds. Keywords: antiretroviral agents; anti-HIV; marine metabolites; natural products; drug development 1. Introduction Human immunodeficiency virus (HIV) infections pose a global challenge given that in 2017, according to the World Health Organization data, 36.9 million people were living with HIV and additional 1.8 million people were becoming newly infected globally (Table1) .
    [Show full text]