The Origin of Extracellular Fields and Currents — EEG, Ecog, LFP and Spikes

Total Page:16

File Type:pdf, Size:1020Kb

The Origin of Extracellular Fields and Currents — EEG, Ecog, LFP and Spikes REVIEWS The origin of extracellular fields and currents — EEG, ECoG, LFP and spikes György Buzsáki1,2,3, Costas A. Anastassiou4 and Christof Koch4,5 Abstract | Neuronal activity in the brain gives rise to transmembrane currents that can be measured in the extracellular medium. Although the major contributor of the extracellular signal is the synaptic transmembrane current, other sources — including Na+ and Ca2+ spikes, ionic fluxes through voltage- and ligand-gated channels, and intrinsic membrane oscillations — can substantially shape the extracellular field. High-density recordings of field activity in animals and subdural grid recordings in humans, combined with recently developed data processing tools and computational modelling, can provide insight into the cooperative behaviour of neurons, their average synaptic input and their spiking output, and can increase our understanding of how these processes contribute to the extracellular signal. Electric current contributions from all active cellular Recent advances in microelectrode technology processes within a volume of brain tissue superimpose using silicon-based polytrodes offer new possibilities at a given location in the extracellular medium and for estimating input–output transfer functions in vivo, generate a potential, Ve (a scalar measured in Volts), and high-density recordings of electric and magnetic with respect to a reference potential. The difference in fields of the brain now provide unprecedented spatial Ve between two locations gives rise to an electric field coverage and resolution of the elementary processes (a vector whose amplitude is measured in Volts per involved in generating the extracellular field. In 1Center for Molecular and distance) that is defined as the negative spatial gradient addition, novel time-resolved spectral methods provide Behavioural Neuroscience, of Ve. Electric fields can be monitored by extracellularly insights into the functional meaning of the information- Rutgers, The State University placed electrodes with submillisecond time resolution rich high-frequency bands of the V signal3,4. These of New Jersey, e 197 University Avenue, and can be used to interpret many facets of neuronal new developments have led to a more in-depth Newark, New Jersey 07102, communication and computation (FIG. 1). A major understanding not only of the relationship between USA. advantage of extracellular field recording techniques is network activity and cognitive behaviour5 but also of 2New York University that, in contrast to several other methods used for the the pathomechanisms in brain diseases6. Neuroscience Institute, New York University Langone investigation of network activity, the biophysics related Several excellent but somewhat dated reviews Medical Center, New York, to these measurements are well understood. This has discuss various aspects of extracellular signals in the – New York 10016, USA. enabled the development of reliable and quantitative brain2,7 25. Here we provide an overview of our present 3Center for Neural Science, mathematical models to elucidate how transmembrane understanding of the mechanisms that underlie New York University, New currents give rise to the recorded electric potential. the generation of extracellular currents and fields. York, New York 10003, USA. 4Division of Biology, Historically, Ve has been referred to as the electro- Although all nervous structures generate extracellular California Institute of encephalogram (EEG) when recorded from the scalp, fields, our focus is the mammalian cerebral cortex, Technology, 1200 East as the electrocorticogram (ECoG) when recorded by as most of our quantitative knowledge is the result of California Boulevard, subdural grid electrodes on the cortical surface, and studies in cortex. Pasadena, California 91125, USA. as the local field potential (LFP; also known as micro-, 1 5Allen Institute for Brain depth or intracranial EEG ) when recorded by a small- Contributors to extracellular fields Science, 551 North 34th size electrode in the brain (BOX 1; FIG. 1). The term ‘local Any excitable membrane — whether it is a spine, Street, Seattle, Washington field potential’ (meaning an electric potential (Ve)), is dendrite, soma, axon or axon terminal — and any 98103, USA. a regrettable malapropism, but we continue to use the type of transmembrane current contributes to the Correspondence to G.B. e-mail: gyorgy.buzsaki@ term LFP because it is familiar to most neuroscientists. extracellular field. The field is the superposition of nyumc.org The magnetic field induced by the same activity is all ionic processes, from fast action potentials to the doi:10.1038/nrn3241 referred to as the magnetoencephalogram (MEG)2. slowest fluctuations in glia. All currents in the brain NATURE REVIEWS | NEUROSCIENCE VOLUME 13 | JUNE 2012 | 407 © 2012 Macmillan Publishers Limited. All rights reserved REVIEWS a b superimpose at any given point in space to yield Ve V at that location. Thus, any transmembrane current, Cz µ Depth irrespective of its origin, leads to an intracellular as 150 (LFP) SM well as an extracellular (that is, LFP) voltage deflection. V µ The characteristics of the LFP waveform, such as the 800 amplitude and frequency, depend on the proportional Grid EC contribution of the multiple sources and various (ECoG) properties of the brain tissue. The larger the distance Strip of the recording electrode from the current source, the (ECoG) HC less informative the measured LFP becomes about the events occurring at the location(s) of the source(s). This Strip is mainly owing to the fact that the V amplitude scales (ECoG) Am e with the inverse of the distance r between the source Fz Scalp and the recording site, and to the inclusion of other EEG O2 (interfering) signals (leading to ‘spatial averaging’). In 1 s 1 s addition to the magnitude and sign of the individual c current sources, and their spatial density, the temporal 1000 100 coordination of the respective current sources (that 500 V) is, their synchrony) shapes the extracellular field. µ Thus, extracellular currents can emerge from multiple 0 0 sources, and these are described below. iEEG ( MEG (fT) –500 –100 –1000 1 s Synaptic activity. In physiological situations, synaptic activity is often the most important source of extracellular current flow. The idea that synaptic d I LFP surface currents contribute to the LFP stems from the II recognition that extracellular currents from many individual compartments must overlap in time to induce III a measurable signal, and such overlap is most easily LFP depth achieved for relatively slow events, such as synaptic 7,10,23 IV Intracellular currents . The dendrites and soma of a neuron form a tree-like structure with an electrically conducting V interior that is surrounded by a relatively insulating 20 mV membrane, with hundreds to tens of thousands of VI synapses located along it. Neurotransmitters acting on Figure 1 | Extracellular traces using different recording methods are synaptic AMPA and NMDA receptors mediate excitatory + 2+ fundamentally similar. a | Simultaneous recordings fromNature three Reviewsdepth electrodes | Neuroscience (two currents, involving Na or Ca ions, respectively, selected sites each) in the left amygdala and hippocampus (measuring the local field which flow inwardly at the synapse. This influx of cations from the extracellular into the intracellular cortex (measuring the electrocorticogram (ECoG); two four-contact strips placed under space gives rise to a local extracellular sink. To achieve the inferior temporal surface (measuring the ECoG); an eight-contact strip placed effective electroneutrality within the time constants of over the left orbitofrontal surface (measuring the ECoG); and scalp electroencephalo- relevance for systems neuroscience, the extracellular graphy (EEG) over both hemispheres (selected sites are the Fz and O2) in a patient with sink needs to be ‘balanced’ by an extracellular source, drug-resistant epilepsy. The amplitude signals are larger and the higher-frequency that is, an opposing ionic flux from the intracellular to patterns have greater resolution at the intracerebral (LFP) and ECoG sites compared to scalp EEG. b | A 6 s epoch of slow waves recorded by scalp EEG (Cz, red), and LFP (blue) the extracellular space, along the neuron; this flux is recorded by depth electrodes placed in the deep layers of the supplementary motor area termed passive current or return current. Depending on (SM) and entorhinal cortex (EC), hippocampus (HC) and amygdala (Am). Also shown are the location of the sink current(s) and its distance from multiple-unit activity (green) and spikes of isolated neurons (black ticks). c | Simultaneously the source current(s), a dipole or a higher-order n-pole recorded magnetoencephalogram (MEG; black) and anterior hippocampus depth EEG is formed (FIG. 2a). The contribution of a monopole to (red) from a patient with drug-resistant epilepsy. Note the similar theta oscillations Ve scales as 1/r, whereas the contribution of a dipole recorded by the depth electrode and the trace calculated by the MEG, without any phase decays faster, as 1/r2; this steeper decay is due to the two delay. d | Simultaneously recorded LFP traces from the superficial (‘surface’) and deep opposing charges that comprise the dipole cancelling (‘depth’) layers of the motor cortex in an anaesthetized cat and an intracellular trace each other out to first order. from a layer 5 pyramidal neuron. Note the alternation of hyperpolarization and Notably, GABA
Recommended publications
  • Novel Methods for Assessing Electrophysiological Function of Cardiac and Neural 3D Cell Cultures with MEA Technology
    . Novel methods for assessing electrophysiological function of cardiac and neural 3D cell cultures with MEA technology Anthony Nicolini, Denise Sullivan, Heather Hayes, Andrew Wilsie, Rob Grier, Daniel Millard Axion BioSystems, Atlanta, GA Multiwell MEA Technology MEA Assay with Cardiomyocytes MEA Assay with Neurons Microelectrode array technology Functional Cardiac Phenotypes Functional Neuronal Phenotypes The flexibility and accessibility of neuronal and The need for simple, reliable, and predictive pre-clinical assays for drug discovery (e.g. “disease-in-a-dish” AxIS Navigator analysis software provides straightforward reporting of multiple measures of cell culture maturity. cardiac in vitro models, particularly induced models) and safety have motivated the development of 2D and 3D in vitro models with human stem cell- pluripotent stem cell (iPSC) technology, has allowed (a) (c) Action derived cardiomyocytes. The Maestro MEA platform enables assessment of functional in vitro cardiomyocyte complex human biology to be reproduced in vitro at Potential activity with an easy-to-use benchtop system. The Maestro detects and records signals from cells cultured unimaginable scales. Accurate characterization of directly onto an array of planar electrodes in each well of the MEA plate, with each of the following four modes Field neurons and cardiomyocytes requires an assay that providing critical information for in vitro assessment: Potential provides a functional phenotype. Measurements of electrophysiological activity across a networked • Field Potential – “gold standard” measurement for multiwell cardiac electrophysiology. population offer a comprehensive characterization Clinical • Action Potential – first scalable technique for acquiring action potential signals from intact cardiac models. beyond standard genomic and biochemical ECG • Propagation – detect speed and direction of action potential propagation.
    [Show full text]
  • Intrinsic Dendritic Filtering Gives Low-Pass Power Spectra of Local Field Potentials
    J Comput Neurosci DOI 10.1007/s10827-010-0245-4 Intrinsic dendritic filtering gives low-pass power spectra of local field potentials Henrik Lindén · Klas H. Pettersen · Gaute T. Einevoll Received: 31 August 2009 / Revised: 30 March 2010 / Accepted: 6 May 2010 © Springer Science+Business Media, LLC 2010 Abstract The local field potential (LFP) is among the the LFP. The frequency dependence of the properties most important experimental measures when probing of the current dipole moment set up by the synaptic in- neural population activity, but a proper understanding put current is found to qualitatively account for several of the link between the underlying neural activity and salient features of the observed LFP. Two approximate the LFP signal is still missing. Here we investigate this schemes for calculating the LFP, the dipole approxima- link by mathematical modeling of contributions to the tion and the two-monopole approximation, are tested LFP from a single layer-5 pyramidal neuron and a and found to be potentially useful for translating results single layer-4 stellate neuron receiving synaptic input. from large-scale neural network models into predic- An intrinsic dendritic low-pass filtering effect of the tions for results from electroencephalographic (EEG) LFP signal, previously demonstrated for extracellular or electrocorticographic (ECoG) recordings. signatures of action potentials, is seen to strongly affect the LFP power spectra, even for frequencies as low as Keywords Local field potential · Single neuron · 10 Hz for the example pyramidal neuron. Further, the Forward modeling · Frequency dependence · EEG LFP signal is found to depend sensitively on both the recording position and the position of the synaptic in- put: the LFP power spectra recorded close to the active synapse are typically found to be less low-pass filtered 1 Introduction than spectra recorded further away.
    [Show full text]
  • Hebbian and Neuromodulatory Mechanisms Interact to Trigger
    Hebbian and neuromodulatory mechanisms interact to PNAS PLUS trigger associative memory formation Joshua P. Johansena,b,c,1,2, Lorenzo Diaz-Mataixc,1, Hiroki Hamanakaa, Takaaki Ozawaa, Edgar Ycua, Jenny Koivumaaa, Ashwani Kumara, Mian Houc, Karl Deisserothd,e, Edward S. Boydenf, and Joseph E. LeDouxc,g,2 aLaboratory for Neural Circuitry of Memory, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan; bDepartment of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-0198, Japan; cCenter for Neural Science, New York University, New York, NY 10003; dDepartment of Bioengineering, Department of Psychiatry and Behavioral Sciences, and eHoward Hughes Medical Institute, Stanford University, Stanford, CA 94305; fMcGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139; and gThe Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962 Contributed by Joseph E. LeDoux, November 7, 2014 (sent for review March 11, 2014) A long-standing hypothesis termed “Hebbian plasticity” suggests auditory threat (fear) conditioning (23, 24) is a form of asso- that memories are formed through strengthening of synaptic con- ciative learning during which a neutral auditory conditioned nections between neurons with correlated activity. In contrast, stimulus (CS) is temporally paired with an aversive unconditioned other theories propose that coactivation of Hebbian and neuro- stimulus (US), often a mild electric shock (17, 20, 21, 25–27). modulatory processes produce the synaptic strengthening that Following training, the auditory CS comes to elicit behavioral underlies memory formation. Using optogenetics we directly tested defense responses (such as freezing) and supporting physiologi- whether Hebbian plasticity alone is both necessary and sufficient to cal changes controlled by the autonomic nervous and endocrine produce physiological changes mediating actual memory formation systems.
    [Show full text]
  • Independent Components Analysis of Local Field Potential Sources in the Primate Superior Colliculus
    Independent Components Analysis of Local Field Potential Sources in the Primate Superior Colliculus by Yu Liu B.S. in Telecommunication Engineering, Nanjing University of Posts and Telecommunications, 2017 Submitted to the Graduate Faculty of the Swanson School of Engineering in partial fulfillment of the requirements for the degree of Master of Science University of Pittsburgh 2019 UNIVERSITY OF PITTSBURGH SWANSON SCHOOL OF ENGINEERING This thesis was presented by Yu Liu It was defended on July 17, 2019 and approved by Ahmed Dallal, Ph.D., Assistant Professor, Department of Electrical and Computer Engineering Neeraj Gandhi, Ph.D., Professor, Department of Bioengineering Amro El-Jaroudi, Ph.D., Associate Professor, Department of Electrical and Computer Engineering Zhi-Hong Mao, Ph.D., Professor, Department of Electrical and Computer Engineering Thesis Advisors: Ahmed Dallal, Ph.D., Assistant Professor, Department of Electrical and Computer Engineering, Neeraj Gandhi, Ph.D., Professor, Department of Bioengineering ii Copyright c by Yu Liu 2019 iii Independent Components Analysis of Local Field Potential Sources in the Primate Superior Colliculus Yu Liu, M.S. University of Pittsburgh, 2019 When visually-guided eye movements (saccades) are produced, some signal-available elec- trical potentials are recorded by electrodes in the superior colliculus (SC), which is ideal to investigate communication between the different layers due to the laminar organization and structured anatomical connections within SC. The first step to realize this objective is iden- tifying the location of signal-generators involved in the procedure. Local Field Potential (LFP), representing a combination of the various generators measured in the vicinity of each electrodes, makes this issue as similar as blind source separation problem.
    [Show full text]
  • Arxiv:2007.00031V2 [Q-Bio.NC] 11 Aug 2020
    Bringing Anatomical Information into Neuronal Network Models S.J. van Albada1;2, A. Morales-Gregorio1;3, T. Dickscheid4, A. Goulas5, R. Bakker1;6, S. Bludau4, G. Palm1, C.-C. Hilgetag5;7, and M. Diesmann1;8;9 1Institute of Neuroscience and Medicine (INM-6) Computational and Systems Neuroscience, Institute for Advanced Simulation (IAS-6) Theoretical Neuroscience, and JARA-Institut Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany 2Institute of Zoology, Faculty of Mathematics and Natural Sciences, University of Cologne, Germany 3RWTH Aachen University, Aachen, Germany 4Institute of Neuroscience and Medicine (INM-1) Structural and Functional Organisation of the Brain, Jülich Research Centre, Jülich, Germany 5Institute of Computational Neuroscience, University Medical Center Eppendorf, Hamburg, Germany 6Department of Neuroinformatics, Donders Centre for Neuroscience, Radboud University, Nijmegen, the Netherlands 7Department of Health Sciences, Boston University, Boston, USA 8Department of Psychiatry, Psychotherapy and Psychosomatics, School of Medicine, RWTH Aachen University, Aachen, Germany 9Department of Physics, Faculty 1, RWTH Aachen University, Aachen, Germany Abstract For constructing neuronal network models computational neu- roscientists have access to wide-ranging anatomical data that neverthe- less tend to cover only a fraction of the parameters to be determined. Finding and interpreting the most relevant data, estimating missing val- ues, and combining the data and estimates from various sources into a coherent whole is a daunting task. With this chapter we aim to provide guidance to modelers by describing the main types of anatomical data that may be useful for informing neuronal network models. We further discuss aspects of the underlying experimental techniques relevant to the interpretation of the data, list particularly comprehensive data sets, and describe methods for filling in the gaps in the experimental data.
    [Show full text]
  • Assessing Neuronal Synchrony and Brain Function Through Local Field Potential and Spike Analysis Samuel Stuart Mcafee University of Tennessee Health Science Center
    University of Tennessee Health Science Center UTHSC Digital Commons Theses and Dissertations (ETD) College of Graduate Health Sciences 12-2017 Assessing Neuronal Synchrony and Brain Function Through Local Field Potential and Spike Analysis Samuel Stuart McAfee University of Tennessee Health Science Center Follow this and additional works at: https://dc.uthsc.edu/dissertations Part of the Medical Neurobiology Commons Recommended Citation McAfee, Samuel Stuart (http://orcid.org/0000-0003-4121-0592), "Assessing Neuronal Synchrony and Brain Function Through Local Field Potential and Spike Analysis" (2017). Theses and Dissertations (ETD). Paper 448. http://dx.doi.org/10.21007/ etd.cghs.2017.0445. This Dissertation is brought to you for free and open access by the College of Graduate Health Sciences at UTHSC Digital Commons. It has been accepted for inclusion in Theses and Dissertations (ETD) by an authorized administrator of UTHSC Digital Commons. For more information, please contact [email protected]. Assessing Neuronal Synchrony and Brain Function Through Local Field Potential and Spike Analysis Document Type Dissertation Degree Name Doctor of Philosophy (PhD) Program Biomedical Sciences Track Neuroscience Research Advisor Detlef H. Heck, Ph.D. Committee Max L. Fletcher, Ph.D. Robert C. Foehring, Ph.D. Shalini Narayana, Ph.D. Robert J. Ogg, Ph.D. ORCID http://orcid.org/0000-0003-4121-0592 DOI 10.21007/etd.cghs.2017.0445 This dissertation is available at UTHSC Digital Commons: https://dc.uthsc.edu/dissertations/448 Assessing Neuronal Synchrony and Brain Function Through Local Field Potential and Spike Analysis A Dissertation Presented for The Graduate Studies Council The University of Tennessee Health Science Center In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy From The University of Tennessee By Samuel Stuart McAfee December 2017 Portions of Chapter 5 © 2016 by Elsevier BV.
    [Show full text]
  • The Information Content of Local Field Potentials: Experiments and Models
    The information content of Local Field Potentials: experiments and models Alberto Mazzoni a, Nikos K. Logothetis b, c, Stefano Panzeri a,d * a Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Via Bettini 31, 38068 Rovereto (TN), Italy b Max Planck Institute for Biological Cybernetics, Spemannstrasse 38, 72076 Tübingen, Germany c Division of Imaging Science and Biomedical Engineering, University of Manchester, Manchester M13 9PT, United Kingdom d Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QB, United Kingdom * Corresponding author: S. Panzeri, email: [email protected] Keywords: Vision, recurrent networks, integrate and fire, LFP modelling, neural code, spike timing, natural movies, mutual information, oscillations, gamma band 1 1. Local Field Potential dynamics offer insights into the function of neural circuits The Local Field Potential (LFP) is a massed neural signal obtained by low pass‐filtering (usually with a cutoff low‐pass frequency in the range of 100‐300 Hz) of the extracellular electrical potential recorded with intracranial electrodes. LFPs have been neglected for a few decades because in‐vivo neurophysiological research focused mostly on isolating action potentials from individual neurons, but the last decade has witnessed a renewed interested in the use of LFPs for studying cortical function, with a large amount of recent empirical and theoretical neurophysiological studies using LFPs to investigate the dynamics and the function of neural circuits under different conditions. There are many reasons why the use of LFP signals has become popular over the last 10 years. Perhaps the most important reason is that LFPs and their different band‐limited components (known e.g.
    [Show full text]
  • The Origin of Extracellular Fields and Currents — EEG, Ecog, LFP and Spikes
    HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Nat Rev Manuscript Author Neurosci. Author Manuscript Author manuscript; available in PMC 2016 June 14. Published in final edited form as: Nat Rev Neurosci. ; 13(6): 407–420. doi:10.1038/nrn3241. The origin of extracellular fields and currents — EEG, ECoG, LFP and spikes György Buzsáki1,2,3, Costas A. Anastassiou4, and Christof Koch4,5 1Center for Molecular and Behavioural Neuroscience, Rutgers, The State University of New Jersey, 197 University Avenue, Newark, New Jersey 07102, USA 2New York University Neuroscience Institute, New York University Langone Medical Center, New York, New York 10016, USA 3Center for Neural Science, New York University, New York, New York 10003, USA 4Division of Biology, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, USA 5Allen Institute for Brain Science, 551 North 34th Street, Seattle, Washington 98103, USA Abstract Neuronal activity in the brain gives rise to transmembrane currents that can be measured in the extracellular medium. Although the major contributor of the extracellular signal is the synaptic transmembrane current, other sources — including Na+ and Ca2+ spikes, ionic fluxes through voltage- and ligand-gated channels, and intrinsic membrane oscillations — can substantially shape the extracellular field. High-density recordings of field activity in animals and subdural grid recordings in humans, combined with recently developed data processing tools and computational modelling, can provide insight into the cooperative behaviour of neurons, their average synaptic input and their spiking output, and can increase our understanding of how these processes contribute to the extracellular signal. Electric current contributions from all active cellular processes within a volume of brain tissue superimpose at a given location in the extracellular medium and generate a potential, Ve (a scalar measured in Volts), with respect to a reference potential.
    [Show full text]
  • Differential Recordings of Local Field Potential: a Genuine Tool to Quantify Functional Connectivity
    bioRxiv preprint doi: https://doi.org/10.1101/270439; this version posted February 23, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Differential Recordings of Local Field Potential: A Genuine Tool to Quantify Functional Connectivity. Meyer Gabriel1Y, Caponcy Julien 1, Paul Salin 2,3¤ , Comte Jean-Christophe 2,3Y*, 1 Forgetting and Cortical Dynamics Team, Lyon Neuroscience Research Center (CRNL), University Lyon 1, Lyon, France. 2 Biphotonic Microscopy Team, Lyon Neuroscience Research Center (CRNL), University Lyon 1, Lyon, France. 2 3 Forgetting and Cortical Dynamics Team, Lyon Neuroscience Research Center (CRNL), University Lyon 1, Lyon, France, Centre National de la Recherche Scientifique (CNRS), Lyon, France, Institut National de la Sant´eet de la Recherche M´edicale (INSERM), Lyon, France. YThese authors contributed equally to this work. ¤Current Address: CNRL UMR5292/U1028,Facult´ede M´edecine Bˆatiment B - 7 rue Guillaume Paradin 69372 LYON Cedex 08. * [email protected] Abstract Local field potential (LFP) recording, is a very useful electrophysiological method to study brain processes. However, this method is criticized to record low frequency activity in a large aerea of extracellular space potentially contaminated by far sources. Here, we compare ground-referenced (RR) with differential recordins (DR) theoretically and experimentally. We analyze the electrical activity in the rat cortex with these both methods. Compared with the RR, the DR reveals the importance of local phasic oscillatory activities and their coherence between cortical areas. Finally, we argue that DR provides an access to a faithful functional connectivity quantization assessement owing to an increase in the signal to noise ratio.
    [Show full text]
  • Dual Mechanisms of Ictal High Frequency Oscillations in Human Rhythmic Onset Seizures Elliot H
    www.nature.com/scientificreports OPEN Dual mechanisms of ictal high frequency oscillations in human rhythmic onset seizures Elliot H. Smith1,2*, Edward M. Merricks2, Jyun‑You Liou3, Camilla Casadei2, Lucia Melloni4, Thomas Thesen4,10, Daniel J. Friedman4, Werner K. Doyle5, Ronald G. Emerson7, Robert R. Goodman6, Guy M. McKhann II8, Sameer A. Sheth9, John D. Rolston1 & Catherine A. Schevon2 High frequency oscillations (HFOs) are bursts of neural activity in the range of 80 Hz or higher, recorded from intracranial electrodes during epileptiform discharges. HFOs are a proposed biomarker of epileptic brain tissue and may also be useful for seizure forecasting. Despite such clinical utility of HFOs, the spatial context and neuronal activity underlying these local feld potential (LFP) events remains unclear. We sought to further understand the neuronal correlates of ictal high frequency LFPs using multielectrode array recordings in the human neocortex and mesial temporal lobe during rhythmic onset seizures. These multiscale recordings capture single cell, multiunit, and LFP activity from the human brain. We compare features of multiunit fring and high frequency LFP from microelectrodes and macroelectrodes during ictal discharges in both the seizure core and penumbra (spatial seizure domains defned by multiunit activity patterns). We report diferences in spectral features, unit‑local feld potential coupling, and information theoretic characteristics of high frequency LFP before and after local seizure invasion. Furthermore, we tie these time‑domain diferences to spatial domains of seizures, showing that penumbral discharges are more broadly distributed and less useful for seizure localization. These results describe the neuronal and synaptic correlates of two types of pathological HFOs in humans and have important implications for clinical interpretation of rhythmic onset seizures.
    [Show full text]
  • 54. Computational Neurogenetic Modeling: Gene-Dependent Dynamics of Cortex Computationaand Idiopathic Epilepsy Lubica Benuskova, Nikola Kasabov
    969 54. Computational Neurogenetic Modeling: Gene-Dependent Dynamics of Cortex Computationaand Idiopathic Epilepsy Lubica Benuskova, Nikola Kasabov 54.1 Overview 969 The chapter describes a novel computational ap- .............................................. 54.1.1 Neurogenesis............................. 970 proach to modeling the cortex dynamics that 54.1.2 Circadian Rhythms ..................... 970 integrates gene–protein regulatory networks with 54.1.3 Neurodegenerative Diseases ........ 970 a neural network model. Interaction of genes 54.1.4 Idiopathic Epilepsies .................. 970 and proteins in neurons affects the dynamics of 54.1.5 Computational Models the whole neural network. We have adopted an of Epilepsies .............................. 971 exploratory approach of investigating many ran- 54.1.6 Outline of the Chapter ................ 973 domly generated gene regulatory matrices out of which we kept those that generated interesting 54.2 Gene Expression Regulation .................. 974 54.2.1 Protein Synthesis ....................... 974 dynamics. This naïve brute force approach served Part K 54.2.2 Control of Gene Expression .......... 975 us to explore the potential application of compu- tational neurogenetic models in relation to gene 54.3 Computational Neurogenetic Model ....... 975 knock-out experiments. The knock out of a hy- 54.3.1 Gene–Protein 54 pothetical gene for fast inhibition in our artificial Regulatory Network .................... 975 genome has led to an interesting neural activity. 54.3.2 Proteins and Neural Parameters... 977 In spite of the fact that the artificial gene/protein 54.3.3 Thalamo-Cortical Model .............. 977 network has been altered due to one gene knock 54.4 Dynamics of the Model.......................... 979 out, the dynamics of SNN in terms of spiking activ- 54.4.1 Estimation of Parameters ...........
    [Show full text]
  • Investigating Large-Scale Brain Dynamics Using Field Potential Recordings: Analysis and Interpretation
    REVIEW ARTICLE https://doi.org/10.1038/s41593-018-0171-8 Investigating large-scale brain dynamics using field potential recordings: analysis and interpretation Bijan Pesaran 1,2*, Martin Vinck3, Gaute T. Einevoll4,5, Anton Sirota6, Pascal Fries 3,7, Markus Siegel 8, Wilson Truccolo9,10, Charles E. Schroeder11,12 and Ramesh Srinivasan13 New technologies to record electrical activity from the brain on a massive scale offer tremendous opportunities for discovery. Electrical measurements of large-scale brain dynamics, termed field potentials, are especially important to understanding and treating the human brain. Here, our goal is to provide best practices on how field potential recordings (electroencephalograms, magnetoencephalograms, electrocorticograms and local field potentials) can be analyzed to identify large-scale brain dynam- ics, and to highlight critical issues and limitations of interpretation in current work. We focus our discussion of analyses around the broad themes of activation, correlation, communication and coding. We provide recommendations for interpreting the data using forward and inverse models. The forward model describes how field potentials are generated by the activity of popula- tions of neurons. The inverse model describes how to infer the activity of populations of neurons from field potential recordings. A recurring theme is the challenge of understanding how field potentials reflect neuronal population activity given the complex- ity of the underlying brain systems. rain dynamics are generated by the activity of diverse and can, in principle, be used to precisely compute the recorded poten- massive populations of interconnected neurons distributed tials. Inverse models, however, cannot in general compute the cel- Bacross the nervous system. Complete system-wide recordings lular patterns of activity from recorded potentials.
    [Show full text]