Arecibo Observatory NEWSLETTER

Total Page:16

File Type:pdf, Size:1020Kb

Arecibo Observatory NEWSLETTER National Astronomy and Ionosphere Center Arecibo Observatory N MY A D IO NO NO O S R P T H S E A R E L A C N E N O I T T E A R N NEWSLETTER A R Y EC R IB TO O OBSERVA June 2003, Number 36 Photo: Jonathan Friedman and John Toohey, 2002 and from 1984 to 1985 he was assistant Robert L. Brown named as new director of NRAO operations in Tucson. NAIC Director He received his B.A. from the University With excerpts from an article in the Janu- of California-Berkeley in 1965, and his ary 23, 2003 Cornell Chronical by David M.S. and his Ph.D. from the University Brand, Copyright © Cornell University of California-San Diego, both in 1969. At News Service NRAO he has been involved in studies, both theoretical and observational, of the obert Brown, a noted astrophysi- interstellar medium, the galactic center Rcist and observatory administrator, and distant galaxies. widely experienced in international col- laboration, has been chosen as the new Bob’s intends to spend “an appre- Director of the National Astronomy and ciable amount of time at the telescope” Ionosphere Center. He took up his new and plans to make the observatory even position on May 5 succeeding Paul Gold- more accessible to the scientists who use Bob Brown smith, who stepped down on January 1 to it. This means, in his words, “providing return to full-time research and teaching a level of support that is somewhat enhanced over what has been historically (see NAIC’s November, 2002 newsletter). INDEX Don Campbell, NAIC Associate Direc- provided. We need staff to assist potential tor was Acting Director in the interim users in all phases of scientific research, New NAIC Director.......................... 1 period. from proposal writing to calibration and State of the Observatory .................. 2 data reduction. (…) What could expand Space and Atmospheric Sciences..... 2 Bob comes to us from NRAO and in Arecibo’s usage even further is a capabil- Radio Astronomy .............................. 4 recent years has played a leading role in ity for broad question-solving by letting NSF Management Review of NAIC 6 the international group that is construct- researchers anywhere access archival Solar System Studies ...................... 20 ing the Atacama Large Millimeter Array data, perhaps through the National Vir- 2002 REU Summer Program......... 22 (ALMA) observatory in Chile. He has tual Observatory initiative, or by having Computer Department................... 25 been both associate and deputy director of the observatory staff undertake observa- Workshops held at Arecibo............ 26 NRAO since 1985, spearheading not only tions on behalf of specific users.” New Scheduler ................................ 29 the United States involvement in ALMA Inaugural Gordon Lecture ............ 30 We extend to Bob a warm welcome but also managing NRAO participation NAIC Policy on Press Releases...... 30 in NASA’s Space VLBI Project. From to the NAIC and the Arecibo Observa- Comings and Goings ...................... 30 1977 to 1980 he was assistant director tory. Literary Award for “Hijos” ........... 31 of NRAO operations in Green Bank, Job Openings................................... 33 Seminars since the last newsletter. 34 The NAIC is operated by Cornell University under a Cooperative Agreement with the National Science Foundation. ing effects), validation, calibration, tion through the prospect for a broadened State of the Observatory and archival storage such that the data radar astronomy user base. Developing R. L. Brown are available for use by others. Groups ways to channel that creativity most of astronomers with common research productively is exciting. n 2003 the NAIC is in a state of transi- goals are organizing themselves as As wonderful as the new facilities tion. The Gregorian upgrade project is teams or consortia to share the effort I are, the real strength of the Observatory complete and successfully met its ambi- and the benefits from ALFA observa- is its people. In this regard the state of tious goals; receivers are available (or tions (see Workshops article, page 26). the Observatory has never been better. soon will be) for frequencies from 430 How these consortia share tasks with The Observatory staff members, in all MHz to 10 GHz, with continuous cov- NAIC to the greatest benefit of all is a occupations, are highly professional erage above 1.2 GHz; the S-band radar question to be answered. There are few and dedicated people with a clear vision system is in routine operation; the figure applicable models from which ideas may of the future and a strong commitment to of the primary mirror has been readjusted be harvested. This makes considering bringing it about. This makes me very to provide unrivaled sensitivity across the such issues exciting and important. entire spectrum for which an observing proud to be part of the NAIC as it makes capability is offered to researchers; and We have recently submitted a pro- its transition to the future. the atmospheric sciences program has posal for a new High Frequency (HF) been enriched by the dual beam radar facility that will permit atmospheric capability. This is the realization of researchers to study the interaction past planning. Looking to the future, between a powerful radio wave and the Space and Atmospheric Sciences we see ALFA as a major initiative in ionospheric plasma in a region where Sixto González radio astronomy (see NAIC Newsletter, strong Langmuir turbulence may be ur brief report for this issue begins Nov. 2002), the proposed ionospheric excited (see the following article). The with the observations over the last heating facility as a major initiative in HF facility is an ideal scientific comple- O two quarters or so. Bob Kerr and John atmospheric sciences, and the conceptual ment to the unique 430 MHz incoherent Noto (Scientific Solutions Inc.) visited design of an X-band radar system as the scatter radar in a quiet magnetic-mid- several times in this period and collabo- next major initiative in planetary radar latitude environment. The NAIC also rated with Sixto González Mike Sulzer, astronomy. There is also an opportunity provides a suite of modern atmospheric Craig Tepley, Raúl García, and Carlos now to consider longer-term initiatives optical instruments and the infrastruc- Vargas (all NAIC) to study the topside that build on, or even supplant, existing ture to support visiting scientists who and exosphere using our ISR and the capabilities leading to new “discovery bring to the Observatory additional instruments in our optical lab. For many space”. It’s a welcome, and exciting, instrumentation and other experimental of the observing campaigns the weather time of transition. requirements. HF studies at Arecibo tie together aeronomy, space physics, was bad or there were problems with the The multi-feed ALFA receiver will plasma physics and education in a unique IR Fabry-Perot that is used for observing bring with it a new way of observing, combination that allows for an effective the He 1083 nm emission. During the new requirements for the management implementation of NSF’s strategic plan night of October 1, 2002 we observed and archiving of spectral line and con- for enhancing diversity, making state the effects of a geomagnetic storm on tinuum data bases, and an altogether of the art infrastructure available to the the topside. Figure 1 illustrates some new paradigm for the involvement of the community, and providing opportunities of the results including: 1) evidence for scientific community with NAIC. ALFA for advance discovery and understanding two strong poleward surges in the ther- is much more than a receiver capable of of science and engineering. Altogether, mosphere, 2) spread-F conditions right generating 7 times as much data in the it’s an exciting prospect. before sunrise, and 3) an He+ layer that 21-centimeter band as the existing single- rose and fell in synchronization with the beam receivers. It allows astronomers to The planetary radar program is being F-region motions. Another campaign develop projects that necessarily require transferred from NASA sponsorship to occurred in late March 2003 followed mapping large regions of the sky; in some the NSF astronomy research portfolio. by a short campaign in early May. cases these will be the sort of exploratory By necessity, this transfer provides In the most recent campaign, Bob research that the Arecibo telescope has an opportunity to reassess goals as Kerr was at Arecibo for about a week to proved to be so successful in promoting it removes pre-existing constraints. study the twilight decay of the O+ 732 nm in the past. But the enormous ALFA data Among the ideas to be considered are thermospheric emission. Together with rate also requires astronomers to think moving the radar to a higher frequency, Craig Tepley and Raúl García, Kerr used in terms of automated systems for data X-band, to achieve even better angular our facility’s Fabry-Perot interferometer taking, data filtering (for RFI, spectral resolving power. The move to NSF also and Ebert-Fastie spectrometer to measure baseline instabilities or other corrupt- brings with it further creative stimula- the O+ linewidth and intensity during June 2003, Number 36 2 NAIC/AO Newsletter June 2003, Number 36 3 NAIC/AO Newsletter goals of the TIMED project are twofold: 0.54 Storm-induced variations in the He+ fraction first, to validate the TIMED observations 2000 in the Topside ionosphere and the electron 0.44 He through cross-calibrations with ground- + 1500 density in the F region show correlation. 0.33 Fraction based instruments, of which Arecibo is 0.23 one of many; and second, to coordinate 1000 Height (km) 0.13 with TIMED observations in an attempt 500 to resolve a number of open questions 0.026 22 23 00 01 02 03 04 05 06 07 regarding D- and E-region ionosphere 5.67 500 phenomena.
Recommended publications
  • 10. Scientific Programme 10.1
    10. SCIENTIFIC PROGRAMME 10.1. OVERVIEW (a) Invited Discourses Plenary Hall B 18:00-19:30 ID1 “The Zoo of Galaxies” Karen Masters, University of Portsmouth, UK Monday, 20 August ID2 “Supernovae, the Accelerating Cosmos, and Dark Energy” Brian Schmidt, ANU, Australia Wednesday, 22 August ID3 “The Herschel View of Star Formation” Philippe André, CEA Saclay, France Wednesday, 29 August ID4 “Past, Present and Future of Chinese Astronomy” Cheng Fang, Nanjing University, China Nanjing Thursday, 30 August (b) Plenary Symposium Review Talks Plenary Hall B (B) 8:30-10:00 Or Rooms 309A+B (3) IAUS 288 Astrophysics from Antarctica John Storey (3) Mon. 20 IAUS 289 The Cosmic Distance Scale: Past, Present and Future Wendy Freedman (3) Mon. 27 IAUS 290 Probing General Relativity using Accreting Black Holes Andy Fabian (B) Wed. 22 IAUS 291 Pulsars are Cool – seriously Scott Ransom (3) Thu. 23 Magnetars: neutron stars with magnetic storms Nanda Rea (3) Thu. 23 Probing Gravitation with Pulsars Michael Kremer (3) Thu. 23 IAUS 292 From Gas to Stars over Cosmic Time Mordacai-Mark Mac Low (B) Tue. 21 IAUS 293 The Kepler Mission: NASA’s ExoEarth Census Natalie Batalha (3) Tue. 28 IAUS 294 The Origin and Evolution of Cosmic Magnetism Bryan Gaensler (B) Wed. 29 IAUS 295 Black Holes in Galaxies John Kormendy (B) Thu. 30 (c) Symposia - Week 1 IAUS 288 Astrophysics from Antartica IAUS 290 Accretion on all scales IAUS 291 Neutron Stars and Pulsars IAUS 292 Molecular gas, Dust, and Star Formation in Galaxies (d) Symposia –Week 2 IAUS 289 Advancing the Physics of Cosmic
    [Show full text]
  • A Planet Made of Diamond (W/ Video) 25 August 2011
    A planet made of diamond (w/ video) 25 August 2011 beam of radio waves. As the star spins and the radio beam sweeps repeatedly over Earth, radio telescopes detect a regular pattern of radio pulses. For the newly discovered pulsar, known as PSR J1719-1438, the astronomers noticed that the arrival times of the pulses were systematically modulated. They concluded that this was due to the gravitational pull of a small companion planet, orbiting the pulsar in a binary system. The pulsar and its planet are part of the Milky Way's plane of stars and lie 4,000 light-years away in the constellation of Serpens (the Snake). The system is about an eighth of the way towards the Galactic Centre from the Earth. The modulations in the radio pulses tell An artist's visualisation of the pulsar and its orbiting astronomers a number of things about the planet. planet. Image credit - Swinburne Astronomy Productions First, it orbits the pulsar in just two hours and ten minutes, and the distance between the two objects is 600,000 km-a little less than the radius of our A once-massive star that's been transformed into a Sun. small planet made of diamond: that is what University of Manchester astronomers think they've Second, the companion must be small, less than found in the Milky Way. 60,000 km (that's about five times the Earth's diameter). The planet is so close to the pulsar that, The discovery has been made by an international if it were any bigger, it would be ripped apart by the research team, led by Professor Matthew Bailes of pulsar's gravity.
    [Show full text]
  • Astronomy with Small Telescopes
    Astronomy With Small Telescopes Bohdan Paczy´nski Princeton University Observatory, Princeton, NJ 08544 [email protected] ABSTRACT The All Sky Automated Survey (ASAS) is monitoring all sky to about 14 mag with a cadence of about 1 day; it has discovered about 105 variable stars, most of them new. The instrument used for the survey had aperture of 7 cm. A search for planetary transits has lead to the discovery of about a dozen confirmed planets, so called ’hot Jupiters’, providing the information of planetary masses and radii. Most discoveries were done with telescopes with aperture of 10 cm. We propose a search for optical transients covering all sky with a cadence of 10 - 30 minutes and the limit of 12 - 14 mag, with an instant verification of all candidate events. The search will be made with a large number of 10 cm instruments, and the verification will be done with 30 cm instruments. We also propose a system to be located at the L1 point of the Earth - Sun system to detect ’killer asteroids’. With a limiting magnitude of about 18 mag it could detect 10 m boulders several hours prior to their impact, provide warning against Tunguska-like events, as well as to provide news about spectacular but harmless more modest impacts. Subject headings: techniques: photometric — surveys — celestial mechanics — mete- oroids — stars: variable — gamma rays: bursts arXiv:astro-ph/0609161v3 7 Nov 2006 1. Introduction The goal of this paper is to point out that there are many tasks for which small and even very small telescopes are not only useful, but even indispensable.
    [Show full text]
  • Detecting the Yarkovsky Effect Among Near-Earth Asteroids From
    Detecting the Yarkovsky effect among near-Earth asteroids from astrometric data Alessio Del Vignaa,b, Laura Faggiolid, Andrea Milania, Federica Spotoc, Davide Farnocchiae, Benoit Carryf aDipartimento di Matematica, Universit`adi Pisa, Largo Bruno Pontecorvo 5, Pisa, Italy bSpace Dynamics Services s.r.l., via Mario Giuntini, Navacchio di Cascina, Pisa, Italy cIMCCE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universits, UPMC Univ. Paris 06, Univ. Lille, 77 av. Denfert-Rochereau F-75014 Paris, France dESA SSA-NEO Coordination Centre, Largo Galileo Galilei, 1, 00044 Frascati (RM), Italy eJet Propulsion Laboratory/California Institute of Technology, 4800 Oak Grove Drive, Pasadena, 91109 CA, USA fUniversit´eCˆote d’Azur, Observatoire de la Cˆote d’Azur, CNRS, Laboratoire Lagrange, Boulevard de l’Observatoire, Nice, France Abstract We present an updated set of near-Earth asteroids with a Yarkovsky-related semi- major axis drift detected from the orbital fit to the astrometry. We find 87 reliable detections after filtering for the signal-to-noise ratio of the Yarkovsky drift esti- mate and making sure the estimate is compatible with the physical properties of the analyzed object. Furthermore, we find a list of 24 marginally significant detec- tions, for which future astrometry could result in a Yarkovsky detection. A further outcome of the filtering procedure is a list of detections that we consider spurious because unrealistic or not explicable with the Yarkovsky effect. Among the smallest asteroids of our sample, we determined four detections of solar radiation pressure, in addition to the Yarkovsky effect. As the data volume increases in the near fu- ture, our goal is to develop methods to generate very long lists of asteroids with reliably detected Yarkovsky effect, with limited amounts of case by case specific adjustments.
    [Show full text]
  • Seeking and Blundering by Katie Davis
    Seeking and Blundering by Katie Davis [Music] Katie Davis: I’m Katie Davis with a story. An old, moldy one. [Music] Susan Byrnes: So, this image of penicillin mold looks as if you’re looking down on an island almost in a yellow sea looking on – down onto treetops almost with a kind of little, tiny spines and surrounded by a circle of white that then becomes this kind of milky, yellow field that it’s in. So it seems like we’re looking at a close-up of…a close-up of something in a petri dish. Katie Davis: Susan Byrnes, an Ohio artist, likes the color and the movement of mold. Mold is unruly: sometimes sly, temperamental, surprising, spongy or slimy, and it’s best to wash it off with bleach. That’s what we do with mold. Susan Byrnes: As it moves out it’s almost as if there’s this sort of feathery, whiter field around the outside of it and it’s…you can see how the mold has migrated because outside of that ring is the beginnings of another bit of mold growing. And you can see… Katie Davis: Enough with the mold, you’re thinking. Hang on, here’s the backstory. London, 1928. Biologist Alexander Fleming had a messy lab. There were test tubes, beakers, rubber bands, string, and petri dishes. And this story of a mistake has been told and retold. Researchers have questioned some details, and still it survives – like mold, reemerging in books, movies, and cartoons. Cartoon: Having been brought up on a farm in Scotland, scientist Alexander Fleming wasn’t afraid of getting his hands dirty examining nasty bacteria like staphylococcus aureus which in humans as well as horses can cause death as well as vomiting and boils.
    [Show full text]
  • OGLE 2004-BLG-254: a K3 III Galactic Bulge Giant Spatially Resolved by A
    Astronomy & Astrophysics manuscript no. 4414arti c ESO 2018 January 9, 2018 OGLE 2004–BLG–254: a K3 III Galactic Bulge Giant spatially resolved by a single microlens⋆ A. Cassan1,2,3, J.-P. Beaulieu1,3, P. Fouqu´e1,4, S. Brillant1,5, M. Dominik1,6, J. Greenhill1,7, D. Heyrovsk´y8, K. Horne1,6, U.G. Jørgensen1,9, D. Kubas1,5, H.C. Stempels6, C. Vinter1,9, M.D. Albrow1,12, D. Bennett1,13, J.A.R. Caldwell1,14,15, J.J. Calitz1,16, K. Cook1,17, C. Coutures1,18, D. Dominis1,19, J. Donatowicz1,20, K. Hill1,7, M. Hoffman1,16, S. Kane1,21, J.-B. Marquette1,3, R. Martin1,22, P. Meintjes1,16, J. Menzies1,23, V.R. Miller12, K.R. Pollard1,12, K.C. Sahu1,14, J. Wambsganss1,2, A. Williams1,22, A. Udalski10,11, M.K. Szyma´nski10,11, M. Kubiak10,11, G. Pietrzy´nski10,11,24, I. Soszy´nski10,11,24, K. Zebru´n˙ 10,11, O. Szewczyk10,11, and Ł. Wyrzykowski10,11,25 (Affiliations can be found after the references) Received ¡date¿ / Accepted ¡date¿ ABSTRACT Aims. We present an analysis of OGLE 2004–BLG–254, a high-magnification (A 60) and relatively short duration (tE 13.2 days) microlensing event in which the source star, a Bulge K-giant, has been spatially resolved◦ ≃ by a point-like lens. We seek to determine≃ the lens and source distance, and provide a measurement of the linear limb-darkening coefficients of the source star in the I and R bands. We discuss the derived values of the latter and compare them to the classical theoretical laws, and furthermore examine the cases of already published microlensed GK-giants limb-darkening measurements.
    [Show full text]
  • Cycle 12 Abstract Catalog
    Cycle 12 Abstract Catalog Generated April 04, 2003 ================================================================================ Proposal Category: GO Scientific Category: ISM AND CIRCUMSTELLAR MATTER ID: 9718 Title: SMC Extinction Curve Towards a Quiescent Molecular Cloud PI: Francois Boulanger PI Institution: Institut d'Astrophysique Spatiale The lack of 2175 A bump in the SMC extinction curve is interpreted as an absence of small carbon grains. ISO Mid-IR observations support this interpretation by showing that PAH features are absent in the spectra of SMC and LMC massive star forming regions. However, the only ISO observation of an SMC quiescent molecular cloud shows all PAH features, indicating a PAH abundance relative to large dust grains similar to that of Milky Way clouds. We identified a reddened B2III star associated with this cloud. We propose to observe it with STIS. This observation will provide the first measure of the extinction properties of SMC dust away from star forming regions. It will allow us to disentangle the effects of metallicity and massive stars on the SMC extinction curve and dust composition and to assess the relevance of the SMC bump-free extinction curve to low metallicity and/or starburst galaxies in general. ================================================================================ Proposal Category: GO Scientific Category: STELLAR POPULATIONS ID: 9719 Title: Search For Metallicity Spreads in M31 Globular Clusters PI: Terry Bridges PI Institution: Anglo-Australian Observatory Our recent deep HST photometry of the M31 halo globular cluster (GC) Mayall~II, also called G1, has revealed a red-giant branch with a clear spread that we attribute to an intrinsic metallicity dispersion of at least 0.4 dex in [Fe/H].
    [Show full text]
  • The Minor Planet Bulletin, Alan W
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 42, NUMBER 2, A.D. 2015 APRIL-JUNE 89. ASTEROID LIGHTCURVE ANALYSIS AT THE OAKLEY SOUTHERN SKY OBSERVATORY: 2014 SEPTEMBER Lucas Bohn, Brianna Hibbler, Gregory Stein, Richard Ditteon Rose-Hulman Institute of Technology, CM 171 5500 Wabash Avenue, Terre Haute, IN 47803, USA [email protected] (Received: 24 November) Photometric data were collected over the course of seven nights in 2014 September for eight asteroids: 1334 Lundmarka, 1904 Massevitch, 2571 Geisei, 2699 Kalinin, 3197 Weissman, 7837 Mutsumi, 14927 Satoshi, and (29769) 1999 CE28. Eight asteroids were remotely observed from the Oakley Southern Sky Observatory in New South Wales, Australia. The observations were made on 2014 September 12-14, 16-19 using a 0.50-m f/8.3 Ritchey-Chretien optical tube assembly on a Paramount ME mount and SBIG STX-16803 CCD camera, binned 3x3, with a luminance filter. Exposure times ranged from 90 to 180 sec depending on the magnitude of the target. The resulting image scale was 1.34 arcseconds per pixel. Raw images were processed in MaxIm DL 6 using twilight flats, bias, and dark frames. MPO Canopus was used to measure the processed images and produce lightcurves. In order to maximize the potential for data collection, target asteroids were selected based upon their position in the sky approximately one hour after sunset. Only asteroids with no previously published results were targeted. Lightcurves were produced for 1334 Lundmarka, 1904 Massevitch, 2571 Geisei, 3197 Weissman, and (29769) 1999 CE28.
    [Show full text]
  • 3677 Life in the Universe: Extra-Solar Planets Dr
    DEPARTMENT OF PHYSICS AND ASTRONOMY 3677 Life in the Universe: Extra-solar planets Dr. Matt Burleigh www.star.le.ac.uk/mrb1/lectures.html Course outline • Lecture 1 – Definition of a planet – A little history – Pulsar planets – Doppler “wobble” (radial velocity) technique • Lecture 2 – Transiting planets – Transit search projects – Detecting the atmospheres of transiting planets: secondary eclipses & transmission spectroscopy – Transit timing variations Dr. Matt Burleigh 3677: Life in the Universe Course outline • Lecture 3 – Microlensing – Direct Imaging – Other methods: astrometry, eclipse timing – Planets around evolved stars • Lecture 4 – Statistics: mass and orbital distributions, incidence of solar systems, etc. – Hot Jupiters – Super-Earths – Planetary formation – Planetary atmospheres – The host stars Dr. Matt Burleigh 3677: Life in the Universe Course outline • Lecture 5 – The quest for an Earth-like planet – Habitable zones – Results from the Kepler mission • How common are rocky planets? • Amazing solar systems – Biomarkers – Future telescopes and space missions Dr. Matt Burleigh 3677: Life in the Universe Useful web sites • Extra-solar planets encyclopaedia: exoplanets.eu • Exoplanet Data Explorer (California Planet Survey): exoplanets.org • NASA exoplanet archive: exoplanetarchive.ipac.caltech.edu • Planet hunters (Zooniverse): www.planethunters.org • Kepler mission: kepler.nasa.gov • Next Generation Transit Survey: www.ngtransits.org Dr. Matt Burleigh 3677: Life in the Universe Useful books • Extrasolar planets & Astrobiology:
    [Show full text]
  • Journal of the Association of Lunar & Planetary Observers
    ISSN-0039-2502 Journal of the Association of Lunar & Planetary Observers The Strolling Astronomer Volume 45, Number 1, Winter 2003 Now in Portable Document Format (PDF) for MacIntosh and PC-Compatible Computers Inside...Inside...Inside... More on lunar domes While not the subject of this month’s dome study, we present here a view of lunar dome Mons Gruithuisen Delta (named for Franz von Paul Gruithuisen, a German physician-turned- astronomer) taken from an orbiting Apollo spacecraft. See page 12 for details. • Also . * An ALPO project team to study Saturn’s rings * Isophotes of the Sun * Getting ready for the upcoming Mercury/Venus transits * Getting ready for the Mars apparition * Jupiter and Saturn apparition reports Cover Graphic: John Sanford . plus reports about your ALPO section activities and much, much more. THE ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS (ALPO) P.O. Box 13456, Springfield, Illinois 62791-3456 U.S.A. Thank you for your interest in our organization. The Association of Lunar and Planetary Observers (ALPO) was founded by Walter H. Haas in 1947, and incorporated in 1990, as a medium for advancing and conducting astronomical work by both profes- sional and amateur astronomers who share an interest in Solar System observations. We welcome and provide services for all indi- viduals interested in lunar and planetary astronomy. For the novice observer, the ALPO is a place to learn and to enhance observational techniques. For the advanced amateur astronomer, it is a place where one's work will count. For the professional astronomer, it is a resource where group studies or systematic observing patrols add to the advancement of astronomy.
    [Show full text]
  • European VLBI Network Newsletter Number 5 May 2003 EVN User JIVE Newsletter Publications Meetings Proposals Homepage Support Homepage Archive
    European VLBI Network: Newsletter 5 - May 2003 Página 1 de 10 European VLBI Network Newsletter Number 5 May 2003 EVN User JIVE Newsletter Publications Meetings Proposals Homepage Support Homepage Archive Contents 1. Call for Proposals - Deadline 1 June 2003 2. Report from the Chairman of the CBD of the EVN 3. HRH Prince Charles Rededicates the Lovell Telescope 4. Problems with the Effelsberg Track 5. EVN Achieves e-VLBI 1 Gbps Fringes 6. Report on the 2nd e-VLBI Workshop held at JIVE, Dwingeloo, 15-16 May 2003 7. The First Step Towards a Deep Extragalactic VLBI-Optical Survey (DEVOS) 8. High-sensitivity Observations of Radio Supernovae in Arp 220 1. Call for Proposals - Deadline 1 June 2003 Observing proposals are invited for the EVN, a VLBI network of radio telescopes in Europe and beyond operated by an international Consortium of institutes (http://www.evlbi.org). The EVN is open to all astronomers, and encourages use of the Network by astronomers not specialised in the VLBI technique. The Joint Institute for VLBI in Europe, JIVE (http://www.jive.nl), can provide support and advice on project preparation, scheduling, correlation and analysis. See htmlhttp://www.evlbi.org/support/evn_support.html. Complete a coversheet (now available in LaTeX format) and attach a scientific justification (maximum 2 pages). Up to 2 additional pages with diagrams may be included; the total, including cover sheet, should not exceed 6 pages. See http://www.evlbi.org/proposals/prop.html. The detailed "Call for Proposals" has further information on Global VLBI, EVN+MERLIN and guidelines for proposal submission: see http://www.obs.u-bordeaux1.fr/vlbi/EVN/call-long.html.
    [Show full text]
  • SKA Newsetter Volume 1
    SKA Newsetter Volume 1 International Square Kilometre Array Newsletter Volume 1 February 2000 Greetings. This is the first newsletter of the International Square Kilometre Array project.� The SKA project has enjoyed rapid development on the international front in the past year.� An international SKA Steering Committee (ISSC) has been established, with representation from the 7 countries that are signatories to the Memorandum of Understanding for Research and Development (Australia, Canada, China, India, The Netherlands, the U.K., and the USA).� The mandate of the ISSC includes to provide international oversight and a coordinating body, to establish agreed goals and timelines for the SKA project, to organize a joint international technical and scientific proposal for the SKA and, to this end, to establish and oversee working groups as necessary.�� The ISSC meets twice per year.� The inaugural meeting was held in Dwingeloo in February 1999.� A second meeting occurred in Toronto in August.� The third gathering will take place in Munich at the end of March. The first steps are being taken to establish a European SKA Consortium to coordinate the efforts in Europe. This is being done in the context of an EU-funded Infrastructure Cooperation Network in Radio Astronomy.��� Another area of very significant progress in the past year has been the continued organisation of national projects within the participating countries.� This first newsletter is devoted to reports of activities from correspondents in MOU countries.� Efforts around the world
    [Show full text]