Vacuum Cooling Bread Optimizing Vacuum Cooling for Rudolph’S Bakery
Total Page:16
File Type:pdf, Size:1020Kb
GEORGE BROWN COLLEGE Vacuum Cooling Bread Optimizing vacuum cooling for Rudolph’s Bakery Presented to Rudolph’s Bakeries Ltd. George Brown College Ontario Centres of Excellence By: Paulo Ejay Boongaling and Kit Zhou 5/21/2008 Technical advisor: Professor John Camarda Abstract Vacuum cooling is a rapid evaporative cooling technique, which is achieved through evaporating part of the moisture of a product by the creation of a vacuum. The vacuum cooling of breads requires that the pressure reduction rate be precisely controlled to avoid any adverse effect caused by the build up of pressure in areas of low vapour permeability. This means that the less permeable a type of bread is the slower the vacuum cooling process would have to be. As the cooling time becomes longer the advantages of using vacuuming becomes less. This paper proposes the possibility of simulating the behaviour of the pressure during vacuum cooling mathematically in order to control the pressure more precisely and to provide optimal pressure reduction rate. In addition this paper proposes two additional methods in controlling the pressure build up; however they would require modifications to the current vacuum cooling setup at Rudolph’s. Table of Contents 1 List of Figures......................................................................................................................... 4 2 List of Tables .......................................................................................................................... 4 3 Introduction............................................................................................................................. 6 3.1 Vacuum cooling ............................................................................................................... 6 3.2 Rudolph’s Bakeries Ltd.................................................................................................... 7 3.3 Rudolph’s vacuum cooler................................................................................................. 9 4 Vacuum cooling bread .......................................................................................................... 13 4.1 Mathematical modeling of pressure reduction rate........................................................ 17 5 Experimentation.................................................................................................................... 20 5.1 Experiment guideline ..................................................................................................... 20 5.2 Proposed Experiment ..................................................................................................... 20 5.2.1 Activities................................................................................................................. 25 5.2.2 Resource.................................................................................................................. 26 5.2.3 Cost ......................................................................................................................... 27 5.2.4 Expected outcomes ................................................................................................. 27 6 Additional suggested solutions ............................................................................................. 28 6.1 Method 1 ........................................................................................................................ 29 6.2 Method 2 ........................................................................................................................ 29 6.3 Applying and testing ...................................................................................................... 30 2 7 Conclusion ............................................................................................................................ 30 8 References............................................................................................................................. 31 3 1 List of Figures Figure 1 - Production Timeline with conventional cooling............................................................ 8 Figure 2 - Production Timeline with vacuum cooling.................................................................... 8 Figure 3 - Vacuum Cooler ............................................................................................................ 10 Figure 4 - Cooler cycles................................................................................................................ 12 Figure 5 - Stress during vacuum cooling ...................................................................................... 14 Figure 6 - A (1 Bayrische) vs. Exponential decay function.......................................................... 18 Figure 7 - A/B vs. Exponential decay function............................................................................. 18 Figure 8 - Initial pressure reduction rate for vacuum time from 0.5 to 25 minutes...................... 20 Figure 9 - exponential decay function at corresponding process variable (valve opening).......... 22 Figure 10 - Stress of proposed solution ........................................................................................ 23 Figure 11 - Exponential decay function vs. proposed solution..................................................... 23 Figure 12 - Maximum pressure reduction rate.............................................................................. 24 Figure 13 – Decreasing maximum stress and stress of proposed solution ................................... 24 Figure 14 - Test setup ................................................................................................................... 25 Figure 15 - Projected pressure curve of 16% and 19% combined................................................ 26 Figure 16 - Cross section of landbrot bread.................................................................................. 28 Figure 17 - Switch trigger............................................................................................................. 29 Figure 18 - Expansion restraint..................................................................................................... 29 2 List of Tables Table 1 – Cooling Time Requirements........................................................................................... 6 4 Table 2 - Cooler Controller (Setting A)........................................................................................ 11 Table 3 - Cooler Controller (Setting B) ........................................................................................ 11 Table 4 - Control and Noise.......................................................................................................... 16 Table 5 - Applied vacuum reduction rate from 1000 to 40 mbar ................................................. 19 Table 6 - Cost of landbrot tests..................................................................................................... 21 Table 7 - Pressure reduction rate below 229.92 mbar/min ........................................................... 22 Table 8 - Initial test runs ............................................................................................................... 25 Table 9 - Variable valve opening test ........................................................................................... 26 Table 10 - Value of bread per test................................................................................................. 27 Table 11 - Test value..................................................................................................................... 27 Table 12 - Equipment cost ............................................................................................................ 27 5 3 Introduction 3.1 Vacuum cooling Vacuum cooling is a rapid evaporative cooling technique, which is achieved through evaporating part of the moisture of a product by the creation of a vacuum (Sun and Zheng, 2005). In the bread baking industry, vacuum cooling takes place immediately after the breads are removed from the oven and before packaging in order to avoid vapour condensation inside the packaging (Sun and Wang, 2001). Usual vacuum cooling takes place in a temperature range of 98°C to 30°C (Sun and Zheng, 2006). Bread rolls, crusty breads, sausage rolls, pastries, meat pies, biscotti bread, cakes and baked biscuits has been proven suitable for vacuum cooling. It is now commercially used in Italy for some delicate bakery products, such as panetonni (Everington, 1993). Table 1 shows the time required for conventional and vacuum cooling. Vacuum cooling offers a high cooling efficiency which helps to reduce product hold up time and hence increases production throughput (Sun and Zheng, 2005). Table 1 – Cooling Time Requirements Type Conventional cooling Vacuum cooling Panetonni 24 h 4 min Vienna bread 1 h 1.5 min French begette 1 h 2 min Crusty loafs 32 min 2 min Wheaten bread (2kg loaves), 1 – 3 h 30 s – 5 min French bread sticks, meat pies, sausage rolls, pastries and cakes (Anon, 1977) 6 3.2 Rudolph’s Bakeries Ltd. Currently, Rudolph uses the conventional method to cool their breads. With conventional cooling method, the breads are placed in a storage room where large fans that bring in cooling air from the exterior. Cooling takes place through conductive heat transfer from the core of the bread to its surface followed by convective heat transfer from the bread