Reference Point

Total Page:16

File Type:pdf, Size:1020Kb

Reference Point Reference Point Recognition of the threat of Ehrlichia ruminantium infection in domestic and wild ruminants in the continental United States Thomas R. Kasari, DVM, MVSc, DACVIM, DACVPM; Ryan S. Miller, MSC; Angela M. James, PhD; Jerome E. Freier, DVM, PhD isease attributable to Ehrlichia ruminantium (for- ABBREVIATION Dmerly Cowdria ruminantium) infection was first de- scribed in South Africa in 1838 as a nervous condition FAD Foreign animal disease of sheep that developed after a substantial infestation of ticks.1 It is an infectious but noncontagious tick-borne trophils and endothelial cells and replicates by binary disease (ie, heartwater) that affects domestic and wild fission and, less frequently, by budding. The number of ruminants. Infection often causes the death of clinically replicated organisms inside these cells can range from 1 affected ruminants. In 2009, many sub-Saharan African to several thousand.4,6 countries and the island of Guadeloupe in the Carib- Different strains of E ruminantium may not induce bean reported clinical cases of heartwater in their do- homologous or heterologous cross-protection, with this mestic ruminant populations.2 Additionally, livestock lack of immune induction potentially attributable to have died of heartwater on the islands of Marie-Galante antigenic diversity.4 Antigenic diversity also impacts the and Antigua in the Caribbean.3 degree of pathogenicity of various strains of E ruminan- On the basis of the proximity of the United States tium in Africa and the Caribbean islands. Whereas some mainland to the Caribbean islands, the ultimate concern strains are highly virulent, others appear to be non- for animal health officials, members of the livestock in- pathogenic.7,8 Remarkably, a less pathogenic strain of dustry, and other stakeholders may not be what should E ruminantium, which is referred to as Panola Mountain be done to keep heartwater from being introduced into Ehrlichia, may exist in the central, southeastern, and the continental United States, but rather what can be eastern United States; preliminary characterization of done to limit the extent of an outbreak when this in- this pathogen by investigators indicates that this strain cursion transpires. A key element to controlling the is genetically and antigenically more closely related to extent of a disease outbreak is early recognition of the E ruminantium than to any other Ehrlichia spp.9,10 In a disease in an animal population. Therefore, the pur- goat with experimentally induced disease,9 the Panola pose of the information reported here is to describe the Mountain Ehrlichia bacteria caused a transient illness salient features of heartwater and to promote increased with a mild febrile condition that was followed by a disease awareness among veterinarians, livestock own- chronic latent infection. The lack of reports of heartwa- ers, wildlife biologists, and other stakeholders. It is ter or heartwaterlike disease in domestic or wild rumi- our hope that this awareness will translate into a more nants from areas in which Panola Mountain Ehrlichia rapid detection of disease and the ability to limit the organisms have been detected provides further indirect extent of an outbreak should it occur in the continental support that this bacterium has low pathogenicity in United States. infected animals.10 Ehrlichia ruminantium does not survive for long Pathogen Characteristics periods outside of a host. Blood exposed to sunlight will lose infectivity in ≤ 5 minutes.11 In a dead animal, Ehrlichia ruminantium is an aerobic, gram-negative, 12 nonmotile, coccoid- to ellipsoidal-shaped organism in the organism will typically begin to die in ≤ 6 hours. 4 However, infectivity may be prolonged for as long as 72 the order Rickettsiales and family Anaplasmataceae. 13 This organism is typically transmitted to a susceptible hours under cold conditions (4°C [39.2°F]). Ehrlichia 5 ruminantium is also susceptible to treatment with anti- host through infective blood. Once inside the host, this 5 obligate intracellular agent typically resides inside in- microbials, particularly tetracycline derivatives. tracytoplasmic inclusions (diameter, ≤ 4.0 µm) in neu- Epidemiology From the National Surveillance Unit (Kasari) and Center for Ani- Tick vector—Amblyomma spp ticks must be pres- mal Health Information and Analysis (Miller, James, Freier), ent in a geographic area to transmit E ruminantium to Centers for Epidemiology and Animal Health, Veterinary Ser- susceptible ruminant hosts during and after an out- vices, APHIS, USDA, 2150 Centre Ave, Building B, Fort Collins, CO 80526. break of heartwater. This tick species is categorized as Address correspondence to Dr. Kasari ([email protected]. a 3-host tick; therefore, each life stage of the tick (ie, gov). larva, nymph, and adult) feeds on a different host and 520 Vet Med Today: Reference Point JAVMA, Vol 237, No. 5, September 1, 2010 may require as few as 5 months or up to 4 years to com- water buffalo [Bubalus bubalis]) are also susceptible to plete the tick life cycle.14,15 Infection can be transmitted disease.26 Sheep and goats typically have more severe by each life stage of the tick.16 Infective organisms can clinical disease than do cattle. Bos indicus breeds of cattle endure in these various life stages for an extended pe- typically are more resistant to infection than are B taurus riod (eg, ≤ 15 months).15,17 breeds.27 Similarly, indigenous breeds of goats and sheep In Africa, there are 5 native species of Ambly- in heartwater-endemic areas appear to be more resistant omma spp ticks (Amblyomma variegatum, Amblyomma to disease, compared with resistance of other nonindig- hebraeum, Amblyomma lepidum, Amblyomma astrion, enous breeds of goats and sheep.27 Additionally, young and Amblyomma pomposum) considered natural vec- lambs and kids during the first week after birth and tors of heartwater. These 5 species have transmitted calves during the first month after birth typically have E ruminantium under field conditions to susceptible ani- resistance to overt clinical disease after infection.28–30 mal species, and transmission has caused clinical signs Although heartwater has been the suspected cause of disease.18,19 In experimental conditions, 5 other spe- of death in many species of ungulate ruminant wild- cies of Amblyomma spp ticks (Amblyomma cohaerens, life, only 12 species indigenous to Africa and 3 non– Amblyomma gemma, Amblyomma tholloni, Amblyomma African-origin species are proven to be susceptible to in- sparsum, and Amblyomma marmoreum) indigenous to fection by E ruminantium26,31–42 (Table 1). All 15 species Africa are capable of transmitting E ruminantium to ru- are present in the continental United States as captive (eg, minants.18 Three Amblyomma spp ticks (Amblyomma farmed) or free-ranging populations.33–35 Although these maculatum, Amblyomma cajennense, and Amblyomma species can function as a sentinel species for heartwater, americanum) indigenous to North America are sus- this disease is likely to be observed first in white-tailed ceptible to infection with E ruminantium,19,20 but only deer (Odocoileus virginianus) or axis deer (Axis axis). A maculatum appears to be efficient at transmitting White-tailed deer are an important sentinel species be- heartwater to susceptible ruminants.19,20 Amblyomma cause of their ubiquitous geographic distribution36 and americanum also serves as a natural vector for the E ru- potential interaction with heartwater-infected domestic minantium–like Panola Mountain Ehrlichia organisms9,10 ruminants. Although they lack the extensive range of initially identified in the southeastern United States.9 white-tailed deer, there are free-ranging populations of Amblyomma dissimile, which was introduced into Florida axis deer in Texas, California, and Washington35,38; axis and typically parasitizes reptiles and amphibians,21,22 has deer are a popular farmed species in many southern and also transmitted E ruminantium to goats in experimental midwestern states.33–35,37 Several other ungulate rumi- conditions.23 Despite being found occasionally on cattle nant wildlife species have been introduced into the con- in natural conditions, researchers23 believe it is unlikely tinental United States as captive and free-ranging popu- that A dissimile plays a substantial role in the transmis- lations33–35,37–42 and are suspected to be susceptible to sion of heartwater among ruminants. E ruminantium infection.31,32 However, studies are need- The tropical bont tick (A variegatum) and bont tick ed to confirm the susceptibility of these introduced spe- (A hebraeum) are considered to be the most important cies to E ruminantium infection. vectors of heartwater because of their adaptation to do- mestic ruminant livestock, ease with which they trans- Transmission—The typical life cycle of E ruminan- mit E ruminantium among ruminants, and geographic tium includes a phase in which the organism is transmit- distribution.24,25 However, given the widespread distri- ted between successive life stages of Amblyomma spp ticks bution of the tropical bont tick in the Caribbean islands, before transmission to a susceptible vertebrate host. Ad- this tick may be the arthropod vector that is eventually ditionally, the organism may be transmitted iatrogenically. responsible for the first outbreak of heartwater in the United States. Consequently, veterinarians, livestock TICK-tO-tICK tRANSMISSION owners, and wildlife biologists should be familiar with Miniscule amounts of E ruminantium–infected
Recommended publications
  • New Molecular High Throughput Methods for Ehrlichia Ruminantium Tick Screening and Characterization of Strain Genetic Structure in Mozambique and at Worldwide Scale
    New molecular high throughput methods for Ehrlichia ruminantium tick screening and characterization of strain genetic structure in Mozambique and at worldwide scale Nídia Cangi Thesis presented on the 30th of January 2017 to obtain the grade of Doctor of Philosophy in Life Science, speciality in Molecular biology and Genetics, from the Université des Antilles Jury members: Reviewer: Prof. Christine MARITZ-OLIVIER Reviewer: Dr Eric DUCHAUD Examiner: Dr Nicola COLLINS Examiner: Prof. Jérôme GUERLOTTE Guest members: Thesis director: Prof. Olivier GROS Thesis co-director: Prof. Luís NEVES Thesis co-director: Dr Nathalie VACHIÉRY Acknowledgments I would like to express my gratitude to several people and institutions that contributed directly and indirectly to complete this thesis. I would like to thank sincerely my supervisors Dr Nathalie Vachiéry and Prof. Luís Neves for all their support and guidance, teaching, kindness and especially patience throughout the project. I would not be able to cross the many barriers on my way without their helping hands. I also would like to thank all members of CIRAD-Guadeloupe for receiving me, for their friendship, ideas and help in times of need, especially to Laure Bournez, Soledad Castano, Valerie Pinarello, Rosalie Aprelon, Christian Sheikboudou, Isabel Marcelino, Emmanuel Albina, as well as Adela Chavez, Jonathan Gordon and Mathilde Gondard. To CB-UEM for contributing to my academic development and to my supportive and friendly colleagues. To Prof. Olivier Gros and the University of Antilles for all the administrative support. To all my family and friends, especially my mother Balbina Müller and my husband Nilton Vaz that even without understanding the science behind my work always encouraged and loved me.
    [Show full text]
  • Ehrlichiosis and Anaplasmosis Are Tick-Borne Diseases Caused by Obligate Anaplasmosis: Intracellular Bacteria in the Genera Ehrlichia and Anaplasma
    Ehrlichiosis and Importance Ehrlichiosis and anaplasmosis are tick-borne diseases caused by obligate Anaplasmosis: intracellular bacteria in the genera Ehrlichia and Anaplasma. These organisms are widespread in nature; the reservoir hosts include numerous wild animals, as well as Zoonotic Species some domesticated species. For many years, Ehrlichia and Anaplasma species have been known to cause illness in pets and livestock. The consequences of exposure vary Canine Monocytic Ehrlichiosis, from asymptomatic infections to severe, potentially fatal illness. Some organisms Canine Hemorrhagic Fever, have also been recognized as human pathogens since the 1980s and 1990s. Tropical Canine Pancytopenia, Etiology Tracker Dog Disease, Ehrlichiosis and anaplasmosis are caused by members of the genera Ehrlichia Canine Tick Typhus, and Anaplasma, respectively. Both genera contain small, pleomorphic, Gram negative, Nairobi Bleeding Disorder, obligate intracellular organisms, and belong to the family Anaplasmataceae, order Canine Granulocytic Ehrlichiosis, Rickettsiales. They are classified as α-proteobacteria. A number of Ehrlichia and Canine Granulocytic Anaplasmosis, Anaplasma species affect animals. A limited number of these organisms have also Equine Granulocytic Ehrlichiosis, been identified in people. Equine Granulocytic Anaplasmosis, Recent changes in taxonomy can make the nomenclature of the Anaplasmataceae Tick-borne Fever, and their diseases somewhat confusing. At one time, ehrlichiosis was a group of Pasture Fever, diseases caused by organisms that mostly replicated in membrane-bound cytoplasmic Human Monocytic Ehrlichiosis, vacuoles of leukocytes, and belonged to the genus Ehrlichia, tribe Ehrlichieae and Human Granulocytic Anaplasmosis, family Rickettsiaceae. The names of the diseases were often based on the host Human Granulocytic Ehrlichiosis, species, together with type of leukocyte most often infected.
    [Show full text]
  • Amblyomma Maculatum) and Identification of ‘‘Candidatus Rickettsia Andeanae’’ from Fairfax County, Virginia
    VECTOR-BORNE AND ZOONOTIC DISEASES Volume 11, Number 12, 2011 ª Mary Ann Liebert, Inc. DOI: 10.1089/vbz.2011.0654 High Rates of Rickettsia parkeri Infection in Gulf Coast Ticks (Amblyomma maculatum) and Identification of ‘‘Candidatus Rickettsia Andeanae’’ from Fairfax County, Virginia Christen M. Fornadel,1 Xing Zhang,1 Joshua D. Smith,2 Christopher D. Paddock,3 Jorge R. Arias,2 and Douglas E. Norris1 Abstract The Gulf Coast tick, Amblyomma maculatum, is a vector of Rickettsia parkeri, a recently identified human pathogen that causes a disease with clinical symptoms that resemble a mild form of Rocky Mountain spotted fever. Because the prevalence of R. parkeri infection in geographically distinct populations of A. maculatum is not fully understood, A. maculatum specimens collected as part of a tick and pathogen surveillance system in Fairfax County, Virginia, were screened to determine pathogen infection rates. Overall, R. parkeri was found in 41.4% of the A. maculatum that were screened. Additionally, the novel spotted fever group Rickettsia sp., tentatively named ‘‘Candidatus Rickettsia andeanae,’’ was observed for the first time in Virginia. Key Words: Amblyomma maculatum—Rickettsia andeanae—Rickettsia parkeri—Virginia. Introduction isolated from Gulf Coast ticks in Texas (Parker et al. 1939). Although the bacterium was pathogenic for guinea pigs he Gulf Coast tick, Amblyomma maculatum Koch, is an (Parker et al. 1939), it was thought to be nonpathogenic for Tixodid tick that has been recognized for its increasing humans until the first confirmed case of human infection was veterinary and medical importance. In the United States the described in 2002 (Paddock et al.
    [Show full text]
  • Molecular Diagnosis and Genetic Diversity of Tick-Borne
    Machado et al. Parasites & Vectors (2016) 9:454 DOI 10.1186/s13071-016-1715-y RESEARCH Open Access Molecular diagnosis and genetic diversity of tick-borne Anaplasmataceae agents infecting the African buffalo Syncerus caffer from Marromeu Reserve in Mozambique Rosangela Zacarias Machado1*, Marta Maria Geraldes Teixeira2, Adriana Carlos Rodrigues2, Marcos Rogério André1, Luiz Ricardo Gonçalves1, Jenevaldo Barbosa da Silva1 and Carlos Lopes Pereira3 Abstract Background: Tick-borne diseases (TBDs) are very important in relation to domestic ruminants, but their occurrence among wild ruminants, mainly in the African buffalo Syncerus caffer, remains little known. Methods: Molecular diagnostic methods were applied to detect Anaplasma marginale, Anaplasma centrale, Anaplasma phagocytophilum, Ehrlichia ruminantium and Ehrlichia chaffeensis in 97 blood samples of African buffalo captured at the Marromeu Reserve in Mozambique. Molecular detection of agents belonging to the family Anaplasmataceae were based on conventional and qPCR assays based on msp5, groEL, 16S rRNA, msp2, pCS20 and vlpt genes. Phylogenetic reconstruction of new Anaplasma isolates detected in African buffalo was evaluated based on msp5, groEL and 16S rRNA genes. Results: All the animals evaluated were negative for specific PCR assays for A. phagocytophilum, E. ruminantium and E. chaffeensis, but 70 animals were positive for A. marginale, showing 2.69 × 100 up to 2.00 × 105 msp1β copies/μl. This result overcomes the conventional PCR for A. marginale based on msp5 gene that detected only 65 positive samples. Sequencing and phylogenetic analyses were performed for selected positive samples based on the genes msp5, groEL and 16S rRNA. Trees inferred using different methods separated the 29 msp5 sequences from buffalo in two distinct groups, assigned to A.
    [Show full text]
  • Survey of Anaplasmataceae Bacteria in Sheep from Senegal
    Trop Anim Health Prod DOI 10.1007/s11250-013-0399-y REGULAR ARTICLES Survey of Anaplasmataceae bacteria in sheep from Senegal Mamadou Lamine Djiba & Oleg Mediannikov & Mbaye Mbengue & Yaya Thiongane & Jean-François Molez & Momar Talla Seck & Florence Fenollar & Didier Raoult & Mady Ndiaye Accepted: 11 March 2013 # Springer Science+Business Media Dordrecht 2013 Abstract unexpectedly often. For the first time, A. phagocytophilum Purpose The authors studied the role of bacteria belonging was found in sub-Saharan Africa, and its further epidemiology to Anaplasmataceae family as the causes of acute illnesses may be now reconsidered. The roles of canine pathogen, A. of sheep in West Africa. platys, and yet undescribed Anaplasma sp. “Badiouré” in Methods We examined and sampled 120 febrile sheep in ovine pathology should be more closely studied. two regions of Senegal for this study. The DNA extracted from these blood samples was tested by PCR using two Keyword Sheep . Anaplasmosis . Ehrlichiosis . Ixodid pairs of primers (groEL-based and 16S rRNA gene-based). ticks . Senegal Results In 52/120 samples, the microscopic examination revealed intraerythrocytic and/or intraphagocytic spherical inclusions. In 48/52 cases, we succeeded in identifying the Introduction bacterial agent: in 38 cases, it was Anaplasma ovis;insix cases, it was Ehrlichia ruminantium; in two cases, Anaplasma Anaplasmataceae is one of three officially recognized fam- phagocytophilum; in one case, Anaplasma platys; and in one ilies of the order Rickettsiales of α-Proteobacteria. (Dumler case, a yet uncultured Anaplasma sp. closely related to A. et al. 2001). All representatives of these genera are obligate phagocytophilum. intracellular parasites of vertebrates and invertebrates, and Conclusions Our studies demonstrated the great variety of some of them are etiological agents of arthropod-borne pathogenic bacteria from the Anaplasmataceae family in diseases of mammals.
    [Show full text]
  • <I>Amblyomma Maculatum</I>
    The University of Southern Mississippi The Aquila Digital Community Honors Theses Honors College Spring 5-2017 Elucidating the Interplay between Sodium Selenite on the Tick Amblyomma maculatum Selenoprotein Gene Expression Afnan M. Beauti University of Southern Mississippi Follow this and additional works at: https://aquila.usm.edu/honors_theses Part of the Biochemistry Commons, and the Organismal Biological Physiology Commons Recommended Citation Beauti, Afnan M., "Elucidating the Interplay between Sodium Selenite on the Tick Amblyomma maculatum Selenoprotein Gene Expression" (2017). Honors Theses. 529. https://aquila.usm.edu/honors_theses/529 This Honors College Thesis is brought to you for free and open access by the Honors College at The Aquila Digital Community. It has been accepted for inclusion in Honors Theses by an authorized administrator of The Aquila Digital Community. For more information, please contact [email protected]. The University of Southern Mississippi Elucidating the Interplay between Sodium Selenite on the Tick Amblyomma maculatum Selenoprotein Gene Expression By Afnan M. Beauti A Thesis Submitted to the Honors College of The University of Southern Mississippi In Partial Fulfillment Of the Requirements for the Degree of Bachelor of Science In the Department of Chemistry and Biochemistry May 2017 Approved by: ______________________________ Shahid Karim, PhD. Thesis Advisor Department of Biological Sciences ______________________________ Sabine Heinhorst, PhD. Chair, Department of Chemistry and Biochemistry ______________________________ Ellen Weinauer, PhD. Dean, Honors College ii Abstract Selenium (Se) is an element recognized as an essential micronutrient in eukaryote organisms. Selenoproteins contain selenium as selenocysteine, the 21st amino acid. Selenium plays a role in cell growth and functioning. At low concentrations, it can induce growth and at high concentrations, it can cause a cell to stop growing and potentially have toxic effects on the cell and organism.
    [Show full text]
  • The Prevalence of Serum Antibodies to Ehrlichia Ruminantium Infection in Ranch Cattle in Tanzania: a Cross-Sectional Study
    Article — Artikel The prevalence of serum antibodies to Ehrlichia ruminantium infection in ranch cattle in Tanzania: a cross-sectional study E S Swaia*, P F Mtuia A K Chang’ab and G E Machangea across farming systems in the country. ABSTRACT This investigation was designed to provide Serum samples collected in a cross-sectional survey of grazing cattle on Manyara Ranch, information on the risk of heartwater and Monduli district, Tanzania, were tested by indirect major antigenic protein 1 fragment B to assist in the development of appropri- (MAP 1-B) ELISA to determine the seroprevalence of Ehrlichia ruminantium and to assess ate control strategies. The prevalence of ranch-level risk factors for heartwater. Heartwater-exposed cattle were widespread on the E. ruminantium was assessed, and factors ranch and overall seroprevalence was 50.3 % (95 % CI, 44.9 –55.6), enough to indicate an associated with infection in extensively endemically unstable situation. Multivariate logistic regression modelling was used to raised indigenous cattle on Manyara identify risk factors associated with seropositivity. Two factors appeared to increase the Ranch, Tanzania, were explored. herd’s risk for contracting heartwater. Seroprevalence increased significantly with age (β = 0.19 per year of age, P < 0.001) and animals carrying ticks of any species were associated MATERIALS AND METHODS with an increased risk of infection with E. ruminantium (Odds ratio, OR = 3.3, P < 0.001). The force of infection based on the age seroprevalence profile was estimated at 18 per 100 Study site cattle year-risk. The current tick control measures on the ranch were associated with a decreased risk of infection with E.ruminantium (OR = 0.25 for no dipping and OR = 0.31 for Manyara Ranch (03°34’04’’S, 36°05’ low dipping, P < 0.001).
    [Show full text]
  • Vector-Borne Disease Dynamics in Alabama White-Tailed Deer
    Vector-Borne Disease Dynamics of Alabama White-tailed Deer (Odocoileus virginianus) by Shelby Lynn Zikeli A thesis submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Master of Science Auburn, Alabama August 4, 2018 Keywords: Disease ecology, arbovectors, ectoparasites, white-tailed deer Copyright 2018 by Shelby Lynn Zikeli Approved by Dr. Sarah Zohdy, School of Forestry and Wildlife Sciences (Chair) Dr. Stephen Ditchkoff, School of Forestry and Wildlife Sciences Dr. Robert Gitzen, School of Forestry and Wildlife Sciences Dr. Chengming Wang, Auburn School of Veterinary Medicine Abstract Understanding long-term dynamics of ectoparasite populations on hosts is essential to mapping the potential transmission of disease causing agents and pathogens. Blood feeding ectoparasites such as ticks, lice and keds have a great capability to transmit pathogens throughout a wildlife system. Here, we use a semi-wild white-tailed deer (Odocoileus virginianus) population in an enclosed facility to better understand the role of high-density host populations with improved body conditions in facilitating parasite dynamics. As definitive hosts and breeding grounds for arthropods that may transmit blood-borne pathogens, this population may also be used as a sentinel system of pathogens in the ecosystem. This also mimics systems where populations are fragmented due to human encroachment or through specialized management techniques. We noted a significant increase in ectoparasitism by ticks (p=0.04) over a nine-year study period where deer were collected, and ticks quantified. Beginning in 2016 we implemented a comparison of quantification methods for ectoparasites in addition to ticks and noted that white-tailed deer within the enclosure were more likely to be parasitized by the neotropical deer ked (Lipoptena mazamae) than any tick or louse species.
    [Show full text]
  • Occurrence of Anaplasma and Ehrlichia Species in African Buffalo (Syncerus Caffer) in Kruger National Park and Hluhluwe-Imfolozi Park in South Africa
    Occurrence of Anaplasma and Ehrlichia species in African buffalo (Syncerus caffer) in Kruger National Park and Hluhluwe-iMfolozi Park in South Africa by Elizabeth Matshidiso Debeila Submitted in partial fulfillment of the requirements of the Master of Science degree in the Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria November 2012 © University of Pretoria DECLARATION ____________________________________________ I declare that the dissertation, which I hereby submit for the Master of Science degree in the Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, to be my own work and has not been previously submitted by me for a degree at another tertiary institution. _______________ EM Debeila November 2012 2 Dedication Dedicated to my Parents Mr Samson Mosotho & Mrs Seipati Roseline Debeila And to the memory of my late Grandparents Mr Ishmael Lehlohonolo Makhaotse & Mrs Mmagomogase Ruth Debeila 3 ACKNOWLEDGEMENTS ____________________________________________ I wish to express my sincere appreciation to the following people, organizations and institutions for supporting me throughout the course of my Masters studies. Their valuable inputs have contributed to the completion of this dissertation. With my cordial gratitude I would like to thank my supervisor, Prof Marinda Oosthuizen for her mentorship, encouragement, understanding and invaluable contribution from the very beginning of my study until the end. Her compassion has resulted in my development as a young researcher. I would also like to extend my appreciation to my co-supervisors, Dr Nicola Collins for sharing and imparting her scientific knowledge and to Dr Tshepo Matjila for editing my work for submission to conference presentations.
    [Show full text]
  • 1 Possible Biased Virulence Attenuation in the Senegal Strain of Ehrlichia Ruminantium
    bioRxiv preprint doi: https://doi.org/10.1101/2020.11.26.400648; this version posted November 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Possible biased virulence attenuation in the Senegal strain of Ehrlichia ruminantium 2 by ntrX gene conversion from an inverted segmental duplication 3 4 Jonathan L. Gordon1,2*, Adela S. Oliva Chavez1,2, Dominique Martinez3, Nathalie Vachiery2, 5 Damien F. Meyer1,2*. 6 7 11CIRAD, UMR ASTRE, Site de Duclos, Prise d’eau, F-97170 Petit-Bourg, Guadeloupe, 8 France 9 2ASTRE, CIRAD, INRA, Univ Montpellier, Montpellier, France 10 3CIRAD, F-97130, Capesterre-Belle-Eau, Guadeloupe, France. 11 *Email: [email protected], [email protected] 12 13 Abstract 14 15 Ehrlichia ruminantium is a tick-borne intracellular pathogen of ruminants that causes 16 heartwater, a disease present in Sub-saharan Africa, islands in the Indian Ocean and the 17 Caribbean, inducing significant economic losses. At present, three avirulent strains of E. 18 ruminantium (Gardel, Welgevonden and Senegal isolates) have been produced by a 19 process of serial passaging in mammalian cells in vitro, but unfortunately their use as 20 vaccines do not offer a large range of protection against other strains, possibly due to the 21 genetic diversity present within the species (Cangi et al. 2016). So far no genetic basis for 22 virulence attenuation has been identified in any E. ruminantium strain that could offer targets 23 to facilitate vaccine production. Virulence attenuated Senegal strains have been produced 24 twice independently, and require many fewer passages to attenuate than the other strains.
    [Show full text]
  • Urban Tick Ecology in Oklahoma City
    URBAN TICK ECOLOGY IN OKLAHOMA CITY: TICK DISTRIBUTION, PATHOGEN PREVALENCE AND AVIAN INFESTATION ACROSS AN URBANIZATION GRADIENT By MEGAN A ROSELLI Bachelor of Science in Biology Wilkes University Wilkes-Barre, Pennsylvania 2015 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE May, 2019 URBAN TICK ECOLOGY IN OKLAHOMA CITY: TICK DISTRIBUTION, PATHOGEN PREVALENCE AND AVIAN INFESTATION ACROSS AN URBANIZATION GRADIENT Thesis Approved: Scott R. Loss Thesis Co-Adviser Bruce H. Noden Thesis Co-Adviser W. Sue Fairbanks ii ACKNOWLEDGEMENTS A thesis takes a village, and there are so many people and organizations that made my thesis possible. Funding for my thesis was provided by the Oklahoma Center for the Advancement of Science and Technology (OCAST) and USDA/NIFA hatch grants. Additional funding for my degree program was provided by an Oklahoma State University Graduate Fellowship and a scholarship endowed by Robert L. Lochmiller II. First and foremost, I thank my advisors Drs. Scott Loss and Bruce Noden whose ideas, guidance, edits, and support significantly improved my thesis and entire graduate school experience. I also thank my committee member, Dr. Sue Fairbanks, who provided invaluable help with methodology and provided fresh new perspectives on my results. My project would not have been possible without numerous people who assisted with fieldwork: Dawn Brown, Caitlin Laughlin, Caleb McKinney, and Liam Whiteman. Urban fieldwork is difficult and unique, and I was lucky to have the help of a hard- working, adaptable group of people. I also thank those who volunteered their time to assist with field work, including Jared Elmore, Kelsey Elmore, Sirena Lao, Matthew Fullerton, Alexis Cole, and my advisors.
    [Show full text]
  • Bul 935.Pdf (1.029 Mb )
    SEP 2 4 1985 University Hi-jsissippi state MISSISSIPPI AGRICULTURAL ac FORESTRY EXPERinenTSTATIOn R. RODNEY FOIL, DIRECTOR MISSISSIPPI STATE, MS 39762 James 0 McComas. President Mississippi State University Louis N Wise, Vice President Jerome Goddard and B. R. Norment, Entomology Department, Mississippi State University Content List of Tick Species Occurring or Having Occurred in Mississippi 5 Identification Guide to Ticks Affecting Man, By Season of the Year 5 Key to Families and Genera of Adult Ticks 6 Index to Species Annotations 8 Species Annotations 9 Glossary of Terms Used in the Key 13 Literature Cited 15 Members of the superfamily Ixodoidea, or ticks, are Handrick, 1981; Jacobson and Hurst, 1979; Prestwood, acarines that feed obligately on the blood of mammals, 1968 and Smith, 1977). Other medical or veterinary reptiles and birds. They have a leathery, undifferen- projects have reported tick records from the state tiated body with no distinct head, but the mouth parts (Archer, 1946; Carpenter et al., 1946; Nause and together with the basis capituli form a headlike struc- Norment, 1984; Norment et al., 1985; Philip and ture. Mature ticks and nymphs have four pair of legs, White, 1955; Rhodes and Norment, 1979). There is a and the larvae have three pair. paucity of information on the distributuion and The two major families of ticks recognized in North abundance of ticks in Mississippi. America -(Figure 1) are Ixodidae (hard ticks) and Hard ticks have a four-stage life history. Some ticks Argasidae (soft ticks). Hard ticks are scutate with ob- complete their development on only one or two hosts, vious sexual dimorphism and the blood-fed females are but most Mississippi ticks have a three-host life cycle.
    [Show full text]