Urban Tick Ecology in Oklahoma City

Total Page:16

File Type:pdf, Size:1020Kb

Urban Tick Ecology in Oklahoma City URBAN TICK ECOLOGY IN OKLAHOMA CITY: TICK DISTRIBUTION, PATHOGEN PREVALENCE AND AVIAN INFESTATION ACROSS AN URBANIZATION GRADIENT By MEGAN A ROSELLI Bachelor of Science in Biology Wilkes University Wilkes-Barre, Pennsylvania 2015 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE May, 2019 URBAN TICK ECOLOGY IN OKLAHOMA CITY: TICK DISTRIBUTION, PATHOGEN PREVALENCE AND AVIAN INFESTATION ACROSS AN URBANIZATION GRADIENT Thesis Approved: Scott R. Loss Thesis Co-Adviser Bruce H. Noden Thesis Co-Adviser W. Sue Fairbanks ii ACKNOWLEDGEMENTS A thesis takes a village, and there are so many people and organizations that made my thesis possible. Funding for my thesis was provided by the Oklahoma Center for the Advancement of Science and Technology (OCAST) and USDA/NIFA hatch grants. Additional funding for my degree program was provided by an Oklahoma State University Graduate Fellowship and a scholarship endowed by Robert L. Lochmiller II. First and foremost, I thank my advisors Drs. Scott Loss and Bruce Noden whose ideas, guidance, edits, and support significantly improved my thesis and entire graduate school experience. I also thank my committee member, Dr. Sue Fairbanks, who provided invaluable help with methodology and provided fresh new perspectives on my results. My project would not have been possible without numerous people who assisted with fieldwork: Dawn Brown, Caitlin Laughlin, Caleb McKinney, and Liam Whiteman. Urban fieldwork is difficult and unique, and I was lucky to have the help of a hard- working, adaptable group of people. I also thank those who volunteered their time to assist with field work, including Jared Elmore, Kelsey Elmore, Sirena Lao, Matthew Fullerton, Alexis Cole, and my advisors. I sincerely thank the numerous undergraduates who assisted with lab work: Alexis Cole, Melissa Crouch, Cari Lewis, Victoria Pickens, and Aliyah Starnes. I always say “we do all our own stunts” in regards to lab work, and I couldn’t have done it without such dedicated group (including my advisor Dr. Bruce Noden). Thank you to all my previous mentors for showing me a career in science is iii Acknowledgements reflect the views of the author and are not endorsed by committee members or Oklahoma State University. possible, Drs. Jeffery Stratford, Michael Steele, Ned Fetcher, Desiree Narango and Richard Feldman, and Hannah Webber and Seth Benz. I thank the staff, faculty, and graduate students from the Entomology Plant Pathology and Natural Resource Ecology and Management departments at Oklahoma State University. I was lucky to have the support and guidance of two departments during my thesis. I especially thank my lab mates: Jared Elmore, Matthew Fullerton, Paulina Harron, Sirena Lao, Shishir Paudel and Corey Riding. Additional thanks to Samantha Cady, Jonathan and Samantha Harris, Ashley and Malcom Knoch, Angela Riley, and Dr. Timothy O’Connell. Finally, I thank my family and friends (who I consider my family at this point) for supporting me even when I plan on doing something a little unbelievable, like move to Oklahoma to study ticks and birds. Thank you to my parents, Kevin Roselli, Melissa Kresge, my second set of parents, Bobbi Bond, and Michael Schmoyer, my sister, Abigail Roselli, my honorary brother Chase Rios, my friends Ally Hothouse, Leo Macaluso, and Sarah Szwydko, my grandparents David and Judith Kresge and Lynda Roselli, and my companion, Apollo. I dedicate this thesis to my late grandfather and number one fan, Frank Roselli. iv Acknowledgements reflect the views of the author and are not endorsed by committee members or Oklahoma State University. Name: MEGAN ROSELLI Date of Degree: MAY, 2019 Title of Study: URBAN ECOLOGY OF TICKS IN OKLAHOMA CITY: TICK DISTRIBUTION, PATHOGEN PREVALENCE, AND AVIAN INFESTATION ACROSS AN URBANIZATION GRADIENT Major Field: NATURAL RESOURCE ECOLOGY AND MANAGEMENT Abstract: Urbanization has been linked to the emergence and increased prevalence of many vector-borne diseases, including tick-borne diseases. Despite the growing public health importance of tick-borne diseases, little is known about how they are influenced by urbanization in North America, especially in the central U.S. where several pathogens occur at or near their highest levels of incidence nationally. To understand how urbanization effects tick-borne disease, we investigated tick distribution, tick-bone pathogen prevalence, and tick-host interactions across a gradient of urbanization in Oklahoma City, Oklahoma, USA. At 16 parks and greenspaces we collected ticks using CO2 traps and flagging, measured temperature and humidity during tick sampling, conducted vegetation surveys, and used trail cameras to estimate an index of deer abundance. Adult ticks were tested for Rickettsia sp., Ehrlichia sp., Anaplasma sp., Borrelia sp., and Francisella tularensis. Additionally, we mist-netted birds during the breeding season, sampled them for ticks. Our results indicate there is a risk of encountering ticks and pathogens across the entire urbanization gradient from exurban areas to the urban core, although some tick species and pathogens (Dermacentor variabilis and Ehrlichia ewingii) may be less common in intensely urbanized areas. We also found that vegetation, temperature, and moisture variables predict tick abundance and that these correlates vary among species. The index of deer abundance was positively correlated with A. maculatum and D. variabilis abundance but unrelated to A. americanum abundance, but urbanization intensity did not influence either the proportion of birds with ticks or the tick load of infested birds. Our results suggest that urban residents are at risk for encountering a tick-borne disease, and it’s unlikely that deer by themselves are driving tick abundance in Oklahoma City since such a large proportion of birds were infested with ticks. Public health officials and land managers can use such information about parks and their surroundings to focus public education and land management efforts designed to reduce tick-borne disease prevalence. v TABLE OF CONTENTS Chapter Page I. MULTI SCALE DRIVERS OF TICK DISTRIBUTION AND TICK-BORNE PATHOGEN PREVALENCE ACROSS AN URBANIZATION GRADIENT IN A MAJOR METROPOLITAN AREA IN THE U.S. GREAT PLAINS .....................1 Abstract ....................................................................................................................1 Introduction ..............................................................................................................2 Methods....................................................................................................................5 Study design and site selection ..........................................................................5 Tick collection ...................................................................................................7 Vegetation sampling ..........................................................................................8 Deer camera trapping .........................................................................................9 Molecular testing .............................................................................................10 Statistical analysis ............................................................................................12 Results ....................................................................................................................16 Factors influencing tick abundance .................................................................16 Association between deer abundance and tick abundance ..............................18 Factors influencing pathogen prevalence .........................................................19 Discussion ..............................................................................................................21 Factors influencing tick abundance .................................................................22 Association between deer abundance and tick abundance ..............................24 Factors influencing pathogen prevalence .........................................................25 Conclusions ............................................................................................................28 Acknowledgments..................................................................................................30 References ..............................................................................................................29 Tables and Figures .................................................................................................41 Appendix ................................................................................................................49 II. VARIATION IN TICK INFESTATION OF BIRDS ACROSS A GRADIENT OF URBANIZATION INTENSITY IN A MAJOR METROPOLITAN AREA IN THE U.S. GREAT PLAINS ...........................................................................................64 Abstract ..................................................................................................................64 Introduction ............................................................................................................65 Methods..................................................................................................................68 Results ....................................................................................................................73
Recommended publications
  • Amblyomma Maculatum) and Identification of ‘‘Candidatus Rickettsia Andeanae’’ from Fairfax County, Virginia
    VECTOR-BORNE AND ZOONOTIC DISEASES Volume 11, Number 12, 2011 ª Mary Ann Liebert, Inc. DOI: 10.1089/vbz.2011.0654 High Rates of Rickettsia parkeri Infection in Gulf Coast Ticks (Amblyomma maculatum) and Identification of ‘‘Candidatus Rickettsia Andeanae’’ from Fairfax County, Virginia Christen M. Fornadel,1 Xing Zhang,1 Joshua D. Smith,2 Christopher D. Paddock,3 Jorge R. Arias,2 and Douglas E. Norris1 Abstract The Gulf Coast tick, Amblyomma maculatum, is a vector of Rickettsia parkeri, a recently identified human pathogen that causes a disease with clinical symptoms that resemble a mild form of Rocky Mountain spotted fever. Because the prevalence of R. parkeri infection in geographically distinct populations of A. maculatum is not fully understood, A. maculatum specimens collected as part of a tick and pathogen surveillance system in Fairfax County, Virginia, were screened to determine pathogen infection rates. Overall, R. parkeri was found in 41.4% of the A. maculatum that were screened. Additionally, the novel spotted fever group Rickettsia sp., tentatively named ‘‘Candidatus Rickettsia andeanae,’’ was observed for the first time in Virginia. Key Words: Amblyomma maculatum—Rickettsia andeanae—Rickettsia parkeri—Virginia. Introduction isolated from Gulf Coast ticks in Texas (Parker et al. 1939). Although the bacterium was pathogenic for guinea pigs he Gulf Coast tick, Amblyomma maculatum Koch, is an (Parker et al. 1939), it was thought to be nonpathogenic for Tixodid tick that has been recognized for its increasing humans until the first confirmed case of human infection was veterinary and medical importance. In the United States the described in 2002 (Paddock et al.
    [Show full text]
  • The External Parasites of Birds: a Review
    THE EXTERNAL PARASITES OF BIRDS: A REVIEW BY ELIZABETH M. BOYD Birds may harbor a great variety and numher of ectoparasites. Among the insects are biting lice (Mallophaga), fleas (Siphonaptera), and such Diptera as hippohoscid flies (Hippohoscidae) and the very transitory mosquitoes (Culicidae) and black flies (Simuliidae), which are rarely if every caught on animals since they fly off as soon as they have completed their blood-meal. One may also find, in birds ’ nests, bugs of the hemipterous family Cimicidae, and parasitic dipterous larvae that attack nestlings. Arachnida infesting birds comprise the hard ticks (Ixodidae), soft ticks (Argasidae), and certain mites. Most ectoparasites are blood-suckers; only the Ischnocera lice and some species of mites subsist on skin components. The distribution of ectoparasites on the host varies with the parasite concerned. Some show no habitat preference while others tend to confine themselves to, or even are restricted to, definite areas on the body. A list of 198 external parasites for 2.55 species and/or subspecies of birds east of the Mississippi has been compiled by Peters (1936) from files of the Bureau of Entomology and Plant Quarantine between 1928 and 1935. Fleas and dipterous larvae were omitted from this list. According to Peters, it is possible to collect three species of lice, one or two hippoboscids, and several types of mites on a single bird. He records as many as 15 species of ectoparasites each from the Bob-white (Co&us uirginianus), Song Sparrow (Melospiza melodia), and Robin (Turdus migratorius). The lice and plumicolous mites, however, are typically the most abundant forms present on avian hosts.
    [Show full text]
  • Detection of Babesia Odocoilei in Ixodes Scapularis Ticks Collected from Songbirds in Ontario and Quebec, Canada
    pathogens Article Detection of Babesia odocoilei in Ixodes scapularis Ticks Collected from Songbirds in Ontario and Quebec, Canada John D. Scott *, Emily L. Pascoe , Muhammad S. Sajid and Janet E. Foley Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA; [email protected] (E.L.P.); [email protected] (M.S.S.); [email protected] (J.E.F.) * Correspondence: [email protected] Received: 19 August 2020; Accepted: 16 September 2020; Published: 24 September 2020 Abstract: Songbirds widely disperse ticks that carry a diversity of pathogens, some of which are pathogenic to humans. Among ticks commonly removed from songbirds, the blacklegged tick, Ixodes scapularis, can harbor any combination of nine zoonotic pathogens, including Babesia species. From May through September 2019, a total 157 ticks were collected from 93 songbirds of 29 species in the Canadian provinces of Ontario and Québec. PCR testing for the 18S gene of Babesia species detected Babesia odocoilei in 12.63% of I. scapularis nymphs parasitizing songbirds in Ontario and Québec; none of the relatively small numbers of Ixodes muris, Ixodes brunneus, or Haemaphysalis leporispalustris were PCR-positive. For ticks at each site, the prevalence of B. odocoilei was 16.67% in Ontario and 8.89% and 5.26% in Québec. Of 31 live, engorged I. scapularis larvae and nymphs held to molt, 25 ticks completed the molt; five of these molted ticks were positive for B. odocoilei. PCR-positive ticks were collected from six bird species—namely, Common Yellowthroat, Swainson’s Thrush, Veery, House Wren, Baltimore Oriole, and American Robin.
    [Show full text]
  • Ecology and Evolution of Malarial Parasites In
    ECOLOGY AND EVOLUTION OF MALARIAL PARASITES IN VERTEBRATE HOSTS A Dissertation Presented to the Faculty of the Graduate School Of Cornell University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy By Holly Lynn Lutz August 2016 © Holly Lynn Lutz 2016 ECOLOGY AND EVOLUTION OF MALARIAL PARASITES IN VERTEBRATE HOSTS Holly Lynn Lutz, Ph.D. Cornell University 2016 This dissertation represents a culmination of extensive field work and collections of African vertebrates and their symbionts, as well as experimental studies carried out in the laboratory. Field work was conducted primarily in the East African countries of Kenya, Malawi, Mozambique, and Uganda. Throughout these expeditions, efforts were made to improve field protocols for the comprehensive sampling of wild vertebrates and their symbionts, with particular focus on the sampling of avian blood parasites (haematozoa), ectoparasites (arthropods), endoparasites (helminths), and microbial symbionts (bacteria and viruses). This dissertation therefore includes a chapter with detailed guidelines and protocols for sampling avian symbionts based on these experiences. Following chapters rely on data from both field collections and laboratory experiments, which provide a foundation for addressing the ecology, systematics, and molecular evolution of malarial parasites in vertebrate hosts. Specifically, haemosporidian data from 2,539 Afrotropical birds and small mammals (bats, rodents, and shrews) collected during field inventories were used to (1) test hypotheses linking host life history traits and host ecology to patterns of infection by three haemosporidian parasite genera in birds (Plasmodium, Haemoproteus, and Leucocytozoon), and (2) re-evaluate the molecular phylogeny of the order Haemosporida by incorporating existing genomic data from haemosporidian parasites with data from novel parasite lineages infecting major vertebrate host groups, including birds, mammals, and reptiles.
    [Show full text]
  • Annotated List of the Hard Ticks (Acari: Ixodida: Ixodidae) of New Jersey
    applyparastyle "fig//caption/p[1]" parastyle "FigCapt" applyparastyle "fig" parastyle "Figure" Journal of Medical Entomology, 2019, 1–10 doi: 10.1093/jme/tjz010 Review Review Downloaded from https://academic.oup.com/jme/advance-article-abstract/doi/10.1093/jme/tjz010/5310395 by Rutgers University Libraries user on 09 February 2019 Annotated List of the Hard Ticks (Acari: Ixodida: Ixodidae) of New Jersey James L. Occi,1,4 Andrea M. Egizi,1,2 Richard G. Robbins,3 and Dina M. Fonseca1 1Center for Vector Biology, Department of Entomology, Rutgers University, 180 Jones Ave, New Brunswick, NJ 08901-8536, 2Tick- borne Diseases Laboratory, Monmouth County Mosquito Control Division, 1901 Wayside Road, Tinton Falls, NJ 07724, 3 Walter Reed Biosystematics Unit, Department of Entomology, Smithsonian Institution, MSC, MRC 534, 4210 Silver Hill Road, Suitland, MD 20746-2863 and 4Corresponding author, e-mail: [email protected] Subject Editor: Rebecca Eisen Received 1 November 2018; Editorial decision 8 January 2019 Abstract Standardized tick surveillance requires an understanding of which species may be present. After a thorough review of the scientific literature, as well as government documents, and careful evaluation of existing accessioned tick collections (vouchers) in museums and other repositories, we have determined that the verifiable hard tick fauna of New Jersey (NJ) currently comprises 11 species. Nine are indigenous to North America and two are invasive, including the recently identified Asian longhorned tick,Haemaphysalis longicornis (Neumann, 1901). For each of the 11 species, we summarize NJ collection details and review their known public health and veterinary importance and available information on seasonality. Separately considered are seven additional species that may be present in the state or become established in the future but whose presence is not currently confirmed with NJ vouchers.
    [Show full text]
  • <I>Amblyomma Maculatum</I>
    The University of Southern Mississippi The Aquila Digital Community Honors Theses Honors College Spring 5-2017 Elucidating the Interplay between Sodium Selenite on the Tick Amblyomma maculatum Selenoprotein Gene Expression Afnan M. Beauti University of Southern Mississippi Follow this and additional works at: https://aquila.usm.edu/honors_theses Part of the Biochemistry Commons, and the Organismal Biological Physiology Commons Recommended Citation Beauti, Afnan M., "Elucidating the Interplay between Sodium Selenite on the Tick Amblyomma maculatum Selenoprotein Gene Expression" (2017). Honors Theses. 529. https://aquila.usm.edu/honors_theses/529 This Honors College Thesis is brought to you for free and open access by the Honors College at The Aquila Digital Community. It has been accepted for inclusion in Honors Theses by an authorized administrator of The Aquila Digital Community. For more information, please contact [email protected]. The University of Southern Mississippi Elucidating the Interplay between Sodium Selenite on the Tick Amblyomma maculatum Selenoprotein Gene Expression By Afnan M. Beauti A Thesis Submitted to the Honors College of The University of Southern Mississippi In Partial Fulfillment Of the Requirements for the Degree of Bachelor of Science In the Department of Chemistry and Biochemistry May 2017 Approved by: ______________________________ Shahid Karim, PhD. Thesis Advisor Department of Biological Sciences ______________________________ Sabine Heinhorst, PhD. Chair, Department of Chemistry and Biochemistry ______________________________ Ellen Weinauer, PhD. Dean, Honors College ii Abstract Selenium (Se) is an element recognized as an essential micronutrient in eukaryote organisms. Selenoproteins contain selenium as selenocysteine, the 21st amino acid. Selenium plays a role in cell growth and functioning. At low concentrations, it can induce growth and at high concentrations, it can cause a cell to stop growing and potentially have toxic effects on the cell and organism.
    [Show full text]
  • Comparative Analysis of Microsatellite and Mitochondrial Genetic Variation in Ixodes Scapularis
    Georgia Southern University Digital Commons@Georgia Southern Electronic Theses and Dissertations Graduate Studies, Jack N. Averitt College of Spring 2012 Comparative Analysis of Microsatellite and Mitochondrial Genetic Variation in Ixodes Scapularis Cynthia Tak Wan Chan Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd Part of the Biology Commons Recommended Citation Chan, Cynthia Tak Wan, "Comparative Analysis of Microsatellite and Mitochondrial Genetic Variation in Ixodes Scapularis" (2012). Electronic Theses and Dissertations. 865. https://digitalcommons.georgiasouthern.edu/etd/865 This thesis (open access) is brought to you for free and open access by the Graduate Studies, Jack N. Averitt College of at Digital Commons@Georgia Southern. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact [email protected]. COMPARATIVE ANALYSIS OF MICROSATELLITE AND MITOCHONDRIAL GENETIC VARIATION IN IXODES SCAPULARIS by CYNTHIA TAK WAN CHAN (Under the Direction of Lorenza Beati) ABSTRACT Ixodes scapularis, the black legged tick, is a species endemic to North America with a range including most of the eastern-half of the United States and portions of Canada and Mexico. The tick is an important vector of diseases transmitted to humans and animals. Since its first description in 1821, the taxonomy of the species has been controversial. Biological differences have been identified in the northern and southern populations, yet no consensus exists on population structure and the causes of this disparity. Earlier molecular studies utilizing nuclear and mitochondrial genetic markers have revealed the occurrence of two distinct lineages: a genetically diverse southern clade found in the southern-half of the distribution area of I.
    [Show full text]
  • Are Ticks Venomous Animals? Alejandro Cabezas-Cruz1,2 and James J Valdés3*
    Cabezas-Cruz and Valdés Frontiers in Zoology 2014, 11:47 http://www.frontiersinzoology.com/content/11/1/47 RESEARCH Open Access Are ticks venomous animals? Alejandro Cabezas-Cruz1,2 and James J Valdés3* Abstract Introduction: As an ecological adaptation venoms have evolved independently in several species of Metazoa. As haematophagous arthropods ticks are mainly considered as ectoparasites due to directly feeding on the skin of animal hosts. Ticks are of major importance since they serve as vectors for several diseases affecting humans and livestock animals. Ticks are rarely considered as venomous animals despite that tick saliva contains several protein families present in venomous taxa and that many Ixodida genera can induce paralysis and other types of toxicoses. Tick saliva was previously proposed as a special kind of venom since tick venom is used for blood feeding that counteracts host defense mechanisms. As a result, the present study provides evidence to reconsider the venomous properties of tick saliva. Results: Based on our extensive literature mining and in silico research, we demonstrate that ticks share several similarities with other venomous taxa. Many tick salivary protein families and their previously described functions are homologous to proteins found in scorpion, spider, snake, platypus and bee venoms. This infers that there is a structural and functional convergence between several molecular components in tick saliva and the venoms from other recognized venomous taxa. We also highlight the fact that the immune response against tick saliva and venoms (from recognized venomous taxa) are both dominated by an allergic immunity background. Furthermore, by comparing the major molecular components of human saliva, as an example of a non-venomous animal, with that of ticks we find evidence that ticks resemble more venomous than non-venomous animals.
    [Show full text]
  • Acari: Ixodidae), with Discussions About Hypotheses on Tick Evolution
    Revista FAVE – Sección Ciencias Veterinarias 16 (2017) 13-29; doi: https://doi.org/10.14409/favecv.v16i1.6609 Versión impresa ISSN 1666-938X Versión digital ISSN 2362-5589 REVIEW ARTICLE Birds and hard ticks (Acari: Ixodidae), with discussions about hypotheses on tick evolution Guglielmone AA1,2, Nava S1,2,* 1Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, Argentina 2Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina * Correspondence: Santiago Nava, INTA EEA Rafaela, CC 22, CP 2300 Rafaela, Santa Fe, Argentina. E-mail: [email protected] Received: 3 March 2017. Accepted: 11 June 2017. Available online: 22 June 2017 Editor: P.M. Beldomenico SUMMARY. The relationship between birds (Aves) and hard ticks (Ixodidae) was analyzed for the 386 of 725 tick extant species whose larva, nymph and adults are known as well as their natural hosts. A total of 136 (54 Prostriata= Ixodes, 82 Metastriata= all other genera) are frequently found on Aves, but only 32 species (1 associated with Palaeognathae, 31 with Neognathae) have all parasitic stages feeding on birds: 25 Ixodes (19% of the species analyzed for this genus), 6 Haemaphysalis (7%) and 1 species of Amblyomma (2%). The species of Amblyomma feeds on marine birds (MB), the six Haemaphysalis are parasites of non-marine birds (NMB), and 14 of the 25 Ixodes feed on NMB, one feeds on NMB and MB, and ten on MB. The Australasian Ixodes + I. uriae clade probably originated at an uncertain time from the late Triassic to the early Cretaceous. It is speculated that Prostriata first hosts were Gondwanan theropod dinosaurs in an undetermined place before Pangaea break up; alternatively, if ancestral monotromes were involved in its evolution an Australasian origin of Prostriata seems plausible.
    [Show full text]
  • Distribution Géographique Et Saisonnière Des Espèces De Tiques D’Importance Médicale Autres Qu’Ixodes Scapularis Au Québec
    Distribution géographique et saisonnière des espèces de tiques d’importance médicale autres qu’Ixodes scapularis au Québec RAPPORT DE SYNTHÈSE Distribution géographique et saisonnière des espèces de tiques d’importance médicale autres qu’Ixodes scapularis au Québec RAPPORT DE SYNTHÈSE Laboratoire de santé publique du Québec Mars 2017 AUTEURES Karine Thivierge, Ph. D., chercheur d’établissement Laboratoire de santé publique du Québec Institut national de santé publique du Québec Salima Gasmi, BVSc, M. Sc, M. VPH Centre des maladies infectieuses d'origine alimentaire, environnementale et zoonotique Agence de la santé publique du Canada Catherine Bouchard, D.M.V., Ph. D. Division science des risques pour la santé publique, Laboratoire national de microbiologie Agence de la santé publique du Canada DIRECTION SCIENTIFIQUE Jean Longtin, M.D., FRCPC Directeur médical, Laboratoire de santé publique du Québec Institut national de santé publique du Québec AVEC LA COLLABORATION DE Ariane Adam-Poupart, Ph. D. Direction des risques biologiques et de la santé au travail Institut national de santé publique du Québec Patrick Leighton, Ph. D., professeur adjoint Faculté de médecine vétérinaire, Université de Montréal François Milord, M.D., M. Sc., F.R.C.P.C. Direction des risques biologiques et de la santé au travail Institut national de santé publique du Québec Nicholas H. Ogden, BVSc, Ph. D., professeur associé Division science des risques pour la santé publique, Laboratoire national de microbiologie Agence de santé publique du Canada Yann Pelcat, M. Sc., géographe médical Division science des risques pour la santé publique, Laboratoire national de microbiologie Agence de santé publique du Canada MISE EN PAGE Kim Betournay, agente administrative Danka Kareen Shank, agente administrative Laboratoire de santé publique du Québec Ce document est disponible intégralement en format électronique (PDF) sur le site Web de l’Institut national de santé publique du Québec au : http://www.inspq.qc.ca.
    [Show full text]
  • Vector-Borne Disease Dynamics in Alabama White-Tailed Deer
    Vector-Borne Disease Dynamics of Alabama White-tailed Deer (Odocoileus virginianus) by Shelby Lynn Zikeli A thesis submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Master of Science Auburn, Alabama August 4, 2018 Keywords: Disease ecology, arbovectors, ectoparasites, white-tailed deer Copyright 2018 by Shelby Lynn Zikeli Approved by Dr. Sarah Zohdy, School of Forestry and Wildlife Sciences (Chair) Dr. Stephen Ditchkoff, School of Forestry and Wildlife Sciences Dr. Robert Gitzen, School of Forestry and Wildlife Sciences Dr. Chengming Wang, Auburn School of Veterinary Medicine Abstract Understanding long-term dynamics of ectoparasite populations on hosts is essential to mapping the potential transmission of disease causing agents and pathogens. Blood feeding ectoparasites such as ticks, lice and keds have a great capability to transmit pathogens throughout a wildlife system. Here, we use a semi-wild white-tailed deer (Odocoileus virginianus) population in an enclosed facility to better understand the role of high-density host populations with improved body conditions in facilitating parasite dynamics. As definitive hosts and breeding grounds for arthropods that may transmit blood-borne pathogens, this population may also be used as a sentinel system of pathogens in the ecosystem. This also mimics systems where populations are fragmented due to human encroachment or through specialized management techniques. We noted a significant increase in ectoparasitism by ticks (p=0.04) over a nine-year study period where deer were collected, and ticks quantified. Beginning in 2016 we implemented a comparison of quantification methods for ectoparasites in addition to ticks and noted that white-tailed deer within the enclosure were more likely to be parasitized by the neotropical deer ked (Lipoptena mazamae) than any tick or louse species.
    [Show full text]
  • Investigation of Ticks and Tick-Borne Pathogens in Deciduous Forests of Eastern Central Alabama
    Investigation of Ticks and Tick-Borne Pathogens in Deciduous Forests of Eastern Central Alabama by Xiaodi Wang A thesis submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Master of Science Auburn, Alabama May 6, 2017 Keywords: ticks, Amblyomma americanum, Rickettsia, Ehrlichia, microenvironment, host Copyright 2017 by Xiaodi Wang Approved by Derrick K. Mathias, Chair, Assistant Professor of Entomology Alana L. Jacobson, Assistant Professor of Entomology David W. Held, Associate Professor of Entomology Abstract Ticks are obligate hematophagous arthropods, and as vectors of human disease, they are second only to mosquitoes in medical importance. There are many unknowns in Alabama regarding ticks and tick-borne diseases that require further study. In 2015, we sampled ticks across eight sites located in or near Auburn, AL, and investigated tick density, diversity and pathogen prevalence. Seven tick species were collected, but 97.71% of all samples were a single species, the lone star tick, Amblyomma americanum, the primary vector of ehrlichiosis. For prevalence studies, a multiplex qPCR assay was used to screen DNA samples from lone star ticks simultaneously for five pathogens. Our results revealed an absence of either Rickettsii parkeri or Panola Mountain Ehrlichia, but we did identify the presence of three bacterial species: R. amblyommii (54.51%), Ehrlichia chaffeensis (0.27%) and Ehrlichia ewingii (0.45%). Moreover, , we observed that questing ticks were unequally distributed within habitats. Thus, in 2016, we investigated factors that influence spatial variation of questing A. americanum within a single forested habitat. The hypothesis was tha questing behavior is driven by a combination of factors associated with microclimate, vegetation, and animal hosts.
    [Show full text]