Chapter 10: Motion in a Noninertial Reference Frame

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 10: Motion in a Noninertial Reference Frame Lecture Notes for PHY 405 Classical Mechanics From Thorton & Marion's Classical Mechanics Prepared by Dr. Joseph M. Hahn Saint Mary's University Department of Astronomy & Physics November 9, 2004 Chapter 10: Motion in a Noninertial Reference Frame Recall that Newton's Laws of motion are valid in an inertial (ie, non{accelerated) reference frame. Is this classroom an inertial reference frame? Why or why not? Since there is no reference frame that is absolutely at rest, we need to derive the laws that describe motion in a non{inertial reference frames. In particular, we are going to focus on the motion of bodies moving in a rotating reference frame. This will allow us to calculate the motion of bodies near the surface of a rotat- ing planet, as well as the motion of a rotating rigid body (eg, a spinning top). 1 A rotating coordinate system Let the vector r0 point to particle P from the origin of some ‘fixed’ or inertial coordinate system. Let R point to the origin of some noninertial coordinate system; this accelerated origin can be translating as well as rotating. Let r = the position of particle P in this rotating ref' frame. Thus: r0 = R + r Fig. 10{1. Now use Newton's Law, which is valid in the stationary reference frame, to derive the acceleration of point P, ¨r, as seen in the rotating ref' frame. First, compute r_ and then get ¨r. We do this by first computing r_0 = P's velocity in the fixed reference frame: dr0 dR dr = + dt dt dt fixed fixed fixed where the ()fixed is used to indicate that we are calculating these velocities with respect to the fixed origin. 2 Note that the moving origin can be translating as well as rotating. Thus (dR=dt)fixed should be regarded as the translational velocity of the moving origin (measured in the fixed frame). The right term will thus account for any possible rotation of the moving origin. The position of particle P in the moving ref' frame is: r = xix^i i which is shorthand for = xXx^ + yy^ + z^z dr dx^ Thus its velocity is = x_ x^ + x i dt i i i dt fixed i i X X where the first term on the right is simply P's velocity measured in the rotating frame, ie, (dr=dt)rot, and the second term is due to the rotation of the moving coordinate system. 3 Now calculate dx^i=dt, which is due to the rotation of the moving origin about the rotation axis !~ . We will also use the magnitude of the rotation axis to indicate the rotation rate, ie ! = j!~ j. Fig. 1{19 If α is the angle between x^i and !~ , then x^i moves a distance ∆x^i in time ∆t. Note that ∆x^i is perpendicular to both x^i and !~ , so ∆x^i / (!~ × x^i). We also anticipate that ∆x^i / ∆t, so we write ∆x^i = γ∆t~! × x^i, where γ is some coefficient. 4 Now show that γ = 1. But first note that ` j!~ × x^ij = ! sin α since jx^ij = 1; and that sin α = = ` jx^ij ) j!~ × x^ij = !` And since j∆x^ij = distance the end of x^i has traveled in time ∆t, then j∆x^ij = `!∆t = γ∆tj!~ × x^ij = γ∆t!` this implies that γ = 1 dx^ ∆x^ thus i = i = !~ × x^ dt ∆t i which is the velocity of the x^i axes due to their rotation about the !~ axis. This velocity is measured relative to the origin of the fixed reference frame. Plug this result back into our earlier equation: dr dx^ = x_ x^ + x i dt i i i dt fixed i i X X dr = + x !~ × x^ dt i i rot i X dr = + !~ × r dt rot The above result is of course true for any arbitrary vector Q: dQ dQ = + !~ × Q dt dt fixed rot ie, the velocity of Q as measured in the fixed reference frame = the velocity of Q in the rotating frame + !~ × Q. Keep this result handy...we will use it again. 5 Fig. 10{1. Or if we again adopt r0 = R + r, where r0 is particle P's position vector in the fixed ref' frame, R is the position vector of the moving origin, and r = P's position relative to the moving origin, then dr0 dR dr = + + !~ × r dt dt dt fixed fixed rot Or if we define vf = particle P's velocity relative to the fixed origin V = translational velocity of the moving origin (relative to the fixed origin) vr = P's velocity relative to the rotating axes !~ = angular velocity of the rotating axes !~ × r = translational velocity due to the rotating axes, Then vf = V + vr + !~ × r 6 Centrifugal & Coriolis forces Now calculate particle P's acceleration af as measured in the fixed frame: dv dV dv dr a = f = + r + !~_ × r + !~ × f dt dt dt dt fixed fixed fixed fixed F = m where F is the force on particle P which has mass m. dV set R¨ = = the translational acceleration of the moving origin f dt fixed The (dvr=dt)fixed term is obtained using our formula for dQ=dt: dv dv r = r + !~ × v dt dt r fixed rot = ar + !~ × vr where ar is P's acceleration as measured in the rotating reference frame. The last term is: dr dr !~ × = !~ × + !~ × r dt dt fixed rot = !~ × vr + !~ × (!~ × r) Thus F a = R¨ + a + !~_ × r + 2!~ × v + !~ × (!~ × r) = f f r r m 7 Now suppose you are an observer that co{moves and co{rotates with this moving/rotating reference frame. What is P's acceleration that you would measure in this moving ref' frame? You would thus see particle P move as if it were driven by the effective force ¨ _ Feff = mar = F − mRf − m!~ × r − 2m~! × vr − m~! × (!~ × r) Keep in mind that Feff is a fictitious force! It is merely the invention of the observer who insists writing a Newton{esque law of motion Feff = mar. The only real force in this problem is the inertial force F; the other \noninertial" force terms are a consequence of the observer employing a noninertial reference frame. ¨ _ The first two noninertial force terms, mRf and m!~ × r, are due to: translational acceleration of the moving origin & changes in the orientation of the rotation axis !~ . However these terms are zero if the moving frame is merely rotating about a fixed axis with a constant angular velocity !. This will be typical of the problems studied in this class. 8 The remaining two terms are more important: −m~! × (!~ × r) = centrifugal force −2m~! × vr = Coriolis force Which direction is the centrifugal force pointing? Fig. 10{3 The centrifugal force is perpendicular to & points away from the !~ axis. 9 Example: A hockey puck is initially stationary on a frictionless merry{go{round that rotates counter{clockwise with an angular velocity !. An observer on the merry{go{round releases the puck from an off–axis spot. In which directions does the puck initially move in due to centrifugal & Coriolis forces? ¨ _ First: what is F =?. Rf ? !~ × r? 10 Another observer sitting in a fixed reference frames also watches the puck|what does he see? Motion at the Surface of the Earth Earth spins about its rotation axis with an angular frequency 2π ! = = 7:3 × 10−5 radians/sec 1 day Place the fixed (inertial) coordinates (x^0; y^0; ^z0) at the center of the Earth, and the moving coordinates (x^; y^; ^z) at the surface such that x^ points South, and y^ points East, and ^z points Up: Fig. 10{9 11 Examine how the centrifugal force alters our perception of gravity F = mg. Also assume that the Earth's rotation pole !~ = constant. Then ¨ _ ar = g0 − Rf − !~ × r − 2!~ × vr − !~ × (!~ × r) GM⊕ ^ where g0 = − 2 Rf is the downward pull due to gravity Rf ¨ Is Rf = 0? dQ dQ recall that = + !~ × Q dt dt fixed rot dR_ dR_ thus R¨ = f = f + !~ × R_ f dt dt f !fixed !rot dR_ but R = R ^z so f = 0 f f dt !rot ¨ _ and Rf = !~ × Rf dR dR similarly R_ = f = f + !~ × R f dt dt f fixed rot ¨ ) Rf = !~ × (!~ × Rf ) Plug this result into ar: ar = g0 − 2!~ × vr − !~ × [!~ × (Rf + r)] ' g0 − 2!~ × vr − !~ × (!~ × Rf ) for motion near the Earth's surface where jrj jRf j. Consequently, a plumb line (eg, a mass dangling from a string) does not point directly towards the center of the Earth, due to the centrifugal acceleration −!~ × (!~ × Rf ). And if you cut the string, the Coriolis acceleration −2!~ × vr will cause an additional deflection as the mass falls. 12 Example 10.3 Estimate the deflection caused by the Coriolis force as a particle falls a distance h due to gravity. The particle's acceleration in the rotating reference frame is ar ' g0 − 2!~ × vr − !~ × (!~ × Rf ) ≡ g − 2!~ × vr where g ≡ g0 − !~ × (!~ × Rf ) is the effective gravity that includes the constant centrifugal term. Note that the centrifugal force causes g to deviate slightly from the normal direction, ^z. However we will ignore this slight deviation and write g =' g^z. From the diagram, !~ = −! sin(π=2 − λ)x^ + ! cos(π=2 − λ)^z = −! cos λx^ + ! sin λ^z and vr = vxx^ + vyy^ + vz^z ' vz^z ' −gt^z since we anticipate the horizontal deflections and velocities will be small compared to the vertical motions. 13 Thus x^ y^ ^z !~ × v = −! cos λ 0 ! sin λ = −!gt cos λy^ r 0 0 −gt a y^ ^z So r ' +2 !gt cos λ − g = x ¨x^ + y¨y^ + z¨^z ) x¨ = 0 y¨ = 2!gt cos λ z¨ = −g How do I obtain the particle's vertical motion z(t)? 1 2 z_ = −gt so z(t) = h − 2gt .
Recommended publications
  • WUN2K for LECTURE 19 These Are Notes Summarizing the Main Concepts You Need to Understand and Be Able to Apply
    Duke University Department of Physics Physics 361 Spring Term 2020 WUN2K FOR LECTURE 19 These are notes summarizing the main concepts you need to understand and be able to apply. • Newton's Laws are valid only in inertial reference frames. However, it is often possible to treat motion in noninertial reference frames, i.e., accelerating ones. • For a frame with rectilinear acceleration A~ with respect to an inertial one, we can write the equation of motion as m~r¨ = F~ − mA~, where F~ is the force in the inertial frame, and −mA~ is the inertial force. The inertial force is a “fictitious” force: it's a quantity that one adds to the equation of motion to make it look as if Newton's second law is valid in a noninertial reference frame. • For a rotating frame: Euler's theorem says that the most general mo- tion of any body with respect to an origin is rotation about some axis through the origin. We define an axis directionu ^, a rate of rotation dθ about that axis ! = dt , and an instantaneous angular velocity ~! = !u^, with direction given by the right hand rule (fingers curl in the direction of rotation, thumb in the direction of ~!.) We'll generally use ~! to refer to the angular velocity of a body, and Ω~ to refer to the angular velocity of a noninertial, rotating reference frame. • We have for the velocity of a point at ~r on the rotating body, ~v = ~! ×~r. ~ dQ~ dQ~ ~ • Generally, for vectors Q, one can write dt = dt + ~! × Q, for S0 S0 S an inertial reference frame and S a rotating reference frame.
    [Show full text]
  • Foundations of Newtonian Dynamics: an Axiomatic Approach For
    Foundations of Newtonian Dynamics: 1 An Axiomatic Approach for the Thinking Student C. J. Papachristou 2 Department of Physical Sciences, Hellenic Naval Academy, Piraeus 18539, Greece Abstract. Despite its apparent simplicity, Newtonian mechanics contains conceptual subtleties that may cause some confusion to the deep-thinking student. These subtle- ties concern fundamental issues such as, e.g., the number of independent laws needed to formulate the theory, or, the distinction between genuine physical laws and deriva- tive theorems. This article attempts to clarify these issues for the benefit of the stu- dent by revisiting the foundations of Newtonian dynamics and by proposing a rigor- ous axiomatic approach to the subject. This theoretical scheme is built upon two fun- damental postulates, namely, conservation of momentum and superposition property for interactions. Newton’s laws, as well as all familiar theorems of mechanics, are shown to follow from these basic principles. 1. Introduction Teaching introductory mechanics can be a major challenge, especially in a class of students that are not willing to take anything for granted! The problem is that, even some of the most prestigious textbooks on the subject may leave the student with some degree of confusion, which manifests itself in questions like the following: • Is the law of inertia (Newton’s first law) a law of motion (of free bodies) or is it a statement of existence (of inertial reference frames)? • Are the first two of Newton’s laws independent of each other? It appears that
    [Show full text]
  • PHYSICS of ARTIFICIAL GRAVITY Angie Bukley1, William Paloski,2 and Gilles Clément1,3
    Chapter 2 PHYSICS OF ARTIFICIAL GRAVITY Angie Bukley1, William Paloski,2 and Gilles Clément1,3 1 Ohio University, Athens, Ohio, USA 2 NASA Johnson Space Center, Houston, Texas, USA 3 Centre National de la Recherche Scientifique, Toulouse, France This chapter discusses potential technologies for achieving artificial gravity in a space vehicle. We begin with a series of definitions and a general description of the rotational dynamics behind the forces ultimately exerted on the human body during centrifugation, such as gravity level, gravity gradient, and Coriolis force. Human factors considerations and comfort limits associated with a rotating environment are then discussed. Finally, engineering options for designing space vehicles with artificial gravity are presented. Figure 2-01. Artist's concept of one of NASA early (1962) concepts for a manned space station with artificial gravity: a self- inflating 22-m-diameter rotating hexagon. Photo courtesy of NASA. 1 ARTIFICIAL GRAVITY: WHAT IS IT? 1.1 Definition Artificial gravity is defined in this book as the simulation of gravitational forces aboard a space vehicle in free fall (in orbit) or in transit to another planet. Throughout this book, the term artificial gravity is reserved for a spinning spacecraft or a centrifuge within the spacecraft such that a gravity-like force results. One should understand that artificial gravity is not gravity at all. Rather, it is an inertial force that is indistinguishable from normal gravity experience on Earth in terms of its action on any mass. A centrifugal force proportional to the mass that is being accelerated centripetally in a rotating device is experienced rather than a gravitational pull.
    [Show full text]
  • Overview of the CALET Mission to the ISS 1 Introduction
    32ND INTERNATIONAL COSMIC RAY CONFERENCE,BEIJING 2011 Overview of the CALET Mission to the ISS SHOJI TORII1,2 FOR THE CALET COLLABORATION 1Research Institute for Scinece and Engineering, Waseda University 2Space Environment Utilization Center, JAXA [email protected] DOI: 10.7529/ICRC2011/V06/0615 Abstract: The CALorimetric Electron Telescope (CALET) mission is being developed as a standard payload for the Exposure Facility of the Japanese Experiment Module (JEM/EF) on the International Space Station (ISS). The instrument consists of a segmented plastic scintillator charge measuring module, an imaging calorimeter consisting of 8 scintillating fiber planes with a total of 3 radiation lengths of tungsten plates interleaved with the fiber planes, and a total absorption calorimeter consisting of crossed PWO logs with a total depth of 27 radiation lengths. The major scientific objectives for CALET are to search for nearby cosmic ray sources and dark matter by carrying out a precise measurement of the electron spectrum (1 GeV - 20 TeV) and observing gamma rays (10 GeV - 10 TeV). CALET has a unique capability to observe electrons and gamma rays in the TeV region since the hadron rejection power is larger than 105 and the energy resolution better than 2 % above 100 GeV. CALET has also the capability to measure cosmic ray H, He and heavy nuclei up to 1000 TeV.∼ The instrument will also monitor solar activity and search for gamma ray transients. The phase B study has started, aimed at a launch in 2013 by H-II Transfer Vehicle (HTV) for a 5 year observation period on JEM/EF.
    [Show full text]
  • LECTURES 20 - 29 INTRODUCTION to CLASSICAL MECHANICS Prof
    LECTURES 20 - 29 INTRODUCTION TO CLASSICAL MECHANICS Prof. N. Harnew University of Oxford HT 2017 1 OUTLINE : INTRODUCTION TO MECHANICS LECTURES 20-29 20.1 The hyperbolic orbit 20.2 Hyperbolic orbit : the distance of closest approach 20.3 Hyperbolic orbit: the angle of deflection, φ 20.3.1 Method 1 : using impulse 20.3.2 Method 2 : using hyperbola orbit parameters 20.4 Hyperbolic orbit : Rutherford scattering 21.1 NII for system of particles - translation motion 21.1.1 Kinetic energy and the CM 21.2 NII for system of particles - rotational motion 21.2.1 Angular momentum and the CM 21.3 Introduction to Moment of Inertia 21.3.1 Extend the example : J not parallel to ! 21.3.2 Moment of inertia : mass not distributed in a plane 21.3.3 Generalize for rigid bodies 22.1 Moment of inertia tensor 2 22.1.1 Rotation about a principal axis 22.2 Moment of inertia & energy of rotation 22.3 Calculation of moments of inertia 22.3.1 MoI of a thin rectangular plate 22.3.2 MoI of a thin disk perpendicular to plane of disk 22.3.3 MoI of a solid sphere 23.1 Parallel axis theorem 23.1.1 Example : compound pendulum 23.2 Perpendicular axis theorem 23.2.1 Perpendicular axis theorem : example 23.3 Example 1 : solid ball rolling down slope 23.4 Example 2 : where to hit a ball with a cricket bat 23.5 Example 3 : an aircraft landing 24.1 Lagrangian mechanics : Introduction 24.2 Introductory example : the energy method for the E of M 24.3 Becoming familiar with the jargon 24.3.1 Generalised coordinates 24.3.2 Degrees of Freedom 24.3.3 Constraints 3 24.3.4 Configuration
    [Show full text]
  • Chapter 11.Pdf
    Chapter 11. Kinematics of Particles Contents Introduction Rectilinear Motion: Position, Velocity & Acceleration Determining the Motion of a Particle Sample Problem 11.2 Sample Problem 11.3 Uniform Rectilinear-Motion Uniformly Accelerated Rectilinear-Motion Motion of Several Particles: Relative Motion Sample Problem 11.5 Motion of Several Particles: Dependent Motion Sample Problem 11.7 Graphical Solutions Curvilinear Motion: Position, Velocity & Acceleration Derivatives of Vector Functions Rectangular Components of Velocity and Acceleration Sample Problem 11.10 Motion Relative to a Frame in Translation Sample Problem 11.14 Tangential and Normal Components Sample Problem 11.16 Radial and Transverse Components Sample Problem 11.18 Introduction Kinematic relationships are used to help us determine the trajectory of a snowboarder completing a jump, the orbital speed of a satellite, and accelerations during acrobatic flying. Dynamics includes: Kinematics: study of the geometry of motion. Relates displacement, velocity, acceleration, and time without reference to the cause of motion. Fdownforce Fdrive Fdrag Kinetics: study of the relations existing between the forces acting on a body, the mass of the body, and the motion of the body. Kinetics is used to predict the motion caused by given forces or to determine the forces required to produce a given motion. Particle kinetics includes : • Rectilinear motion: position, velocity, and acceleration of a particle as it moves along a straight line. • Curvilinear motion : position, velocity, and acceleration of a particle as it moves along a curved line in two or three dimensions. Rectilinear Motion: Position, Velocity & Acceleration • Rectilinear motion: particle moving along a straight line • Position coordinate: defined by positive or negative distance from a fixed origin on the line.
    [Show full text]
  • Classical Mechanics - Wikipedia, the Free Encyclopedia Page 1 of 13
    Classical mechanics - Wikipedia, the free encyclopedia Page 1 of 13 Classical mechanics From Wikipedia, the free encyclopedia (Redirected from Newtonian mechanics) In physics, classical mechanics is one of the two major Classical mechanics sub-fields of mechanics, which is concerned with the set of physical laws describing the motion of bodies under the Newton's Second Law action of a system of forces. The study of the motion of bodies is an ancient one, making classical mechanics one of History of classical mechanics · the oldest and largest subjects in science, engineering and Timeline of classical mechanics technology. Branches Classical mechanics describes the motion of macroscopic Statics · Dynamics / Kinetics · Kinematics · objects, from projectiles to parts of machinery, as well as Applied mechanics · Celestial mechanics · astronomical objects, such as spacecraft, planets, stars, and Continuum mechanics · galaxies. Besides this, many specializations within the Statistical mechanics subject deal with gases, liquids, solids, and other specific sub-topics. Classical mechanics provides extremely Formulations accurate results as long as the domain of study is restricted Newtonian mechanics (Vectorial to large objects and the speeds involved do not approach mechanics) the speed of light. When the objects being dealt with become sufficiently small, it becomes necessary to Analytical mechanics: introduce the other major sub-field of mechanics, quantum Lagrangian mechanics mechanics, which reconciles the macroscopic laws of Hamiltonian mechanics physics with the atomic nature of matter and handles the Fundamental concepts wave-particle duality of atoms and molecules. In the case of high velocity objects approaching the speed of light, Space · Time · Velocity · Speed · Mass · classical mechanics is enhanced by special relativity.
    [Show full text]
  • Chapter 3 Motion in Two and Three Dimensions
    Chapter 3 Motion in Two and Three Dimensions 3.1 The Important Stuff 3.1.1 Position In three dimensions, the location of a particle is specified by its location vector, r: r = xi + yj + zk (3.1) If during a time interval ∆t the position vector of the particle changes from r1 to r2, the displacement ∆r for that time interval is ∆r = r1 − r2 (3.2) = (x2 − x1)i +(y2 − y1)j +(z2 − z1)k (3.3) 3.1.2 Velocity If a particle moves through a displacement ∆r in a time interval ∆t then its average velocity for that interval is ∆r ∆x ∆y ∆z v = = i + j + k (3.4) ∆t ∆t ∆t ∆t As before, a more interesting quantity is the instantaneous velocity v, which is the limit of the average velocity when we shrink the time interval ∆t to zero. It is the time derivative of the position vector r: dr v = (3.5) dt d = (xi + yj + zk) (3.6) dt dx dy dz = i + j + k (3.7) dt dt dt can be written: v = vxi + vyj + vzk (3.8) 51 52 CHAPTER 3. MOTION IN TWO AND THREE DIMENSIONS where dx dy dz v = v = v = (3.9) x dt y dt z dt The instantaneous velocity v of a particle is always tangent to the path of the particle. 3.1.3 Acceleration If a particle’s velocity changes by ∆v in a time period ∆t, the average acceleration a for that period is ∆v ∆v ∆v ∆v a = = x i + y j + z k (3.10) ∆t ∆t ∆t ∆t but a much more interesting quantity is the result of shrinking the period ∆t to zero, which gives us the instantaneous acceleration, a.
    [Show full text]
  • Action Principle for Hydrodynamics and Thermodynamics, Including General, Rotational Flows
    th December 15, 2014 Action Principle for Hydrodynamics and Thermodynamics, including general, rotational flows C. Fronsdal Depart. of Physics and Astronomy, University of California Los Angeles 90095-1547 USA ABSTRACT This paper presents an action principle for hydrodynamics and thermodynamics that includes general, rotational flows, thus responding to a challenge that is more that 100 years old. It has been lifted to the relativistic context and it can be used to provide a suitable source of rotating matter for Einstein’s equation, finally overcoming another challenge of long standing, the problem presented by the Bianchi identity. The new theory is a combination of Eulerian and Lagrangian hydrodynamics, with an extension to thermodynamics. In the first place it is an action principle for adia- batic systems, including the usual conservation laws as well as the Gibbsean variational principle. But it also provides a framework within which dissipation can be introduced in the usual way, by adding a viscosity term to the momentum equation, one of the Euler-Lagrange equations. The rate of the resulting energy dissipation is determined by the equations of motion. It is an ideal framework for the description of quasi-static processes. It is a major development of the Navier-Stokes-Fourier approach, the princi- pal advantage being a hamiltonian structure with a natural concept of energy as a first integral of the motion. Two velocity fields are needed, one the gradient of a scalar potential, the other the time derivative of a vector field (vector potential). Variation of the scalar potential gives the equation of continuity and variation of the vector potential yields the momentum equation.
    [Show full text]
  • A Uniformly Moving and Rotating Polarizable Particle in Thermal Radiation Field: Frictional Force and Torque, Radiation and Heating
    A uniformly moving and rotating polarizable particle in thermal radiation field: frictional force and torque, radiation and heating G. V. Dedkov1 and A.A. Kyasov Nanoscale Physics Group, Kabardino-Balkarian State University, Nalchik, 360000, Russia Abstract. We study the fluctuation-electromagnetic interaction and dynamics of a small spinning polarizable particle moving with a relativistic velocity in a vacuum background of arbitrary temperature. Using the standard formalism of the fluctuation electromagnetic theory, a complete set of equations describing the decelerating tangential force, the components of the torque and the intensity of nonthermal and thermal radiation is obtained along with equations describing the dynamics of translational and rotational motion, and the kinetics of heating. An interplay between various parameters is discussed. Numerical estimations for conducting particles were carried out using MATHCAD code. In the case of zero temperature of a particle and background radiation, the intensity of radiation is independent of the linear velocity, the angular velocity orientation and the linear velocity value are independent of time. In the case of a finite background radiation temperature, the angular velocity vector tends to be oriented perpendicularly to the linear velocity vector. The particle temperature relaxes to a quasistationary value depending on the background radiation temperature, the linear and angular velocities, whereas the intensity of radiation depends on the background radiation temperature, the angular and linear velocities. The time of thermal relaxation is much less than the time of angular deceleration, while the latter time is much less than the time of linear deceleration. Key words: fluctuation-electromagnetic interaction, thermal radiation, rotating particle, frictional torque and tangential friction force 1.
    [Show full text]
  • 6. Non-Inertial Frames
    6. Non-Inertial Frames We stated, long ago, that inertial frames provide the setting for Newtonian mechanics. But what if you, one day, find yourself in a frame that is not inertial? For example, suppose that every 24 hours you happen to spin around an axis which is 2500 miles away. What would you feel? Or what if every year you spin around an axis 36 million miles away? Would that have any e↵ect on your everyday life? In this section we will discuss what Newton’s equations of motion look like in non- inertial frames. Just as there are many ways that an animal can be not a dog, so there are many ways in which a reference frame can be non-inertial. Here we will just consider one type: reference frames that rotate. We’ll start with some basic concepts. 6.1 Rotating Frames Let’s start with the inertial frame S drawn in the figure z=z with coordinate axes x, y and z.Ourgoalistounderstand the motion of particles as seen in a non-inertial frame S0, with axes x , y and z , which is rotating with respect to S. 0 0 0 y y We’ll denote the angle between the x-axis of S and the x0- axis of S as ✓.SinceS is rotating, we clearly have ✓ = ✓(t) x 0 0 θ and ✓˙ =0. 6 x Our first task is to find a way to describe the rotation of Figure 31: the axes. For this, we can use the angular velocity vector ! that we introduced in the last section to describe the motion of particles.
    [Show full text]
  • Particle Acceleration at Interplanetary Shocks
    PARTICLE ACCELERATION AT INTERPLANETARY SHOCKS G.P. ZANK, Gang LI, and Olga VERKHOGLYADOVA Institute of Geophysics and Planetary Physics (IGPP), University of California, Riverside, CA 92521, U.S.A. ([email protected], [email protected], [email protected]) Received ; accepted Abstract. Proton acceleration at interplanetary shocks is reviewed briefly. Understanding this is of importance to describe the acceleration of heavy ions at interplanetary shocks since wave excitation, and hence particle scattering, at oblique shocks is controlled by the protons and not the heavy ions. Heavy ions behave as test particles and their acceler- ation characteristics are controlled by the properties of proton excited turbulence. As a result, the resonance condition for heavy ions introduces distinctly di®erent signatures in abundance, spectra, and intensity pro¯les, depending on ion mass and charge. Self- consistent models of heavy ion acceleration and the resulting fractionation are discussed. This includes discussion of the injection problem and the acceleration characteristics of quasi-parallel and quasi-perpendicular shocks. Keywords: Solar energetic particles, coronal mass ejections, particle acceleration 1. Introduction Understanding the problem of particle acceleration at interplanetary shocks is assuming increasing importance, especially in the context of understanding the space environment. The basic physics is thought to have been established in the late 1970s and 1980s with the seminal papers of Axford et al. (1977); Bell, (1978a,b), but detailed interplanetary observations are not easily in- terpreted in terms of the simple original models of particle acceleration at shock waves. Three fundamental aspects make the interplanetary problem more complicated than the typical astrophysical problem: the time depen- dence of the acceleration and the solar wind background; the geometry of the shock; and the long mean free path for particle transport away from the shock.
    [Show full text]