Pathway Analysis of Genes Identified Through Post-GWAS To
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Localization of Ralb Signaling at Endomembrane Compartments and Its Modulation by Autophagy Received: 14 January 2019 Manish Kumar Singh1,2, Alexandre P
www.nature.com/scientificreports Corrected: Publisher Correction OPEN Localization of RalB signaling at endomembrane compartments and its modulation by autophagy Received: 14 January 2019 Manish Kumar Singh1,2, Alexandre P. J. Martin1,2, Carine Jofre 3, Giulia Zago1,2, Accepted: 30 May 2019 Jacques Camonis1,2, Mathieu Coppey1,4 & Maria Carla Parrini1,2 Published online: 20 June 2019 The monomeric GTPase RalB controls crucial physiological processes, including autophagy and invasion, but it still remains unclear how this multi-functionality is achieved. Previously, we reported that the RalGEF (Guanine nucleotide Exchange Factor) RGL2 binds and activates RalB to promote invasion. Here we show that RGL2, a major activator of RalB, is also required for autophagy. Using a novel automated image analysis method, Endomapper, we quantifed the endogenous localization of the RGL2 activator and its substrate RalB at diferent endomembrane compartments, in an isogenic normal and Ras-transformed cell model. In both normal and Ras-transformed cells, we observed that RGL2 and RalB substantially localize at early and recycling endosomes, and to lesser extent at autophagosomes, but not at trans-Golgi. Interestingly the use of a FRET-based RalB biosensor indicated that RalB signaling is active at these endomembrane compartments at basal level in rich medium. Furthermore, induction of autophagy by nutrient starvation led to a considerable reduction of early and recycling endosomes, in contrast to the expected increase of autophagosomes, in both normal and Ras-transformed cells. However, autophagy mildly afected relative abundances of both RGL2 and RalB at early and recycling endosomes, and at autophagosomes. Interestingly, RalB activity increased at autophagosomes upon starvation in normal cells. -
The Role of Rala and Ralb in Cancer Samuel C
University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 4-7-2008 The Role of RalA and RalB in Cancer Samuel C. Falsetti University of South Florida Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the American Studies Commons Scholar Commons Citation Falsetti, Samuel C., "The Role of RalA and RalB in Cancer" (2008). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/232 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. The Role of RalA and RalB in Cancer By Samuel C. Falsetti A dissertation submitted in partial fulfillment Of the requirements for the degree of Doctor of Philosophy Department of Molecular Medicine College of Medicine University of South Florida Major Professor: Saïd M. Sebti, Ph.D. Larry P. Solomonson, Ph.D. Gloria C. Ferreira, Ph.D. Srikumar Chellapan, Ph.D. Gary Reuther, Ph.D. Douglas Cress, Ph.D. Date of Approval: April 7th, 2008 Keywords: Ras, RACK1, Geranylgeranyltransferase I inhibitors, ovarian cancer, proteomics © Copyright 2008, Samuel C. Falsetti Dedication This thesis is dedicated to my greatest supporter, my wife. Without her loving advice and patience none of this would be possible. Acknowledgments I would like to extend my sincere gratitude to my wife, Nicole. She is the most inspirational person in my life and I am honored to be with her; in truth, this degree ought to come with two names printed on it. -
Association of Gene Ontology Categories with Decay Rate for Hepg2 Experiments These Tables Show Details for All Gene Ontology Categories
Supplementary Table 1: Association of Gene Ontology Categories with Decay Rate for HepG2 Experiments These tables show details for all Gene Ontology categories. Inferences for manual classification scheme shown at the bottom. Those categories used in Figure 1A are highlighted in bold. Standard Deviations are shown in parentheses. P-values less than 1E-20 are indicated with a "0". Rate r (hour^-1) Half-life < 2hr. Decay % GO Number Category Name Probe Sets Group Non-Group Distribution p-value In-Group Non-Group Representation p-value GO:0006350 transcription 1523 0.221 (0.009) 0.127 (0.002) FASTER 0 13.1 (0.4) 4.5 (0.1) OVER 0 GO:0006351 transcription, DNA-dependent 1498 0.220 (0.009) 0.127 (0.002) FASTER 0 13.0 (0.4) 4.5 (0.1) OVER 0 GO:0006355 regulation of transcription, DNA-dependent 1163 0.230 (0.011) 0.128 (0.002) FASTER 5.00E-21 14.2 (0.5) 4.6 (0.1) OVER 0 GO:0006366 transcription from Pol II promoter 845 0.225 (0.012) 0.130 (0.002) FASTER 1.88E-14 13.0 (0.5) 4.8 (0.1) OVER 0 GO:0006139 nucleobase, nucleoside, nucleotide and nucleic acid metabolism3004 0.173 (0.006) 0.127 (0.002) FASTER 1.28E-12 8.4 (0.2) 4.5 (0.1) OVER 0 GO:0006357 regulation of transcription from Pol II promoter 487 0.231 (0.016) 0.132 (0.002) FASTER 6.05E-10 13.5 (0.6) 4.9 (0.1) OVER 0 GO:0008283 cell proliferation 625 0.189 (0.014) 0.132 (0.002) FASTER 1.95E-05 10.1 (0.6) 5.0 (0.1) OVER 1.50E-20 GO:0006513 monoubiquitination 36 0.305 (0.049) 0.134 (0.002) FASTER 2.69E-04 25.4 (4.4) 5.1 (0.1) OVER 2.04E-06 GO:0007050 cell cycle arrest 57 0.311 (0.054) 0.133 (0.002) -
COVID-19: Viral–Host Interactome Analyzed by Network Based
Messina et al. J Transl Med (2020) 18:233 https://doi.org/10.1186/s12967-020-02405-w Journal of Translational Medicine RESEARCH Open Access COVID-19: viral–host interactome analyzed by network based-approach model to study pathogenesis of SARS-CoV-2 infection Francesco Messina1†, Emanuela Giombini1†, Chiara Agrati1, Francesco Vairo1, Tommaso Ascoli Bartoli1, Samir Al Moghazi1, Mauro Piacentini1,2, Franco Locatelli3, Gary Kobinger4, Markus Maeurer5,6, Alimuddin Zumla7,8, Maria R. Capobianchi1* , Francesco Nicola Lauria1†, Giuseppe Ippolito1† and COVID 19 INMI Network Medicine for IDs Study Group Abstract Background: Epidemiological, virological and pathogenetic characteristics of SARS-CoV-2 infection are under evaluation. A better understanding of the pathophysiology associated with COVID-19 is crucial to improve treatment modalities and to develop efective prevention strategies. Transcriptomic and proteomic data on the host response against SARS-CoV-2 still have anecdotic character; currently available data from other coronavirus infections are there- fore a key source of information. Methods: We investigated selected molecular aspects of three human coronavirus (HCoV) infections, namely SARS- CoV, MERS-CoV and HCoV-229E, through a network based-approach. A functional analysis of HCoV–host interactome was carried out in order to provide a theoretic host–pathogen interaction model for HCoV infections and in order to translate the results in prediction for SARS-CoV-2 pathogenesis. The 3D model of S-glycoprotein of SARS-CoV-2 was compared to the structure of the corresponding SARS-CoV, HCoV-229E and MERS-CoV S-glycoprotein. SARS-CoV, MERS-CoV, HCoV-229E and the host interactome were inferred through published protein–protein interactions (PPI) as well as gene co-expression, triggered by HCoV S-glycoprotein in host cells. -
Phosphorylation of Ralb Is Important for Bladder Cancer Cell Growth and Metastasis
Published OnlineFirst October 12, 2010; DOI: 10.1158/0008-5472.CAN-10-0952 Published OnlineFirst on October 12, 2010 as 10.1158/0008-5472.CAN-10-0952 Therapeutics, Targets, and Chemical Biology Cancer Research Phosphorylation of RalB Is Important for Bladder Cancer Cell Growth and Metastasis Hong Wang1, Charles Owens1, Nidhi Chandra1, Mark R. Conaway2, David L. Brautigan3,4, and Dan Theodorescu5 Abstract RalA and RalB are monomeric G proteins that are 83% identical in amino acid sequence but have paralogue- specific effects on cell proliferation, metastasis, and apoptosis. Using in vitro kinase assays and phosphosite- specific antibodies, here we show phosphorylation of RalB by protein kinase C (PKC) and RalA by protein kinase A. We used mass spectrometry and site-directed mutagenesis to identify S198 as the primary PKC phosphorylation site in RalB. Phorbol ester [phorbol 12-myristate 13-acetate (PMA)] treatment of human blad- der carcinoma cells induced S198 phosphorylation of stably expressed FLAG-RalB as well as endogenous RalB. PMA treatment caused RalB translocation from the plasma membrane to perinuclear regions in a S198 phos- phorylation–dependent manner. Using RNA interference depletion of RalB followed by rescue with wild-type RalB or RalB(S198A) as well as overexpression of wild-type RalB or RalB(S198A) with and without PMA stimulation, we show that phosphorylation of RalB at S198 is necessary for actin cytoskeletal organization, anchorage-independent growth, cell migration, and experimental lung metastasis of T24 or UMUC3 human bladder cancer cells. In addition, UMUC3 cells transfected with a constitutively active RalB(G23V) exhibited enhanced subcutaneous tumor growth, whereas those transfected with phospho-deficient RalB(G23V-S198A) were indistinguishable from control cells. -
Ingenuity Pathway Analysis of Human Facet Joint Tissues: Insight Into Facet Joint Osteoarthritis
EXPERIMENTAL AND THERAPEUTIC MEDICINE 19: 2997-3008, 2020 Ingenuity pathway analysis of human facet joint tissues: Insight into facet joint osteoarthritis CHU CHEN*, SHENGYU CUI*, WEIDONG LI, HURICHA JIN, JIANBO FAN, YUYU SUN and ZHIMING CUI Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China Received August 17, 2019; Accepted January 30, 2020 DOI: 10.3892/etm.2020.8555 Abstract. Facet joint osteoarthritis (FJOA) is a common the top 5 IPA networks (with a score >30). The present study degenerative joint disorder with high prevalence in the elderly. provides insight into the pathological processes of FJOA from FJOA causes lower back pain and lower extremity pain, and a genetic perspective and may thus benefit the clinical treat- thus severely impacts the quality of life of affected patients. ment of FJOA. Emerging studies have focused on the histomorphological and histomorphometric changes in FJOA. However, the dynamic Introduction genetic changes in FJOA have remained to be clearly deter- mined. In the present study, previously obtained RNA deep Facet joint osteoarthritis (FJOA) is a common degenerative sequencing data were subjected to an ingenuity pathway joint disorder that causes the degeneration and breakdown analysis (IPA) and canonical signaling pathways of differ- of cartilage and restricts the movement of joints (1). It has entially expressed genes (DEGs) in FJOA were studied. The been reported that lumbar FJOA occurs at high prevalence top 25 enriched canonical signaling pathways were identified and the presence of FJOA is highly associated with age (2,3). and canonical signaling pathways with high absolute values A community-based cross-sectional study indicated that of z-scores, specifically leukocyte extravasation signaling, in populations aged <50 years, the prevalence of FJOA was Tec kinase signaling and osteoarthritis pathway, were inves- <45%, while it was ~75% in populations aged >50 years (4). -
Role and Regulation of the P53-Homolog P73 in the Transformation of Normal Human Fibroblasts
Role and regulation of the p53-homolog p73 in the transformation of normal human fibroblasts Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Lars Hofmann aus Aschaffenburg Würzburg 2007 Eingereicht am Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Dr. Martin J. Müller Gutachter: Prof. Dr. Michael P. Schön Gutachter : Prof. Dr. Georg Krohne Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am Erklärung Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig angefertigt und keine anderen als die angegebenen Hilfsmittel und Quellen verwendet habe. Diese Arbeit wurde weder in gleicher noch in ähnlicher Form in einem anderen Prüfungsverfahren vorgelegt. Ich habe früher, außer den mit dem Zulassungsgesuch urkundlichen Graden, keine weiteren akademischen Grade erworben und zu erwerben gesucht. Würzburg, Lars Hofmann Content SUMMARY ................................................................................................................ IV ZUSAMMENFASSUNG ............................................................................................. V 1. INTRODUCTION ................................................................................................. 1 1.1. Molecular basics of cancer .......................................................................................... 1 1.2. Early research on tumorigenesis ................................................................................. 3 1.3. Developing -
Brain Region-Specific Gene Signatures Revealed by Distinct Astrocyte Subpopulations Unveil Links to Glioma and Neurodegenerative
New Research Disorders of the Nervous System Brain Region-Specific Gene Signatures Revealed by Distinct Astrocyte Subpopulations Unveil Links to Glioma and Neurodegenerative Diseases Raquel Cuevas-Diaz Duran,1,2,3 Chih-Yen Wang,4 Hui Zheng,5,6,7 Benjamin Deneen,8,9,10,11 and Jia Qian Wu1,2 https://doi.org/10.1523/ENEURO.0288-18.2019 1The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030, 2Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, Texas 77030, 3Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey NL 64710, Mexico, 4Department of Life Sciences, National Cheng Kung University, Tainan City 70101, Taiwan, 5Huffington Center on Aging, 6Medical Scientist Training Program, 7Department of Molecular and Human Genetics, 8Center for Cell and Gene Therapy, 9Department of Neuroscience, 10Neurological Research Institute at Texas’ Children’s Hospital, and 11Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030 Abstract Currently, there are no effective treatments for glioma or for neurodegenerative diseases because of, in part, our limited understanding of the pathophysiology and cellular heterogeneity of these diseases. Mounting evidence suggests that astrocytes play an active role in the pathogenesis of these diseases by contributing to a diverse range of pathophysiological states. In a previous study, five molecularly distinct astrocyte subpopulations from three different brain regions were identified. To further delineate the underlying diversity of these populations, we obtained mouse brain region-specific gene signatures for both protein-coding and long non-coding RNA and found that these astrocyte subpopulations are endowed with unique molecular signatures across diverse brain regions. -
Genomic-Wide Copy Number Variation Profile and a New IKZF1 Gene Variation in Chinese Adult Acute Lymphoblastic Leukemia
Research Article Clinics in Oncology Published: 02 Mar, 2021 Genomic-wide Copy Number Variation Profile and a New IKZF1 Gene Variation in Chinese Adult Acute Lymphoblastic Leukemia Tian Yuan1,2, Yingchan Wang1, Xiaoyan Li1, Yan Li1 and Yingchang Mi1* 1State Key Laboratory of Experimental Hematology, Chinese Academy of Medical Sciences and Peking Union Medical College, China 2Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, China Abstract Purpose: Copy Number Variation (CNV) and Loss of Heterozygosity (LOH) were investigated in adult Chinese patients with Acute Lymphoblastic Leukemia (ALL), and these patients were screened for adult ALL prognostic genes. Methods: The CNV and LOH were detected with Affymetrix SNP 6.0 array. Using java and software R to construct the signal-net based on KEGG, enrichment the significant CNV genes associated with disease. Check the copy number variation of IKZF1 gene by FISH. Results: In Ph+ B-ALL patients, the most frequent CNVs were gain at chr13q, loss at chr6 and recurrent LOH at chr17p and 1p33. In Ph- B-ALL patients, the most frequent CNVs were gain at chr7, loss at chr9p and recurrent LOH at chr15q. In T-ALL, the most frequent CNVs were gain at chr20 and 7q, loss at chr2p and recurrent LOH also at chr15q. These CNV regions included several candidate genes such as IKZF1, JAK2, CDKN2A/2B, ETV6 etc. EGFR and IKBKG are in the center position of the Signal-Net, which may play essential role in ALL. The copy number amplification of IKZF1 gene is confirmed by FISH. OPEN ACCESS Discussion: CNV and LOH identification in adult ALL patients can identify susceptible genes, *Correspondence: guide diagnostic classification, and help with treatment selection. -
The Small G-Protein Rala Promotes Progression and Metastasis of Triple- Negative Breast Cancer Katie A
Thies et al. Breast Cancer Research (2021) 23:65 https://doi.org/10.1186/s13058-021-01438-3 RESEARCH ARTICLE Open Access The small G-protein RalA promotes progression and metastasis of triple- negative breast cancer Katie A. Thies1,2, Matthew W. Cole1,2, Rachel E. Schafer1,2, Jonathan M. Spehar1,2, Dillon S. Richardson1,2, Sarah A. Steck1,2, Manjusri Das1,2, Arthur W. Lian1,2, Alo Ray1,2, Reena Shakya1,3, Sue E. Knoblaugh4, Cynthia D. Timmers5,6, Michael C. Ostrowski5,7, Arnab Chakravarti1,2, Gina M. Sizemore1,2 and Steven T. Sizemore1,2* Abstract Background: Breast cancer (BC) is the most common cancer in women and the leading cause of cancer-associated mortality in women. In particular, triple-negative BC (TNBC) has the highest rate of mortality due in large part to the lack of targeted treatment options for this subtype. Thus, there is an urgent need to identify new molecular targets for TNBC treatment. RALA and RALB are small GTPases implicated in growth and metastasis of a variety of cancers, although little is known of their roles in BC. Methods: The necessity of RALA and RALB for TNBC tumor growth and metastasis were evaluated in vivo using orthotopic and tail-vein models. In vitro, 2D and 3D cell culture methods were used to evaluate the contributions of RALA and RALB during TNBC cell migration, invasion, and viability. The association between TNBC patient outcome and RALA and RALB expression was examined using publicly available gene expression data and patient tissue microarrays. Finally, small molecule inhibition of RALA and RALB was evaluated as a potential treatment strategy for TNBC in cell line and patient-derived xenograft (PDX) models. -
Genetic Deletion of RALA and RALB Small Gtpases Reveals Redundant Functions in Development and Tumorigenesis
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Current Biology 22, 2063–2068, November 6, 2012 ª2012 Elsevier Ltd All rights reserved http://dx.doi.org/10.1016/j.cub.2012.09.013 Report Genetic Deletion of RALA and RALB Small GTPases Reveals Redundant Functions in Development and Tumorigenesis Pascal Peschard,1 Afshan McCarthy,1 (Figures 1A and 1B) and loss of RALB proteins in tissues of Vale´rie Leblanc-Dominguez,1 Maggie Yeo,1 adult mice (Figure 1C). The expression of RALB proteins was Sabrina Guichard,1 Gordon Stamp,2 unchanged in Rala null cells and vice versa. and Christopher J. Marshall1,* To investigate the role of RALA in embryonic development, 1Oncogene Team, Division of Cancer Biology, Institute of we examined embryos from Rala+/2 intercrosses. Between Cancer Research, London SW3 6JB, UK embryonic day 10.5 (E10.5) and E19.5, we observed that 10 2Department of Histopathology, Royal Marsden Hospital, out of 33 of the Rala null embryos displayed exencephaly London SW3 6JJ, UK (Figures 1E and 1F), a condition caused by a failure of closure of the neural tube along the hindbrain region [15]. We also observed exencephaly in Rala null embryos generated from Summary a gene-trap embryonic stem (ES) clone (Figures 1G and S1E– S1I). To examine whether RALA and RALB have overlapping RAL small GTPases, encoded by the Rala and Ralb genes, functions in neural tube closure, we generated compound are members of the RAS superfamily of small GTPases and mutants: 14 of 14 Rala2/2;Ralb+/2 embryos displayed a severe can act as downstream effectors of RAS [1]. -
Recurrent Copy Number Variants Associated with Bronchopulmonary Dysplasia
nature publishing group Articles Translational Investigation Recurrent copy number variants associated with bronchopulmonary dysplasia Ausaf Ahmad1,2, Soumyaroop Bhattacharya1,2, Arthi Sridhar3, Anwar M. Iqbal3 and Thomas J. Mariani1,2 BACKGROUND: Variability in the incidence and severity of and almost all infants (>97%) with birth weight <1,250 g are bronchopulmonary dysplasia (BPD) among premature infants diagnosed with BPD (5). suggests that genetic susceptibility plays a role in pathogen- A diagnosis of BPD is dependent upon the use of supple- esis. An assessment of copy number variants (CNV) in BPD sub- mental oxygen following preterm birth. In addition to pre- jects may help to identify loci that harbor genetic susceptibility mature birth, environmental factors such as oxidative stress, factors. mechanical ventilation, and infection play a significant role METHODS: We conducted a retrospective analysis of clinical in pathogenesis of BPD. Higher than physiological levels of DNA microarray data from our institution. We identified 19 BPD therapeutic oxygen (hyperoxia) induce stress with production subjects, and 2 controls groups (full-term and preterm) with of reactive oxygen species. The lungs of premature infants are no lung-related disease. We reanalyzed raw data from each of susceptible to injury with pre- and postnatal exposures. These these subjects to identify recurrent CNV loci in BPD subjects. exposures may cause lung damage and induce a deviation from RESULTS: We identified three loci (at 11q13.2, 16p13.3, and the normal developmental path (4). 22q11.23–q12.1) with recurrent CNV in BPD subjects. The fre- Variability in the incidence and severity of BPD among pre- quency of these CNV was significantly higher in BPD subjects mature infants with similar risk factors suggests that genetic when compared with at least one control group.