Phlpping the Balance: Restoration of Protein Kinase C in Cancer
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Localization of Ralb Signaling at Endomembrane Compartments and Its Modulation by Autophagy Received: 14 January 2019 Manish Kumar Singh1,2, Alexandre P
www.nature.com/scientificreports Corrected: Publisher Correction OPEN Localization of RalB signaling at endomembrane compartments and its modulation by autophagy Received: 14 January 2019 Manish Kumar Singh1,2, Alexandre P. J. Martin1,2, Carine Jofre 3, Giulia Zago1,2, Accepted: 30 May 2019 Jacques Camonis1,2, Mathieu Coppey1,4 & Maria Carla Parrini1,2 Published online: 20 June 2019 The monomeric GTPase RalB controls crucial physiological processes, including autophagy and invasion, but it still remains unclear how this multi-functionality is achieved. Previously, we reported that the RalGEF (Guanine nucleotide Exchange Factor) RGL2 binds and activates RalB to promote invasion. Here we show that RGL2, a major activator of RalB, is also required for autophagy. Using a novel automated image analysis method, Endomapper, we quantifed the endogenous localization of the RGL2 activator and its substrate RalB at diferent endomembrane compartments, in an isogenic normal and Ras-transformed cell model. In both normal and Ras-transformed cells, we observed that RGL2 and RalB substantially localize at early and recycling endosomes, and to lesser extent at autophagosomes, but not at trans-Golgi. Interestingly the use of a FRET-based RalB biosensor indicated that RalB signaling is active at these endomembrane compartments at basal level in rich medium. Furthermore, induction of autophagy by nutrient starvation led to a considerable reduction of early and recycling endosomes, in contrast to the expected increase of autophagosomes, in both normal and Ras-transformed cells. However, autophagy mildly afected relative abundances of both RGL2 and RalB at early and recycling endosomes, and at autophagosomes. Interestingly, RalB activity increased at autophagosomes upon starvation in normal cells. -
The Role of Rala and Ralb in Cancer Samuel C
University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 4-7-2008 The Role of RalA and RalB in Cancer Samuel C. Falsetti University of South Florida Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the American Studies Commons Scholar Commons Citation Falsetti, Samuel C., "The Role of RalA and RalB in Cancer" (2008). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/232 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. The Role of RalA and RalB in Cancer By Samuel C. Falsetti A dissertation submitted in partial fulfillment Of the requirements for the degree of Doctor of Philosophy Department of Molecular Medicine College of Medicine University of South Florida Major Professor: Saïd M. Sebti, Ph.D. Larry P. Solomonson, Ph.D. Gloria C. Ferreira, Ph.D. Srikumar Chellapan, Ph.D. Gary Reuther, Ph.D. Douglas Cress, Ph.D. Date of Approval: April 7th, 2008 Keywords: Ras, RACK1, Geranylgeranyltransferase I inhibitors, ovarian cancer, proteomics © Copyright 2008, Samuel C. Falsetti Dedication This thesis is dedicated to my greatest supporter, my wife. Without her loving advice and patience none of this would be possible. Acknowledgments I would like to extend my sincere gratitude to my wife, Nicole. She is the most inspirational person in my life and I am honored to be with her; in truth, this degree ought to come with two names printed on it. -
Association of Gene Ontology Categories with Decay Rate for Hepg2 Experiments These Tables Show Details for All Gene Ontology Categories
Supplementary Table 1: Association of Gene Ontology Categories with Decay Rate for HepG2 Experiments These tables show details for all Gene Ontology categories. Inferences for manual classification scheme shown at the bottom. Those categories used in Figure 1A are highlighted in bold. Standard Deviations are shown in parentheses. P-values less than 1E-20 are indicated with a "0". Rate r (hour^-1) Half-life < 2hr. Decay % GO Number Category Name Probe Sets Group Non-Group Distribution p-value In-Group Non-Group Representation p-value GO:0006350 transcription 1523 0.221 (0.009) 0.127 (0.002) FASTER 0 13.1 (0.4) 4.5 (0.1) OVER 0 GO:0006351 transcription, DNA-dependent 1498 0.220 (0.009) 0.127 (0.002) FASTER 0 13.0 (0.4) 4.5 (0.1) OVER 0 GO:0006355 regulation of transcription, DNA-dependent 1163 0.230 (0.011) 0.128 (0.002) FASTER 5.00E-21 14.2 (0.5) 4.6 (0.1) OVER 0 GO:0006366 transcription from Pol II promoter 845 0.225 (0.012) 0.130 (0.002) FASTER 1.88E-14 13.0 (0.5) 4.8 (0.1) OVER 0 GO:0006139 nucleobase, nucleoside, nucleotide and nucleic acid metabolism3004 0.173 (0.006) 0.127 (0.002) FASTER 1.28E-12 8.4 (0.2) 4.5 (0.1) OVER 0 GO:0006357 regulation of transcription from Pol II promoter 487 0.231 (0.016) 0.132 (0.002) FASTER 6.05E-10 13.5 (0.6) 4.9 (0.1) OVER 0 GO:0008283 cell proliferation 625 0.189 (0.014) 0.132 (0.002) FASTER 1.95E-05 10.1 (0.6) 5.0 (0.1) OVER 1.50E-20 GO:0006513 monoubiquitination 36 0.305 (0.049) 0.134 (0.002) FASTER 2.69E-04 25.4 (4.4) 5.1 (0.1) OVER 2.04E-06 GO:0007050 cell cycle arrest 57 0.311 (0.054) 0.133 (0.002) -
S41598-020-80397-9.Pdf
www.nature.com/scientificreports OPEN Activation of PKC supports the anticancer activity of tigilanol tiglate and related epoxytiglianes Jason K. Cullen1, Glen M. Boyle1,2,3,7*, Pei‑Yi Yap1, Stefan Elmlinger1, Jacinta L. Simmons1, Natasa Broit1, Jenny Johns1, Blake Ferguson1, Lidia A. Maslovskaya1,4, Andrei I. Savchenko4, Paul Malek Mirzayans4, Achim Porzelle4, Paul V. Bernhardt4, Victoria A. Gordon5, Paul W. Reddell5, Alberto Pagani6, Giovanni Appendino6, Peter G. Parsons1,3 & Craig M. Williams4* The long‑standing perception of Protein Kinase C (PKC) as a family of oncoproteins has increasingly been challenged by evidence that some PKC isoforms may act as tumor suppressors. To explore the hypothesis that activation, rather than inhibition, of these isoforms is critical for anticancer activity, we isolated and characterized a family of 16 novel phorboids closely‑related to tigilanol tiglate (EBC‑46), a PKC‑activating epoxytigliane showing promising clinical safety and efcacy for intratumoral treatment of cancers. While alkyl branching features of the C12‑ester infuenced potency, the 6,7‑epoxide structural motif and position was critical to PKC activation in vitro. A subset of the 6,7‑epoxytiglianes were efcacious against established tumors in mice; which generally correlated with in vitro activation of PKC. Importantly, epoxytiglianes without evidence of PKC activation showed limited antitumor efcacy. Taken together, these fndings provide a strong rationale to reassess the role of PKC isoforms in cancer, and suggest in some situations their activation can be a promising strategy for anticancer drug discovery. Te Protein Kinase C (PKC) family of serine/threonine kinases was frst identifed almost 40 years ago1. -
Phosphorylation of Ralb Is Important for Bladder Cancer Cell Growth and Metastasis
Published OnlineFirst October 12, 2010; DOI: 10.1158/0008-5472.CAN-10-0952 Published OnlineFirst on October 12, 2010 as 10.1158/0008-5472.CAN-10-0952 Therapeutics, Targets, and Chemical Biology Cancer Research Phosphorylation of RalB Is Important for Bladder Cancer Cell Growth and Metastasis Hong Wang1, Charles Owens1, Nidhi Chandra1, Mark R. Conaway2, David L. Brautigan3,4, and Dan Theodorescu5 Abstract RalA and RalB are monomeric G proteins that are 83% identical in amino acid sequence but have paralogue- specific effects on cell proliferation, metastasis, and apoptosis. Using in vitro kinase assays and phosphosite- specific antibodies, here we show phosphorylation of RalB by protein kinase C (PKC) and RalA by protein kinase A. We used mass spectrometry and site-directed mutagenesis to identify S198 as the primary PKC phosphorylation site in RalB. Phorbol ester [phorbol 12-myristate 13-acetate (PMA)] treatment of human blad- der carcinoma cells induced S198 phosphorylation of stably expressed FLAG-RalB as well as endogenous RalB. PMA treatment caused RalB translocation from the plasma membrane to perinuclear regions in a S198 phos- phorylation–dependent manner. Using RNA interference depletion of RalB followed by rescue with wild-type RalB or RalB(S198A) as well as overexpression of wild-type RalB or RalB(S198A) with and without PMA stimulation, we show that phosphorylation of RalB at S198 is necessary for actin cytoskeletal organization, anchorage-independent growth, cell migration, and experimental lung metastasis of T24 or UMUC3 human bladder cancer cells. In addition, UMUC3 cells transfected with a constitutively active RalB(G23V) exhibited enhanced subcutaneous tumor growth, whereas those transfected with phospho-deficient RalB(G23V-S198A) were indistinguishable from control cells. -
Receptor-Mediated Modulation of Human Monocyte, Neutrophil, Lymphocyte, and Platelet Function by Phorbol Diesters
Receptor-mediated Modulation of Human Monocyte, Neutrophil, Lymphocyte, and Platelet Function by Phorbol Diesters BONNIE J. GOODWIN, Department of Medicine, Division of Hematology-Oncology, Duke University Medical Center, Durham, North Carolina 27710 J. BRICE WEINBERG, Department of Medicine, Division of Hematology-Oncology, Veterans Administration Medical Center and Duke University Medical Center, Durham, North Carolina 27705 A B S T R A C T The tumor promoting phorbol diesters creasing order of potency) inhibited [3H]PDBu binding elicit a variety of responses from normal and leukemic and elicited the various responses. Thus, these high blood cells in vitro by apparently interacting with cel- affinity, specific receptors for the phorbol diesters, lular receptors. The biologically active ligand [20-3H] present on monocytes, lymphocytes, PMN, and plate- phorbol 12,13-dibutyrate ([3H]PDBu) bound specifi- lets, mediate the pleiotypic effects induced by these cally to intact human lymphocytes, monocytes, poly- ligands. morphonuclear leukocytes (PMN), and platelets, but not to erythrocytes. Binding, which was comparable INTRODUCTION for all four blood cell types, occurred rapidly at 230 and 37°C, reaching a maximum by 20-30 min usually Tumor promoting agents are substances, which al- followed by a 30-40% decrease in cell associated ra- though noncarcinogenic themselves, cause tumor for- dioactivity over the next 30-60 min. The time course mation when applied repeatedly to mouse skin that for binding was temperature dependent with equilib- has been previously treated with a subthreshold dose rium binding occurring after 120-150 min at 4°C, of a carcinogen. The most potent promoters in the with no subsequent loss of cell-associated radioactivity mouse skin system are esters of the tetracyclic diter- at this temperature. -
Medically Useful Plant Terpenoids: Biosynthesis, Occurrence, and Mechanism of Action
molecules Review Medically Useful Plant Terpenoids: Biosynthesis, Occurrence, and Mechanism of Action Matthew E. Bergman 1 , Benjamin Davis 1 and Michael A. Phillips 1,2,* 1 Department of Cellular and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; [email protected] (M.E.B.); [email protected] (B.D.) 2 Department of Biology, University of Toronto–Mississauga, Mississauga, ON L5L 1C6, Canada * Correspondence: [email protected]; Tel.: +1-905-569-4848 Academic Editors: Ewa Swiezewska, Liliana Surmacz and Bernhard Loll Received: 3 October 2019; Accepted: 30 October 2019; Published: 1 November 2019 Abstract: Specialized plant terpenoids have found fortuitous uses in medicine due to their evolutionary and biochemical selection for biological activity in animals. However, these highly functionalized natural products are produced through complex biosynthetic pathways for which we have a complete understanding in only a few cases. Here we review some of the most effective and promising plant terpenoids that are currently used in medicine and medical research and provide updates on their biosynthesis, natural occurrence, and mechanism of action in the body. This includes pharmacologically useful plastidic terpenoids such as p-menthane monoterpenoids, cannabinoids, paclitaxel (taxol®), and ingenol mebutate which are derived from the 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway, as well as cytosolic terpenoids such as thapsigargin and artemisinin produced through the mevalonate (MVA) pathway. We further provide a review of the MEP and MVA precursor pathways which supply the carbon skeletons for the downstream transformations yielding these medically significant natural products. Keywords: isoprenoids; plant natural products; terpenoid biosynthesis; medicinal plants; terpene synthases; cytochrome P450s 1. -
Targeting Protein Kinase C in Glioblastoma Treatment
biomedicines Review Targeting Protein Kinase C in Glioblastoma Treatment Noelia Geribaldi-Doldán 1,2,† , Irati Hervás-Corpión 2,3,†, Ricardo Gómez-Oliva 2,4 , Samuel Domínguez-García 2,4, Félix A. Ruiz 2,3,5 , Irene Iglesias-Lozano 2,3, Livia Carrascal 2,6 , Ricardo Pardillo-Díaz 1,2, José L. Gil-Salú 2,3, Pedro Nunez-Abades 2,6 , Luis M. Valor 2,3,7,* and Carmen Castro 2,4,* 1 Departamento de Anatomía y Embriología Humanas, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain; [email protected] (N.G.-D.); [email protected] (R.P.-D.) 2 Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain; [email protected] (I.H.-C.); [email protected] (R.G.-O.); [email protected] (S.D.-G.); [email protected] (F.A.R.); [email protected] (I.I.-L.); [email protected] (L.C.); [email protected] (J.L.G.-S.); [email protected] (P.N.-A.) 3 Unidad de Investigación, Hospital Universitario Puerta del Mar de Cádiz, 11009 Cádiz, Spain 4 Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain 5 Área de Nutrición, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain 6 Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain 7 Currently at Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain * Correspondence: [email protected] (L.M.V.); [email protected] (C.C.) † These authors contributed equally to this work. Abstract: Glioblastoma (GBM) is the most frequent and aggressive primary brain tumor and is associ- ated with a poor prognosis. -
The Small G-Protein Rala Promotes Progression and Metastasis of Triple- Negative Breast Cancer Katie A
Thies et al. Breast Cancer Research (2021) 23:65 https://doi.org/10.1186/s13058-021-01438-3 RESEARCH ARTICLE Open Access The small G-protein RalA promotes progression and metastasis of triple- negative breast cancer Katie A. Thies1,2, Matthew W. Cole1,2, Rachel E. Schafer1,2, Jonathan M. Spehar1,2, Dillon S. Richardson1,2, Sarah A. Steck1,2, Manjusri Das1,2, Arthur W. Lian1,2, Alo Ray1,2, Reena Shakya1,3, Sue E. Knoblaugh4, Cynthia D. Timmers5,6, Michael C. Ostrowski5,7, Arnab Chakravarti1,2, Gina M. Sizemore1,2 and Steven T. Sizemore1,2* Abstract Background: Breast cancer (BC) is the most common cancer in women and the leading cause of cancer-associated mortality in women. In particular, triple-negative BC (TNBC) has the highest rate of mortality due in large part to the lack of targeted treatment options for this subtype. Thus, there is an urgent need to identify new molecular targets for TNBC treatment. RALA and RALB are small GTPases implicated in growth and metastasis of a variety of cancers, although little is known of their roles in BC. Methods: The necessity of RALA and RALB for TNBC tumor growth and metastasis were evaluated in vivo using orthotopic and tail-vein models. In vitro, 2D and 3D cell culture methods were used to evaluate the contributions of RALA and RALB during TNBC cell migration, invasion, and viability. The association between TNBC patient outcome and RALA and RALB expression was examined using publicly available gene expression data and patient tissue microarrays. Finally, small molecule inhibition of RALA and RALB was evaluated as a potential treatment strategy for TNBC in cell line and patient-derived xenograft (PDX) models. -
Genetic Deletion of RALA and RALB Small Gtpases Reveals Redundant Functions in Development and Tumorigenesis
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Current Biology 22, 2063–2068, November 6, 2012 ª2012 Elsevier Ltd All rights reserved http://dx.doi.org/10.1016/j.cub.2012.09.013 Report Genetic Deletion of RALA and RALB Small GTPases Reveals Redundant Functions in Development and Tumorigenesis Pascal Peschard,1 Afshan McCarthy,1 (Figures 1A and 1B) and loss of RALB proteins in tissues of Vale´rie Leblanc-Dominguez,1 Maggie Yeo,1 adult mice (Figure 1C). The expression of RALB proteins was Sabrina Guichard,1 Gordon Stamp,2 unchanged in Rala null cells and vice versa. and Christopher J. Marshall1,* To investigate the role of RALA in embryonic development, 1Oncogene Team, Division of Cancer Biology, Institute of we examined embryos from Rala+/2 intercrosses. Between Cancer Research, London SW3 6JB, UK embryonic day 10.5 (E10.5) and E19.5, we observed that 10 2Department of Histopathology, Royal Marsden Hospital, out of 33 of the Rala null embryos displayed exencephaly London SW3 6JJ, UK (Figures 1E and 1F), a condition caused by a failure of closure of the neural tube along the hindbrain region [15]. We also observed exencephaly in Rala null embryos generated from Summary a gene-trap embryonic stem (ES) clone (Figures 1G and S1E– S1I). To examine whether RALA and RALB have overlapping RAL small GTPases, encoded by the Rala and Ralb genes, functions in neural tube closure, we generated compound are members of the RAS superfamily of small GTPases and mutants: 14 of 14 Rala2/2;Ralb+/2 embryos displayed a severe can act as downstream effectors of RAS [1]. -
Targeting the Ras-Ral Effector Pathway for Cancer Treatment
TARGETING THE RAS-RAL EFFECTOR PATHWAY FOR CANCER TREATMENT Leanna R. Gentry A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Pharmacology. Chapel Hill 2015 Approved by: Adrienne Cox Channing Der Lee Graves Klaus Hahn Gary Johnson ©2015 Leanna R. Gentry ALL RIGHTS RESERVED ii ABSTRACT LEANNA R. GENTRY: Targeting the Ras-Ral effector pathway for cancer treatment (Under the direction of Channing J. Der) The RAS oncogene is the most frequently mutated gene in human cancers, and this activated Ras oncoprotein has been shown to be required for both cancer initiation and maintenance. Great strides have been made in understanding Ras signaling in cancer since the discovery of its involvement in human cancers in 1982, with numerous Ras effector pathways and modes of Ras regulation having been identified as contributing to Ras-driven oncogenesis. However, there has been limited success in developing strategies for therapeutically targeting Ras-driven oncogenesis. One effort that has gained popularity in recent years is the inhibition of Ras effector signaling. The Ral (Ras-like) small GTPases, discovered shortly after Ras in an attempt to identify RAS-related genes, are activated downstream of Ras by Ral guanine nucleotide exchange factors (RalGEFs). The Ral family members have since emerged as critical regulators of key cellular processes and, importantly, have been characterized as playing a role in tumorigenesis and invasion of multiple cancer types. Interestingly, divergent roles for RalA and RalB are often observed in within a cancer. -
Exocyst Inactivation in Urothelial Cells Disrupts Autophagy and Activates Non-Canonical
bioRxiv preprint doi: https://doi.org/10.1101/2021.07.05.451173; this version posted July 5, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Exocyst Inactivation in Urothelial Cells Disrupts Autophagy and Activates non-canonical NF-κB Michael A. Ortega1,2, Ross K. Villiger2, Malia Harrison-Chau2, Suzanna Lieu2, Kadee-Kalia Tamashiro2, Amanda J. Lee2,3, Brent A. Fujimoto2, Geetika Y. Patwardhan2, Joshua Kepler2 & Ben Fogelgren*2 1 Center for Biomedical Research at The Queen’s Medical Center, Honolulu, Hawaii 96813; 2 Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii 96813; 3 Math and Sciences Department, Kapiolani Community College, Honolulu, Hawaii 96816. *Corresponding Author: Ben Fogelgren Email address: [email protected] Keywords: autophagy / exocyst / Fn14 / NF-κB / urothelium 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.07.05.451173; this version posted July 5, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Ureter obstruction is a highly prevalent event during embryonic development and is a major cause of pediatric kidney disease. We have reported that ureteric bud-specific ablation of the exocyst Exoc5 subunit in late-murine gestation results in failure of urothelial stratification, cell death, and complete ureter obstruction. However, the mechanistic connection between disrupted exocyst activity, urothelial cell death, and subsequent ureter obstruction was unclear. Here, we report that inhibited urothelial stratification does not drive cell death during ureter development.