Prostate Cancer Imaging and Therapy

Total Page:16

File Type:pdf, Size:1020Kb

Prostate Cancer Imaging and Therapy PROSTATE CANCER IMAGING AND THERAPY A TECHNOLOGIST’S GUIDE Produced with the kind support of Chapters marked with this symbol are made available to you as webinar on the EANM eLearning platform: elearning.eanm.org TABLE OF CONTENTS Foreword 4 Pedro Fragoso Costa Introduction 6 Luca Camoni Chapter 1 Anatomy, physiology and pathology of the prostate 9 Lucia Zanoni, Cristina Nanni and Stefano Fanti Chapter 2 Clinical radiopharmaceuticals for prostate cancer 21 Martin Behe Chapter 3 Conventional nuclear medicine in prostate cancer imaging 29 Wolfgang Römer Chapter 4 PET/CT procedures with fluorine-18 41 radiopharmaceuticals in prostate cancer* Daniel Tempesta and David Gilmore Chapter 5 Prostate cancer PET-CT imaging beyond F-18 tracers 51 Giorgio Testanera and Giovanna Pepe Chapter 6 PET/CT-guided radiotherapy planning in prostate cancer 73 Yat Man Tsang and Michelle Leech Chapter 7 Theranostics in Prostate Cancer 83 Sarah M. Schwarzenböck, Bernd Joachim Krause and Jens Kurth Chapter 8 Prostate cancer radionuclide therapy based on alpha emitters 95 Mark Konijnenberg and Domenico Albano Chapter 9 The management of a prostate cancer patient 105 MarieClaire Attard and Rexhep Durmo Chapter 10 Future perspectives and preclinical studies in prostate cancer 123 Laura Evangelista and Federico Caobelli *Articles were written with the kind support of and in cooperation with the EANM TECHNOLGIST’S GUIDE 3 PROSTATE CANCER IMAGING AND THERAPY FOREWORD Foreword Individualised medicine and tailored treatment solutions are nowadays unimaginable without diagnostic imaging. The development and implementation of disease-specific tracers within nuclear medicine has impacted on patient clinical management and positively affected the lives of thousands of patients all over the globe. Nuclear medicine technologists are spe- radiopharmacists and dosimetrists whose cialised professionals who perform or are coordinated effort has culminated in this involved in a number of procedures, in- guide. Such an ongoing joint effort is the cluding radiopharmaceutical labelling, pa- reason behind the acknowledged wide tient management, image reconstruction readership for past editions of A Technolo- and radiation safety. gist’s Guide (TG) and the extremely positive The multidisciplinary effort in nuclear response that EANM receives every year medicine to discover new molecules with concerning this publication. a significant clinical impact is well known This year’s edition of the TG celebrates a through the recent research and devel- return to clinical applications, being to- opments with respect to diagnostic and tally focussed on one pathology in which therapeutic radiopharmaceuticals for use nuclear medicine is deeply involved. The in prostate cancer. motivation for the content design of this As a reference scientific body in Europe, the TG was the desire to explore the multi- European Association of Nuclear Medicine disciplinary approach to prostate cancer, (EANM), and its Technologist Committee from preclinical studies with animal mod- (EANMTC), has had the privilege of gather- els through to established diagnostic and ing top quality clinical scientists, technolo- therapeutic methodologies. The guide gists, physicians, physicists, radiochemists, accordingly provides a complete overview 4 EANM TECHNOLGIST’S GUIDE PROSTATE CANCER IMAGING AND THERAPY FOREWORD of the nuclear medicine vision regarding of this book could not have been realised. prostate cancer, from anatomy to clinical From overseas my gratitude extends to the tracers, with consideration of both con- Society of Nuclear Medicine and Molecular ventional nuclear medicine and PET/CT Imaging Technologist Section (SNMMI-TS) and both fluorine-18 and non-fluorine-18 and I would also like to thank the European tracers. The role of nuclear medicine with Society of Radiotherapy & Oncology (ES- respect to external radiotherapy is also TRO) Radiation Therapist (RTT) Committee discussed in this TG, as are a range of ther- for their valuable contribution. apeutic and theranostic applications. Like- Lastly, I am very much indebted to the wise, patient-focussed practice and trans- EANM-TC editorial group, to Rick Mills for lational medicine chapters are presented. copyediting assistance and to the EANM I would like to express my gratitude for the Board and Executive Office for their con- collective effort of all authors who partici- tinuous support on one of the most signif- pated in this publication. Special thanks are icant and well-received projects to origi- due to the EANM Technologist, Oncology, nate from our committee. Radiopharmacy, Dosimetry and Transla- tional Molecular Imaging & Therapy Com- mittees involved in this venture, without Pedro Fragoso Costa whom the truly multidisciplinary nature Chair of the EANM Technologist Committee EANM TECHNOLGIST’S GUIDE 5 PROSTATE CANCER IMAGING AND THERAPY INTRODUCTION Introduction Prostate cancer is the second most common cancer in men worldwide. Due to increasing life expectancy and the introduction of more sensitive diagnostic screening techniques, prostate cancer is being diagnosed more frequently, with rapidly increasing incidence and prevalence. It has a wide spectrum of biological behaviour, ranging from indolent low-risk disease to highly aggressive castration-resistant prostate cancer. Nuclear medicine imaging plays a key role and hybrid SPECT/CT. The following two in this heterogeneous disease as it can chapters provide an overview on pro- answer key clinical questions at various tocols and the diagnostic value of PET/ phases of the disease, the imaging being CT imaging using fluorine-18 and other tailored to each phase. Nuclear medicine non-fluorine-18 radioisotopes labelled has demonstrated efficacy for cancer de- with different molecules. PET/CT is a use- tection, with an increasing number of po- ful tool for guided radiotherapy planning; tential targets for imaging and treatment. consequently the sixth chapter describes The first chapter of this book describes the acquisition and reconstruction proto- the prostate’s anatomy, physiology and col for the purpose of radiotherapy. One of pathology. The radiopharmaceuticals that the most recent developments in nuclear allow study or treatment of prostate cancer medicine is theranostics: the seventh chap- are discussed in the subsequent chapter. ter reviews the state of the art, describing Conventional nuclear medicine represents the use of theranostic pairs and quantita- a cost-effective resource in the manage- tive analysis of tissue and tumour uptake ment of prostatic disease, and the third in optimisation of patient treatment. The chapter documents the specific imaging eighth chapter broadens the vision of the procedures for diagnostic planar imaging field of therapy, adding treatment based 6 EANM TECHNOLGIST’S GUIDE PROSTATE CANCER IMAGING AND THERAPY INTRODUCTION on alpha-emitting radionuclides. Nuclear fields in preclinical cancer drug research medicine technologists play an important and development. part in the multi-professional manage- We hope that this overview of the state ment of the prostate cancer patient. In of the art of nuclear medicine imaging and addition to being directly involved in ther- therapy in prostate cancer will provide a apy through the performance of various valuable resource for all technologists and roles, they are responsible for other tasks clinical staff involved in this field. such as patient preparation and imaging The EANM Technologist Committee processing. The ninth chapter describes would like to thank all the authors who the clinical pathway of the patient in order have kindly offered their time and exper- to improve understanding of the technol- tise, which have been fundamental to the ogist’s tasks. creation of this book. The recent advances in prostate cancer specific tracers were significantly support- ed by the advent of translational medicine. Luca Camoni With this in mind, the final chapter explains on behalf of the editors how molecular and non-invasive preclin- ical imaging become rapidly emerging EANM TECHNOLGIST’S GUIDE 7 PROSTATE CANCER IMAGING AND THERAPY ANATOMY, PHYSIOLOGY AND PATHOLOGY OF THE PROSTATE by Lucia Zanoni, Cristina Nanni and Stefano Fanti 1 CHAPTER 1 INTRODUCTION PATHOLOGY OF THE PROSTATE THE OF PATHOLOGY AND PHYSIOLOGY ANATOMY, The prostate is a glandular and muscular structure positioned immediately below the neck of the bladder and around the commencement of the urethra. It is located within the pelvic cavity, below the inferior margin of the symphysis pubis and above the triangular ligament, anterior to the rectum. Its base is below the neck of the bladder and is directed upwards, whereas the apex touches the ligament and is directed downwards. Its posterior surface is close to the second part of the rectum, whereas its anterior surface is connected to the pubis by puboprostatic ligaments. The lateral surfaces are in contact with the levator ani muscles[1]. The prostate consists of two lateral lobes, systemic steroid hormone signals, local equal in dimension, and a third middle paracrine signalling pathways and cell lobe, which lies in the central posterior autonomous factors. The prostate is an region. It is surrounded by a thin, fibrous exocrine gland whose role is part of the capsule separated by a plexus of veins male reproductive function in mammals. from the rectovesical fascia. Immediately The mouse has emerged as the most im- below the capsule, there is muscular tis- portant model system for investigation of sue, which
Recommended publications
  • Landscape Analysis of Phase 2/3 Clinical Trials of Targeted
    Journal of Nuclear Medicine, published on February 12, 2021 as doi:10.2967/jnumed.120.258103 Landscape analysis of Phase 2/3 clinical trials for Targeted Radionuclide Therapy Erik Mittra1, Amanda Abbott2, and Lisa Bodei3 Affiliations 1. Division of Nuclear Medicine & Molecular Imaging, Oregon Health & Science University, Portland, OR 2. Clinical Trials Network, Society of Nuclear Medicine & Molecular Imaging, Reston, VA 3. Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY Word count without figure: 880 Word count with figure: 971 Key Words: radioisotope therapy, radiopharmaceutical therapy and radioligand therapy Text Within Nuclear Medicine, theranostics has revitalized the field of Targeted Radionuclide Therapy (TRT) and there is a growing number of investigator-initiated and industry-sponsored clinical trials of TRT. This article summarizes the current trials available in the NIH database, the largest trial repository, to provide both an overview of the current landscape and a glimpse towards an undeniably exciting future of theranostics. This landscape analysis was completed by searching the terms “radionuclide therapy”, “radioisotope therapy”, “radiopharmaceutical therapy” and “radioligand therapy” on ClinicalTrials.gov in November 2020. Other terms may provide different results. Phase 1/2, 2, and 3 trials that are currently recruiting and those not yet recruiting were included. Studies. Overall, the results showed 42 clinical trials including 13 Phase 1/2, 26 Phase 2, and three Phase 3. Given this range of phases, the planned enrollment varies widely from 10-813, with an average of 147 participants. Five different radioisotopes, 12 ligands or targets, and 11 different cancer types are represented (Figure 1).
    [Show full text]
  • RADIO PHARMACEUTICALS  Production Control  Safety Precautions  Applications  Storage
    RADIO PHARMACEUTICALS Production control Safety precautions Applications Storage. Presented by: K. ARSHAD AHMED KHAN M.Pharm, (Ph.D) Department of Pharmaceutics, Raghavendra Institute of Pharmaceutical Education and Research [RIPER] Anantapur. 1 DEFINITION: Radiopharmaceuticals are the radioactive substances or radioactive drugs for diagnostic or therapeutic interventions. or Radiopharmaceuticals are medicinal formulations containing radioisotopes which are safe for administration in humans for diagnosis or for therapy. 2 COMPOSITION: • A radioactive isotope that can be injected safely into the body, and • A carrier molecule which delivers the isotope to the area to be treated or examined. 3 USAGE/WORKING: 4 BASICS Nuclide: This is a particular nuclear species characterized by its atomic number (No. of protons) and mass 12 23 number (No. of protons + neutrons). 6C , 11Na Isotopes: These are nuclides with same atomic number and different mass number. 1 2 3 Hydrogen has 3 isotopes --- 1H , 1H , 1H . 10 11 12 13 14 Carbon has 5 isotopes ------6C , 6C , 6C , 6C , 6C . 5 • ISOTOPES MAY BE STABLE OR UNSTABLE. • The nucleus is unstable if the number of neutrons is less or greater than the number of protons. • If they are unstable, they under go radioactive decay or disintegration and are known as radioactive isotopes/ radioactive nuclides. Radioactivity: The property of unstable nuclides of emitting radiation by spontaneous transformation of nuclei into other nuclides is called radioactivity. •Radioactive isotopes emit radiations or rays like α, β, γ rays. 6 PRODUCTION CONTROL 7 8 9 10 11 12 13 14 15 Radiopharmaceuticals production occurs in machines like 1. Cyclotron (low energy, high energy) 2.
    [Show full text]
  • Tanibirumab (CUI C3490677) Add to Cart
    5/17/2018 NCI Metathesaurus Contains Exact Match Begins With Name Code Property Relationship Source ALL Advanced Search NCIm Version: 201706 Version 2.8 (using LexEVS 6.5) Home | NCIt Hierarchy | Sources | Help Suggest changes to this concept Tanibirumab (CUI C3490677) Add to Cart Table of Contents Terms & Properties Synonym Details Relationships By Source Terms & Properties Concept Unique Identifier (CUI): C3490677 NCI Thesaurus Code: C102877 (see NCI Thesaurus info) Semantic Type: Immunologic Factor Semantic Type: Amino Acid, Peptide, or Protein Semantic Type: Pharmacologic Substance NCIt Definition: A fully human monoclonal antibody targeting the vascular endothelial growth factor receptor 2 (VEGFR2), with potential antiangiogenic activity. Upon administration, tanibirumab specifically binds to VEGFR2, thereby preventing the binding of its ligand VEGF. This may result in the inhibition of tumor angiogenesis and a decrease in tumor nutrient supply. VEGFR2 is a pro-angiogenic growth factor receptor tyrosine kinase expressed by endothelial cells, while VEGF is overexpressed in many tumors and is correlated to tumor progression. PDQ Definition: A fully human monoclonal antibody targeting the vascular endothelial growth factor receptor 2 (VEGFR2), with potential antiangiogenic activity. Upon administration, tanibirumab specifically binds to VEGFR2, thereby preventing the binding of its ligand VEGF. This may result in the inhibition of tumor angiogenesis and a decrease in tumor nutrient supply. VEGFR2 is a pro-angiogenic growth factor receptor
    [Show full text]
  • Radiopharmaceuticals and Contrast Media – Oxford Clinical Policy
    UnitedHealthcare® Oxford Clinical Policy Radiopharmaceuticals and Contrast Media Policy Number: RADIOLOGY 034.19 T0 Effective Date: January 1, 2021 Instructions for Use Table of Contents Page Related Policies Coverage Rationale ....................................................................... 1 • Cardiology Procedures Requiring Prior Definitions .................................................................................... 10 Authorization for eviCore Healthcare Arrangement Prior Authorization Requirements .............................................. 10 • Radiation Therapy Procedures Requiring Prior Applicable Codes ........................................................................ 10 Authorization for eviCore Healthcare Arrangement Description of Services ............................................................... 13 • Radiology Procedures Requiring Prior Authorization References ................................................................................... 13 for eviCore Healthcare Arrangement Policy History/Revision Information ........................................... 14 Instructions for Use ..................................................................... 14 Coverage Rationale eviCore healthcare administers claims on behalf of Oxford Health Plans for the following services that may be billed in conjunction with radiopharmaceuticals and/or contrast media: • Radiology Services: Refer to Radiology Procedures Requiring Prior Authorization for eviCore Healthcare Arrangement for additional information.
    [Show full text]
  • Targeted Radiotherapeutics from 'Bench-To-Bedside'
    RadiochemistRy in switzeRland CHIMIA 2020, 74, No. 12 939 doi:10.2533/chimia.2020.939 Chimia 74 (2020) 939–945 © C. Müller, M. Béhé, S. Geistlich, N. P. van der Meulen, R. Schibli Targeted Radiotherapeutics from ‘Bench-to-Bedside’ Cristina Müllera, Martin Béhéa, Susanne Geistlicha, Nicholas P. van der Meulenab, and Roger Schibli*ac Abstract: The concept of targeted radionuclide therapy (TRT) is the accurate and efficient delivery of radiation to disseminated cancer lesions while minimizing damage to healthy tissue and organs. Critical aspects for success- ful development of novel radiopharmaceuticals for TRT are: i) the identification and characterization of suitable targets expressed on cancer cells; ii) the selection of chemical or biological molecules which exhibit high affin- ity and selectivity for the cancer cell-associated target; iii) the selection of a radionuclide with decay properties that suit the properties of the targeting molecule and the clinical purpose. The Center for Radiopharmaceutical Sciences (CRS) at the Paul Scherrer Institute in Switzerland is privileged to be situated close to unique infrastruc- ture for radionuclide production (high energy accelerators and a neutron source) and access to C/B-type labora- tories including preclinical, nuclear imaging equipment and Swissmedic-certified laboratories for the preparation of drug samples for human use. These favorable circumstances allow production of non-standard radionuclides, exploring their biochemical and pharmacological features and effects for tumor therapy and diagnosis, while investigating and characterizing new targeting structures and optimizing these aspects for translational research on radiopharmaceuticals. In close collaboration with various clinical partners in Switzerland, the most promising candidates are translated to clinics for ‘first-in-human’ studies.
    [Show full text]
  • 208054Orig1s000
    CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 208054Orig1s000 MEDICAL REVIEW(S) Clinical Review Phillip B. Davis, MD Priority Review 505(b)(2) NDA Axumin (18F-Fluciclovine) CLINICAL REVIEW Application Type 505 (b) (1) Application Number(s) 208054 Priority or Standard Priority Review Submit Date(s) 9/28/2015 Received Date(s) 9/28/2015 PDUFA Goal Date 5/27/2016 Division/Office DMIP/ODEIV Reviewer Name(s) Phillip B. Davis, MD Review Completion Date 2/26/2016 Established Name 18F-Fluciclovine (Proposed) Trade Name Axumin Applicant Blue Earth Diagnostics Formulation(s) Solution Dosing Regimen 10mCi via intravenous injection Applicant Proposed PET Imaging men with suspected prostate cancer recurrence. Indication(s)/Population(s) Recommendation on Approval Regulatory Action Recommended Positron emission tomography (PET) imaging of men with Indication(s)/Population(s) suspected prostate cancer recurrence. Axumin PET imaging may (if applicable) identify sites of prostate cancer. CDER Clinical Review Template 2015 Edition 1 Version date: June 25, 2015 for initial rollout (NME/original BLA reviews) Reference ID: 3897370 Clinical Review Phillip B. Davis, MD Priority Review 505(b)(2) NDA Axumin (18F-Fluciclovine) Table of Contents Glossary .................................................................................................................................. 8 1 Executive Summary .........................................................................................................10 1.1. Product Introduction ................................................................................................10
    [Show full text]
  • Bispecific Antibody Pretargeting of Radionuclides for Immuno^ Single
    Bispecific Antibody Pretargeting of Radionuclides for Immuno ^ Single-Photon Emission Computed Tomography and Immuno ^ Positron Emission Tomography Molecular Imaging:An Update Robert M. Sharkey,1Habibe Karacay,1William J. McBride,2 Edmund A. Rossi,3 Chien-Hsing Chang,3 and David M. Goldenberg1 Abstract Molecular imaging is intended to localize disease based on distinct molecular/functional characteristics. Much of today’s interest in molecular imaging is attributed to the increased acceptance and role of 18F-flurodeoxyglucose (18F-FDG) imaging in a variety of tumors. The clinical acceptance of 18F-FDG has stimulated research for other positron emission tomography (PET) agents with improved specificity to aid in tumor detection and assessment. In this regard, a number of highly specific antibodies have been described for different cancers. Although scintigraphic imaging with antibodies in the past was helpful in patient management, most antibody-based imaging products have not been able to compete successfully with the sensitivity afforded by 18F-FDG-PET, especially when used in combination with computed tomography. Recently, however, significant advances have been made in reengineering antibodies to improve their targeting properties. Herein, we describe progress being made in using a bispecific antibody pretargeting method for immuno ^ single-photon emission computed tomography and immunoPETapplications, as contrasted to directly radiolabeled antibodies.This approach not only significantly enhances tumor/nontumor ratios but also provides high signal intensity in the tumor, making it possible to visualize micrometastases of colonic cancer as small as 0.1to 0.2 mm in diameter using an anti ^ carcinoembryonic antigen bispecific antibody, whereas FDG failed to localize these lesions in a nude mouse model.
    [Show full text]
  • [18F] FACBC (Fluciclovine) PET-CT of Breast Cancer an Exploratory Study
    Journal of Nuclear Medicine, published on April 7, 2016 as doi:10.2967/jnumed.115.171389 Anti-3-[18F] FACBC (Fluciclovine) PET-CT of Breast Cancer: An Exploratory Study Funmilayo I. Tade1, Michael A. Cohen1, Toncred M. Styblo2, Oluwaseun A. Odewole1, Anna I. Holbrook1, Mary S. Newell1, Bital Savir-Baruch3, Xiaoxian Li4, Mark M. Goodman1, Jonathon A Nye1, David M. Schuster1. Author affiliations: 1. Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA 2. Surgery, Emory University, Atlanta, GA, USA 3. Radiology, Loyola University Medical Center, Maywood, Illinois, USA 4. Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA Corresponding Author: David M. Schuster, MD; Division of Nuclear Medicine and Molecular Imaging, Department of Radiology and Imaging Sciences, Emory University Hospital, 1364 Clifton Road, Atlanta, GA 30322. Telephone: 404-712-4859, Fax: 404-712-4860, email: [email protected] First Author: Funmilayo Tade, MD, MPH; Research Fellow, Division of Nuclear Medicine and Molecular Imaging, Department of Radiology and Imaging Sciences, Emory University Hospital, 1364 Clifton Road, Atlanta, GA 30322. Telephone: 404-712-1348, Fax: 404-712-4860, email: [email protected] Word Count: 4,946 Grant Sponsor: Glenn Family Breast Center Grant; Winship Cancer Institute, Emory University. FLUCICLOVINE PET-CT IN BREAST CANCER The purpose of this study is to explore the uptake of the synthetic amino acid analog positron emission tomography (PET) radiotracer anti-3-[18F] FACBC (fluciclovine) in breast lesions with correlation to histologic and immunohistochemical characteristics. Methods Twelve women with breast lesions underwent 45 minute dynamic PET-CT of the thorax after intravenous administration of 366.3 ±14.8 (337.44 - 394.05) MBq of fluciclovine.
    [Show full text]
  • ACMUI Chairman, Presiding
    Official Transcript of Proceedings NUCLEAR REGULATORY COMMISSION Title: Meeting of the Advisory Committee on the Medical Uses of Isotopes Docket Number: (n/a) Location: Teleconference Date: Monday, March 30, 2020 Work Order No.: NRC-0868 Pages 1-262 NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433 1 UNITED STATES OF AMERICA NUCLEAR REGULATORY COMMISSION + + + + + ADVISORY COMMITTEE ON THE MEDICAL USES OF ISOTOPES + + + + + TELECONFERENCE + + + + + MONDAY, MARCH 30, 2020 + + + + + The meeting was convened by teleconference, at 9:30 a.m., Dr. Darlene F. Metter, ACMUI Chairman, presiding. MEMBERS PRESENT: DARLENE F. METTER, M.D., Chairman A. ROBERT SCHLEIPMAN, Ph.D., Vice Chairman GARY BLOOM, Member VASKEN DILSIZIAN, M.D., Member RONALD D. ENNIS, M.D., Member RICHARD L. GREEN, Member HOSSEIN JADVAR, Member MELISSA C. MARTIN, Member MICHAEL D. O'HARA, Ph.D., Member ZOUBIR OUHIB, Member NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433 2 MICHAEL SHEETZ, Member MEGAN L. SHOBER, Member HARVEY B. WOLKOV, M.D., Member DESIGNATED FEDERAL OFFICERS: CHRISTIAN EINBERG, Chief, Medical Safety and Events Assessment Branch (MSEB) LISA DIMMICK, Medical Radiation Safety Team Leader, NMSS/MSST/MSEB KELLEE JAMERSON, ACMUI Coordinator NRC STAFF PRESENT: KEVIN WILLIAMS, Deputy Director, Division of Materials Safety, Security, State, and Tribal Programs (MSST) MARYANN AYOADE, NMSS/MSST/MSEB SAID DAIBES, Ph.D., NMSS/MSST/MSEB DANIEL DIMARCO, NMSS/MSST/MSEB JASON DRAPER, NMSS/MSST/MSEB ROBIN ELLIOTT, NMSS/MSST/MSEB JENNIFER FISHER, NMSS/MSST/MSEB SARA FORSTER, NMSS/MSST/MSEB ROBERT GALLAGHAR, R-I/DNMS/MLAB ANITA GRAY, Ph.D., NMSS/MSST/SMPB VINCENT HOLAHAN, NMSS/MSST NEAL R.
    [Show full text]
  • The Evolving Landscape of Therapeutic and Diagnostic Radiopharmaceuticals
    ARTICLE THE EVOLVING LANDSCAPE OF THERAPEUTIC AND DIAGNOSTIC RADIOPHARMACEUTICALS Therapeutic and diagnostic approaches involving the use of radiation and radioactive compounds have a long- standing history in the fields of science and medicine. Radiotherapy was first used in cancer treatments in 1896.1 Since then, the field of radiation has advanced to further understand how radioactive compounds interact with biological tissues and how they can be used in both diagnostic and therapeutic applications. Radiopharmaceuticals are compounds used for medicinal purposes that contain radioactive isotopes (also known as radionuclides) and can be diagnostic or therapeutic in nature, or both.2 They represent a unique category of pharmaceuticals due to their radioactive properties. As such, there are specific guidelines and regulations that impact and direct the study and use of these compounds. Radiopharmaceutical drug development has rapidly expanded over the last decade. Radiopharmaceuticals are widely used in the field of imaging for diagnosis, staging, and follow up; in the realm of therapeutics, their use has increased, most notably, in the area of oncology. In a recent webinar, experts from Medpace’s radiation oncology, imaging, regulatory, and operational teams discussed the growing space of radiopharmaceutical development with respect to their biological use and application, regulatory frameworks that govern their evaluation in support of approvals, operational manufacturing considerations, and associated imaging approaches. BIOLOGICAL MECHANISMS OF ACTION OF RADIONUCLIDES According to Dr. Jess Guarnaschelli, Medical Director, Radiation Oncology, the radioactivity of radionuclides can be employed for both diagnostic and therapeutic medical uses. While external beam ionizing radiation involves radiation emitted in the form of electromagnetic waves or particles, radiopharmaceuticals use radionuclides to deliver localized radiation to specific targets.
    [Show full text]
  • Download Final Programme As
    LETTER OF INVITATION LETTER OF INVITATION WELCOME WORDS by the EANM Congress Chair EANM’20 EANM’20 On behalf of the European Association of Nuclear Medicine, it is my great honour to invite you to the 33rd Annual EANM WORLD LEADING MEETING LEADING WORLD Congress, which will take place virtually from 22 to 30 MEETING LEADING WORLD October 2020. Nuclear Medicine keeps on growing in many number of newer features are also being planned clinical areas, from diagnostic imaging to and we will have a new format for the plenary therapy: our procedures are increasingly being sessions, new top-rated oral presentation sessions incorporated into clinical practice, in a variety of and a new ‘Top Trials’ session. settings and diseases. This success is mostly related to a peculiar characteristic of our specialty, namely A further characteristic of our Congress is its the functional approach to medicine. PET imaging multidisciplinarity, and this will be emphasised works so well because of the unique functional in 2020, with a number of sessions bringing information provided to clinicians, and this feature together physicians from many specialties as well is the key to the ongoing rapid diffusion of Nuclear as specialists in radiochemistry and pharmacy, Medicine. physicists and other professionals. In addition, a dedicated track for technologists will be provided. In recent years, the status of the EANM Congress as the world-leading meeting in Nuclear Medicine If all of this still isn’t enough to motivate you to has been firmly established. The number of attend the EANM’20 Congress virtually, we are attendees in 2019 exceeded that in any previous working on providing some extra entertainment to year, with more than 6950 participants, but we make your virtual experience even more fun.
    [Show full text]
  • Radiotoxicity After Iodine-131 Therapy for Thyroid Cancer Using the Micronucleus Assay
    Radiotoxicity After Iodine-131 Therapy for Thyroid Cancer Using the Micronucleus Assay Naoto Watanabe, Kunihiko Yokoyama, Seigo Kinuya, Noriyuki Shuke, Masashi Shimizu, Ryusuke Futatsuya, Takatoshi Michigishi, Norihisa Tonami, Hikaru Seto and David A. Goodwin Departments of Radiology and Radiological Science, Toyama Medical and Pharmaceutical University, Toyama; Department of Nuclear Medicine, Kanazawa University, Kanazawa; Department of Radiology, Asahikawa Medical University, Asahikawa, Japan; Nuclear Medicine Service, Veterans Affairs Health Sciences, Palo Alto, California; and Department of Radiology, Stanford University School of Medicine, Stanford, California thrombocytopenia have been reported (6,7). Therefore, in most The purpose of the present study was to evaluate the degree of patients who are treated with a large amount of I3il, the limiting cytological radiation damage to lymphocytes after1311therapy using the cytokinesis-blocked micronucleus assay. The chromosomal factor is the radiation dose to the blood and the bone marrow damage to lymphocytes induced by 131I ¡nvivo should result in (8). Dosimetrie studies have estimated the radiation dose to the augmentation of the cells with micronuclei. Methods: We studied 25 blood and bone marrow with a large amount of radioiodine (3 ). patients with differentiated thyroid carcinoma who were treated with Previous work has been done on cytogenetic changes (9). 3.7 GBq of 131I.Isolated lymphocytes collected from patients 1 wk However, the cytological effects of radiation exposure on the after therapy were harvested and treated according to the cytoki lymphocytes in vivo with large therapeutic doses of radioiodine nesis-blocked method of Fenech and Morley. The micronucleus have not been extensively examined. number of micronuclei per 500 binucleated cells were scored by The purpose of our study was to evaluate the degree of visual inspection.
    [Show full text]