<<

SIMULATION OF CRITICAL HEAT FLUX EXPERIMENTS IN NEPTUNE_CFD CODE J. Macek, L. Vyskocil NuclearResearchInstituteRez(NRI),Dept.ofThermalHydraulicAnalyses, 25068Rez,CzechRepublic

Abstract ThispaperpresentsaCFDsimulationofselected“LargeLoop”criticalheatfluxexperiments. CalculationswereperformedbyNEPTUNE_CFDcode.TheLargeWaterLoop(LWL)isnonactive pressurisedwater equipment with technological and thermal parameters corresponding to those of PWR.TheCHFexperimentalfacility(apartoftheLargeWaterLoop)hasbeendesignedforresearch intoCHFinwaterflowthroughabundleofelectricallyheatedverticalrods.Thecriticalconditions weredeterminedunderconstantpressure,inletwatertemperatureandmassfluxandforquasisteady state by gradually increasing the heat input. The rods are modelled by hollow tubes with direct heatingofthewall. ThirteenCHFtestswerecalculatedwithNEPTUNE. Inallcalculatedtests,asuddenriseof thewalltemperaturewasobserved.Simulationsofcases with a higher mass flux were successful. Simulationofcaseswithalowmassfluxindicatesthatthemodellingapproachmightnotbesuitable forlowermassfluxes. TheresultsshowthatNEPTUNEhassomepotentialforpredictingflowuptoCHFin thegeometryofreactorfuelassembly. ThepresentedworkwascarriedoutaspartoftheNURESIMproject.NEPTUNE_CFDcode isimplementedintheNURESIMplatform.

1. INTRODUCTION Theapplicationofboilingislimitedbyaconditioncalledcriticalheatflux(CHF).Themostserious problemisthattheboilinglimitationcanbedirectlyrelatedtothephysicalburnoutofthematerialsof aheatedsurfaceduetothesuddenlyinefficientheattransferthroughavapourfilmformedacrossthe surfaceresultingfromthereplacementofbyvapouradjacenttotheheatedsurface. In a surfaceheatfluxcontrolled system, the occurrence of CHF is accompanied by an inordinateincreaseinthesurfacetemperature.Otherwise,anexcessivedecreaseoftheheattransfer rateoccursforasurfacetemperaturecontrolledsystem.

2. THE LARGE WATER LOOP EXPERIMENTAL FACILITY TheLargeWaterLoop(LWL)hasbeenbuiltattheNuclear Machinery Plant, Skoda, Plzen Ltd., Czech Republic (see Bestion et al. 2006).The loopisnonactivepressurisedwaterequipmentwith technologicalandthermalparameterscorrespondingtothoseofPWR.Thepossibleparametersranges aresuitableforalltypesofpressurisedwaterreactors. TheCHFexperimentalfacility(apartoftheLarge Water Loop) has been designed for researchintoCHFinwaterflowthroughabundleofelectricallyheatedverticalrods(nineteen9.1mm diameterand12.75mmpitchrods).Theheatedlengthis3.5m.Thecriticalconditionsweredetermined under constant pressure, inlet water temperature and mass flux and for a quasi steadystate by graduallyincreasingtheheatinput. The rods are modelled using hollow tubes with direct heating of the wall. The axial distributionofthewallheatfluxisuniformwhiletheradialdistributionvariesfrompowercoefficient of1forthecentralrodto0.75fortheouterrods(seeFig.1).

1 grid spacer

ceramic channel

distribution of heat flux

Fig. 1 LWL – Bundle D: horizontal cross section, power coefficients

3. SELECTED TEST CASES ThefollowingtableshowstheexperimentaldatasetusedinNEPTUNEsimulations:

pin Tin Tsat mf qCHF [MPa] [°C] [°C] [kg/s/m 2] [W/m 2] Case1 14.407 292.13 338.94 1236 725080 Case2 14.136 284.88 337.43 1350 781922 Case3 10.679 243.59 315.86 569 716068 Case4 12.627 308.67 328.59 1225 625260 Case5 11.938 249.94 324.28 2062 1180507 Case6 9.952 242.2 310.64 1531 1057812 Case7 10.367 237.45 313.66 2458 1403022 Case8 10.179 269.31 312.30 2937 1217940 Case9 16.058 151.22 347.65 979 1070983 Case10 16.254 266.03 348.63 996 674477 Case11 12.466 230.95 327.60 503 648135 Case12 14.1 300.41 337.23 4795 1646333 Case13 17.846 300.41 356.28 3837 1575627 Table1:SelectedLWLTestCases pin andT in aretheinletpressureandtemperature.T sat isthesaturationtemperature,mfisthemass flux,q CHF isthecriticalheatfluxonthecentralrod.

2 4. MODELING OF BOILING FLOW UNDER CHF CONDITIONS Thischapterdescribesthegeneralizedboilingmodel,whichisimplementedinNEPTUNEcodeand usedforsimulatingLWLexperiments.Thepresentedmodelsimulatestheonsetofnucleateboiling, partitioningofthewallheatfluxandinterfacialliquidvapourheat,momentumandmasstransfer. Twophasesaremodelled:theprimaryisliquidandthesecondaryisvapourbubbles.The samepressureissharedbythetwophases.Continuity,momentumandenergyequationsaresolvedfor eachphase.The“kεliq”model(Yao,Morel2004)isusedformodellingtheliquidturbulence;the flowofvapourisassumedtobelaminar.Distributionofthemeanbubblediameterintheflowis modelledusingaonegroupinterfacialareatransportequation.

4.1 Onset of When the wall becomes superheated, vapour bubbles can form even when the core liquid is still subcooled.Thepositionwherethefirstbubblesoccuratthewallisdenotedastheonsetofnucleate boiling.Inourcalculations,Hsu’scriterionisusedtodeterminethisposition(Hsu,1962).According tothiscriterion,abubblewillgrowfromavapourembryooccupyingacavityinthewalliftheliquid temperatureatthetipoftheembryoisatleastequaltothesaturationtemperaturecorrespondingtothe bubblepressure.

4.2 Basic Wall Heat Flux Partitioning Model TheheatfluxpartitioningmodelofKurulandPodowski(1990)(seealsoYao,Morel2002,2004)has thefollowingstructure: Downstreamoftheonsetofnucleateboiling,thewallheatfluxq wall issplitintothreeparts: = + + [ 2 ] qwall q f qq qe W / m (1) Thefirstpartisthesinglephaseheattransfer(convectiveheatflux): = α ( − ) q f A1 wallfcn Twall Tl (2) = − A1 1 A2 (3) A1isthefractionofthewallsurfaceinfluencedby the liquid, fraction A 2isinfluencedbyvapour bubblesformedonthewall,T listheliquidtemperatureatthecentreofthewalladjacentcell, αwallfcn is thewallheattransfercoefficientcalculatedfromthetemperaturewallfunction. Thequenchingpartq qoftheheatfluxq wall istransportedbytransientconductionduringthetime periodbetweenthebubbledepartureandthenextbubbleformationatthesamenucleationsite. = α ( − ) qq A2 quench Twall Tl (4)

αquench isthequenchingheattransfercoefficient(17). Heatfluxq eisspentforliquidevaporation: = qe m& e H lat (5)

m& e istheevaporationmasstransferpertheunitwallarea(15),H lat isthelatentheat. Themodelassumesthatthediameteroftheareainfluencedbyasinglebubbleisaslargeasthebubble departurediameterd w: π ⋅ d 2 ⋅ n  =  w  A2 min 1,  (6)  4  nistheactivenucleationsitedensity. Theactivenucleationsitedensityiscorrelatedtothewallsuperheat: = ()⋅ ()− 8.1  1  n 210 Twall Tsat  2  (7) m  Thebubbledeparturediameterd wiscalculatedfromÜnalcorrelation(Ünal,1976):

3 − a d = .2 42 ⋅10 5 p .0 709 []m (8) w bφ wherepispressure[Pa], (T − T )λ a = w sat s (9) ρ π 2 v H lat as asisthethermaldiffusivityandλ sisthethermalconductivityofthesolidwall T − T b = sat l for St < .0 0065 (10) ()− ρ ρ 2 1 v l q b = wall for St ≥ .0 0065 (11) ()− ρ ρ ⋅ ⋅ ρ 2 1 v l .0 0065 l c plU l where: q St = wall (Stantonnumber) (12) ρ ()− l c plU l Tsat Tl

U l istheliquidvelocitymagnitudeatthewalladjacentcell   U  .0 47  φ =   l   max ,1  (13)   .0 61 

WhenT l>T sat ,bulkboilingisinitiated.

To calculate the evaporation rate m& e , the bubble detachment frequency f is determined from the followingequation: 4 ⋅ g ⋅ (ρ − ρ ) 1 f = l v (14) ⋅ ⋅ ρ   3 d w l s  Theevaporationrateistheproductofbubblemass,detachmentfrequencyandtheactivenucleation sitedensity: π ⋅ d 3   = w ρ ⋅ ⋅ kg m& e v f n   (15) 6 m 2 s 

Thequenchingheattransfercoefficient αquench dependsonthewaitingtimebetweenbubbledeparture andthenextbubbleformation.Thiswaitingtimet wisfixedtothebubbledetachmentperiod: 1 t = []s (16) w f t  W  α = 2 ⋅ λ ⋅ f ⋅ w (17) quench l π ⋅  2  al m K  wherea listheliquidthermaldiffusivity.

4.3 Generalization of the Wall Heat Flux Partitioning Model Thebasicwallheatfluxpartitioningmodelpresentedinchapter4.2assumesthattheamountofwater onthewallissufficienttoremoveheatfromthewallandtobeusedforevaporation.Superheatingof the vapour that occurs at high void fractions is not modelled. Given all this, the basic heat flux partitioningmodelcannotbeusedundercriticalheatfluxconditions. Inordertoaccountforacriticalheatfluxcondition,theheatfluxpartitioningmodelcanbe generalizedasfollows: = ( + + )+ ( − ) [ 2 ] qwall fα1 q f qq qe 1 fα1 qv W / m (18) Thefourthpartofthewallheatflux,q v,isthediffusiveheatfluxgiventothevapourphase:

4 = α ( − ) qv wallfcn,v Twall Tv (19)

αwallfcn,v is the wall heat transfer coefficient calculated from the temperature wall function for the vapourphase,T visthevapourtemperatureatthecentreofthewalladjacentcell. fα1 isthephenomenologicalfunction,whichdependsontheliquidvolumefractionα 1.f α1 mustfulfil thefollowingconditions: → α → → α → fα1 1 if 1 ,1 fα1 0 if 1 0 (20) f 1− f α1 → 0 if α → ,0 α1 → 0 if α → 1 (21) α 1 −α 1 1 1 1 The “EDF wallfluid heat transfer” model (see Lavieville et al. 2005) that is implemented in NEPTUNEandusedinourcalculationsassumesfunctionf α1 inthefollowingform: 1 α > α : fα = 1− exp[]− 20()α −α (22) 1 ,1 crit 1 2 1 ,1 crit α 20 ,1 crit 1  α  α < α : f =  1  (23) 1 ,1 crit α1 α  2  ,1 crit  α = ,1 crit 2.0 −α = i.e.thecriticalvalueforthevoidfractionis 1 ,1 crit 8.0 .NotethatWeismanDNBcriterionisvoid fraction=0.82(Weisman1983).

4.4 Interfacial Momentum Transfer Theinterfacialmomentumtransfercanbedividedintofourparts:drag,virtualmassforce,liftand turbulentdispersion(Lance,LopezdeBertodano,1994,Yao,Morel2002,2004). The interfacial drag force iscalculatedas: r r α r r r r D = − D = v ρ − ()− M v M l .0 75 l cD Vl Vv Vl Vv (24) db db is the Sauter mean bubble diameter calculated from the interfacial area transport equation, thedragcoefficientc DiscalculatedbyInclusions(EDF)model(Lavievilleetal.2005). The lift force wasnotincludedinourcalculationsbecauseitcausedconvergenceproblems.

The added mass force isgivenby:(Zuber,1964)r r r r 1+ 2α  ∂V r r   ∂V r r  M AM = −M AM = c v α ρ  l +V ⋅∇V  −  v +V ⋅∇V  (25) v l AM −α v l  ∂ l l   ∂ v v  1 v  t   t 

Theaddedmassforcecoefficientisc AM =0.5. The turbulent dispersion force isgivenby: TD = − TD = − ⋅ ρ ⋅ ⋅ ∇α M v M l cTD l kl v (26)

Theturbulentdispersioncoefficientissettoc TD =2.5(Yao,Morel2002,2004).k listheturbulence kineticenergyoftheliquid.

4.5 Interfacial Interface to liquid heat transfer –“ASTRIDlikemodel”(Lavievilleetal.2005): 6α Nuλ = v l ()− [ 3 ] Qli 2 Tsat Tl W / m (27) d b dbistheSautermeanbubblediameter,λ listheliquidthermalconductivity.

5 TheNusseltnumberNuiscalculatedfrom: Nu = 2 + 6.0 Re 5.0 Pr .0 33 (28) ρ d ⋅V Re = l b rel (29) µ l µ ⋅ c Pr = l p,l (30) λ l

ReistheReynoldsnumber,PristhePrandtlnumberoftheliquid,V rel isthemagnitudeofrelative velocitybetweenphases, listhedynamicviscosityoftheliquid,c p,l istheliquidheatcapacity.

Interface to vapour heat transfer: The interface to vapour heat transfer is calculated with help of the “constant time scale return to saturation”method(Lavievilleetal.2005b). α ρ c   = v v P,v ()− W Qvi Tsat Tv  3  (31) ∆t m 

∆t=0.05sisthetimescale,c P,v istheisobaricheatcapacityofthevapour. Theinterfacialmasstransferdependsdirectlyontheinterfacialheattransfer.

4.6 Interfacial Area Transport The Sauter mean bubblediameter distributioninthe flow was calculated from the interfacial area concentration.Theonegroupequationoftheinterfacialareaconcentrationtransportwithmodelsfor coalescenceandbreakup(YaoandMorel2004;Morel,Yao,Bestion,2003)isusedtodescribethe evolutionoftheinterfacialareaconcentration.

5. CALCULATION OF LWL EXPERIMENTS IN NEPTUNE

5.1 Computational Grid Thecomputationaldomaincoversa30°symmetricsectionoftheactualchannel.Gridspacersarenot modelled. Thecuttingplanesaremodelledasasymmetryboundarycondition.

Fig. 2 Coarse Grid Fig. 3 Fine Grid

6 TwocomputationalgridswerecreatedseeFig.2 andFig.3.Thecoarsegridconsistsof76,800 hexahedral cells. In the vertical direction (3.5m height), there are 400 intervals. The fine grid is subdividedinto150,000hexahedralcells.Resolutionintheverticaldirectionisthesameasinthecase ofthecoarsegrid.Thefinegridwasusedsuccessfullyforthepreliminarysinglephasecalculation. WhenitwasusedtosimulateactualLWLexperiments,thecalculationsendedupwithverysmalltime stepsanditwasimpossibletofinishthecalculationinareasonabletime.Withthecoarsegridthere werenosuchproblems.Itwasthereforedecidedtousethecoarsegridforallcalculations.

5.2 NEPTUNE Settings • Turbulencemodelling:“kepsilonliq”modelfortheliquid,laminarflowofvapour • Turbulentreversecoupling–influenceofphase2onphase1 • Turbulentdispersionforcebasedonthevoidfractiongradient,turbulentdispersioncoefficient cTD wassetto2.5–usedfromYao,Morel(2002) • Dragforce:inclusions(EDF)model(Lavieville,2005b),Ishii(1979)modelcausedcalculation “freezing”(verylowtimesteps)whenbubblesentereddistortedregime • AddedmassforcebyZuber,noliftforce(liftforcecausedinstabilities) • Wallfluidheattransfer:EDFwallfluidheattransfer(generalizedheatfluxdecomposition, superheatedvapourempiricalmodelbasedonalocalvoidfractioncriticalvalueof0.8, seechapter4.3) • Interfaceheattransfer:Astridlikemodelforliquid,relaxationtimeforvapour • CATHAREtables–Waterstd.rev6extended • Themeanbubblediameteriscalculatedfromtheinterfacialarea • Interfacialareatransport:onegroupapproach(onemeanbubblediameterineachindividual cell),coalescenceandbreakupofbubbles:Yao’smodels(2004) NEPTUNEversion:1.0.5

5.3 Calculation Procedure Theactualexperimentsarequasisteady.Theinlettemperature,pressureandmassfluxareconstant andwallheatfluxesaregraduallyincreasing.Themaximumtemperaturegradientis2°C/minsothe transientsaretoolongtobecalculatedbyNEPTUNEinareasonabletime.Wedecidedtocalculate theflowwithsteadyboundaryconditions(i.e.constantwallheatfluxes). Insomecases,itwasimpossibletoperformthecalculationwith100%wallheatfluxesfrom thebeginningbecausetherewereconvergencetroublesdirectlyafterthestartupwhenlargeamounts ofvapourwerecreatedonthewallsandthencondensed.Theprocedurethatworkedforallcaseswas tocalculatethefirst0.1swith10%wallheatfluxes,thenraisetheheatfluxesto50%andlettheflow stabilize.Thistook25secondsoftransient(dependingonthemassflux).Thenthewallheatfluxes wereincreasedto100%.Again,welettheflowstabilize.Whentheflowrate(liquid+vapour)leaving the domain was equalto the inlet flow rateandthe wall temperatures and other parameters were stabilized, we analyzed the results. Depending on the results, wall heat fluxes were decreased or increased so as to find out the interval of the wall heat fluxes where a sudden increase of wall temperatureoccurs.

7 6. RESULTS Thecalculationresultsareshowninthefollowingtable:

pin Tin Tsat mf qCHF qcalc /q CHF αmax (T wTsat )max CHF [MPa] [°C] [°C] [kg/s/m 2][W/m 2] [m 3/m 3] [K] Case 1 14.407 292.13 338.94 1236 725080 100% 0.847 19.6 + 90% 0.788 13.5 + Case 2 14.136 284.88 337.43 1350 781922 100% 0.836 19 + 90% 0.77 14 Case 3 10.679 243.59 315.86 569 716068 75% 0.914 650 + 60% 0.825 14.3 + 50% 0.699 11.7 Case 4 12.627 308.67 328.59 1225 625260 100% 0.895 304 + 90% 0.861 19.2 + 80% 0.816 13.1 + Case 5 11.938 249.94 324.28 2062 1180507 100% 0.835 26.1 + 90% 0.748 17 Case 6 9.952 242.2 310.64 1531 1057812 90% 0.888 551.3 + 80% 0.829 19.92 + 70% 0.737 15.2 Case 7 10.367 237.45 313.66 2458 1403022 100% 0.877 619 + 90% 0.806 20.7 + 80% 0.681 17.4 Case 8 10.179 269.31 312.30 2937 1217940 100% 0.863 193.1 + 90% 0.804 17.8 + Case 9 16.058 151.22 347.65 979 1070983 100% 0.6003 17.7 110% 0.805 20.54 + Case 10 16.254 266.03 348.63 996 674477 100% 0.71 13.67 110% 0.803 15.05 + Case 11 12.466 230.95 327.60 503 648135 90% 0.9204 783.78 + 80% 0.8769 38.57 + 75% 0.8405 17.09 + 60% 0.6552 12.02 Case 12 14.1 300.41 337.23 4795 1646333 100% 0.98* 2900* +* 99% 0.95* 2700* +* 98% 0.775617.2 95% 0.755216.8 90% 0.713416.21 Case 13 17.846 300.41 356.28 3837 1575627 106% 0.8416 58.52 + 105% 0.795 19.4 + 100% 0.679 16.4 Table2:Results

8 Notes to Table 2 CHF: +…increaseofT wandglobalmaximumof(T wTsat )attheendoftheheatedsection + …increaseofT wbutonlylocalmaximumof(T wTsat )attheendoftheheatedsection -…noincreaseofT wattheendoftheheatedsection qcalc /q CHF …ratioofheatfluxusedincalculatingthewallheatfluxintheexperiment Forexample,q calc /q CHF =90%meansthattheheatfluxesusedinthecalculationwere: centralrod: 0.9q CHF middlerod: 0.90.85q CHF outerrod: 0.90.7q CHF (seedistributionofheatfluxesinFig.1) Tw–walltemperature,T sat –saturationtemperature,Tin inlettemperature αmax …maximumvoidfractioninthedomain pin inletpressure,mfmassflux,q CHF criticalheatfluxonthecentralrod *…notconvergedsolution,calculationcrashed

6.1 Typical Results – Case 4, 100% Wall Heat Fluxes ThequalitativeresultsofothercasesaresimilartotheCase4results. Note: For visualization in the following figures, the computational domain is vertically “shrunk” (1:50).

Fig. 4 Case 4, 100% wall heat fluxes: Fig. 5 Case 4, 100% wall heat fluxes: Void fraction [-] Difference between wall and saturation temperature [K] Note:therangewasclippedtointerval<0,max>, zeromeansthatT wall ≤T sat

9 Fig. 6 Case 4, 100% wall heat fluxes: Difference between wall and saturation Fig. 7 Case 4, 100% wall heat fluxes: temperature [K] Difference between vapor temperature and saturation temperature [K] Therangewasclippedtointerval<0,40>K Thevapourisheatedabovethesaturation temperature.

Fig. 9 Case 4, 100% wall heat fluxes: Ratio of heat flux used for superheating the vapour to the total wall heat flux [-]

Fig. 8 Case 4, 100% wall heat fluxes: Ratio of evaporation heat flux to total wall heat flux [-]

10

Fig. 11 Case 4, 100% wall heat fluxes: Bubble departure diameter [m] Fig. 10 Case 4, 100% wall heat fluxes: The bubble departure diameter reached the Mean bubble diameter [m] 0.002mlimitsetinNEPTUNE.

7. CONCLUSIONS ThecapabilityofNEPTUNE_CFDcodetosimulateboilingflowwiththecriticalheatfluxinabundle ofheatedverticalrodshasbeenassessed.13LargeWaterLoopCHFtestshavebeensimulated.In these simulations, a generalized wall heat flux partitioning model that enabled the vapour to be superheatedwasused. Inallthecalculatedtests,asuddenriseofthewalltemperatureattheendofthechannelwas observed.Simulationsofcaseswithhighermassfluxweresuccessful.Inthesecases,thewallheat fluxes that caused a sudden rise of the wall temperature were in the range of 80 to 110% of experimentalheatfluxes.Whenasuddenincreaseofthewalltemperatureoccurred,thecalculated voidfractionattheendoftheheatedsectionwashigherthan0.8.(WeismanDNBcriterionisvoid fraction=0.82). Inonecasewithalowmassflux(Case3),theregionwithasuddenriseofwalltemperature occurredwith60%ofexperimentalwallheatfluxes.Inanothercasewithalowmassflux(Case11), whenthewallheatfluxesweresetto75%oftheexperimentalvalues,themaximumvoidfractionat the end of the heated section was 0.84. This indicates that the modelling approach might not be suitableforlowermassfluxes. TheresultsshowthatNEPTUNEhassomepotentialforpredictingtheboilingflowuptoCHF inthegeometryofreactorfuelassembly.

11 REFERENCES Bestion,D.,Caraghiaur,D.,Anglart,H.,Péturaud,P.,Krepper,E.,Prasser,HM.,Lucas,D., AndreaniM.,SmithB.,MazziniD.,MorettiF.,MacekJ.:“DeliverableD2.2.1:ReviewoftheExisting DataBasisfortheValidationofModelsforCHF”. NURESIM-SP2 Deliverable (2006) Hsu, Y.Y.: “On The Size Range Of Active Nucleation Cavities On A Heating Surface”, J. Heat Transfer 84 ,pp.207216,1962 Ishii,M.,Zuber,N.:“Dragcoefficientandrelativevelocityinbubbly,dropletorparticulateflows”, AIChE Journal Vol.25, No.5 ,pp.843855(1979) Kurul, N., Podowski, M.Z.: “Multidimensional Effects in Forced Convection Subcooled Boiling”, Proceedings of the 9 th International Heat Transfer Conference ,Jerusalem,Israel,2126August(1990) Lance M., Lopez de Bertodano M.: “Phase distribution phenomena and wall effects in bubbly twophaseflows”, Multiphase Science and Technology 8,pp.69123(1994) Lavieville,J.,Quemerais,E.,Boucker,M.,Maas,L.: “NEPTUNE CFD V1.0 User Guide (Draft)”, EDF(2005a) Lavieville, J., Quemerais, E., Mimouni, S., Boucker, M., Mechitoua, N.: “NEPTUNE CFD V1.0 TheoryManual”,EDF(2005b) MorelCh.,YaoW.,BestionD.:“ThreedimensionalmodellingofboilingflowfortheNEPTUNE code”, NURETH-10 ,Seoul,Korea,Oct.59(2003) Ünal,H.C.:“Maximumbubblediameter,maximumbubblegrowthtimeandbubblegrowthrateduring subcoolednucleateflowboilingofwaterupto17.7MW/m 2“, Int. J. Heat Mass Transfer 19 ,pp.643 649,(1976) WeismanJ.,PeiB.S.:“PredictionofCriticalHeatFluxinFlowBoilingatLowQualities”, Int. J. Heat Mass Transfer 26 ,pp.14631477(1983) YaoW.,MorelC.:“Volumetricinterfacialareapredictioninupwardbubblytwophaseflow”, Int. J. Heat and Mass Transfer 47,pp.307328(2004)

YaoW.,MorelC.:“Predictionofparametersdistributionofupwardboilingtwophaseflowwithtwo fluidmodels”, ICONE10-22463 ,Arlington,VA,April1418(2002) Zuber, N.: “On the dispersed twophase flow in the laminar flow regime”, Chemical Engineering Science 19 ,pp897.(1964)

12