Upper Eel River
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
FINAL Little Lake Valley Groundwater Management Plan
LITTLE LAKE VALLEY GROUNDWATER MANAGEMENT PLAN Final Draft PREPARED FOR CITY OF WILLITS August 18, 2020 City of Willits Contact: Andrea Trincado, Project Manager City of Willits Engineering Department Prepared by: LACO Associates 776 S. State St., Suite 103 Ukiah, California 95482 (707) 462-0222 LACO Project No. 8509.07 Little Lake Valley Groundwater Management Plan FINAL DRAFT Prepared for City of Willits TABLE OF CONTENTS 1.0 Introduction 5 1.1 Purpose of the Plan ......................................... 5 1.2 Background and Legal Authority for Local Groundwater Management ................................. 5 1.3 Plan Components .............................................. 7 1.4 Plan Development Process ................................. 7 1.5 Previous Studies .............................................. 9 2.0 Public Outreach and Involvement ............................ 10 2.1 Public Workshops ........................................... 11 2.2 Issues of Concern to the Public ........................ 12 3.0 Study Area 12 3.1 Location and Description ................................. 12 3.2 Physical Geography and Geology ..................... 13 3.2.1 Geologic Formations ............................. 15 3.3 Climate 15 3.4 Land Use and Population ................................. 18 3.5 Water Use 21 3.5.1 Municipal Water Use ............................ 21 3.5.2 Rural Water Use .................................. 23 3.5.3 Tribal Water Use ................................. 23 3.5.4 Environmental Water Use ....................... 23 4.0 Hydrogeology 23 4.1 Principal Aquifers ......................................... 23 4.1.1 Aquifer I – Holocene Alluvium ................ 24 August 18, 2020 Page 1 of 49 Little Lake Valley Groundwater Management Plan FINAL DRAFT Prepared for City of Willits 4.1.2 Aquifer II – Pliocene to Pleistocene Continental Basin Deposits ..................... 25 4.1.3 Jurassic-Cretaceous Franciscan Complex .. 26 4.2 Recharge Sources ........................................... 27 4.3 Historic Variations in Groundwater Levels ........ -
BSR History #1
ar C, 'f t' + t 4 4 \ " • '. ' , . • ' ' Vs'l . 4 y "."'-'-" '- : : * : : . . ' . 'iw, ~ , y p i 1 I 4 t A • ' • - " 'k P+g 1 EfC ' <r THE POTTER VALLEY STORY Potter Valley was or1ginally known as Potter's Valley. F r om t he t i m e o f t h e adv e n t o f t h e f i r s t Ame r i c a n t o v 1 e w i t s b eau t y until the present time, it has been called. the Gem of Mendocino County, Of the twenty-two or so valleys in Mendocino County, it can be consicLered outstanding. I t is not a large valley, being ap proximately four mlles wid.e and eight miles long. T h e North Fork o f the Russian River divides the valley's ten thousand acres. T h e headwaters of the Russian River are at the extreme head. of the val ley. Th e lower hills of the Mayacamas Mountains of the Coast Range almost surround the valley with the usual upland. at their f eet. The high peaks, a few of which are perpetually snow-covered., can be seen in the d.istance. This combinat1on of valley, upland. and. mountains give a charm and, simplicity that has apparently d.evelop ed. a fascination to those who settled. here. Many of the descend. ants of the early settlers have for several generations remained here. It is not only the beauty of the area but its f ertility that has earned it the title "grain basket of Mendocino County." The Thomas Potter party, looking for more grazing lancL for Sonoma County cattle, decid.ed. -
Final Upper Main Eel River and Tributaries (Including
U.S. Environmental Protection Agency Region IX FINAL Upper Main Eel River and Tributaries (including Tomki Creek, Outlet Creek and Lake Pillsbury) Total Maximum Daily Loads for Temperature and Sediment Approved by date Original signed December 29, 2004 Alexis Strauss Director, Water Division Note: For further information please contact Palma Risler at 415/972-3451 and [email protected] or Dan Pingaro at 415/977-4275 and [email protected] Table of Contents CHAPTER 1: INTRODUCTION 1.1. Overview - 1 1.2. Watershed Characteristics - 2 1.3. Endangered Species Act Consultation - 4 1.4. Organization - 4 CHAPTER 2: PROBLEM STATEMENT 2.1. Fish Population Problems - 5 2.2. Temperature Problems - 7 2.3. Sediment Problems - 14 2.4. Water Quality Standards - 17 CHAPTER 3: TEMPERATURE TMDL 3.1. Interpreting the Existing Water Quality Standards for Temperature - 18 3.2. Temperature Modeling - 20 3.2.1 Temperature and Solar Radiation Modeling - 21 3.2.2 Selection of Scenario Corresponding to Water Quality Standards - 24 3.3.1 Loading Capacity and TMDL – Solar Radiation for all stream reaches - 26 3.3.2 Shade Allocations - 26 3.3.3 Margin of Safety - 27 3.3.4 Seasonal Variation and Critical Conditions - 27 3.4 Instream Heat TMDL – Van Arsdale to Outlet Creek - 28 3.4.1 Selection of Scenario Corresponding to Water Quality Standards - 34 3.4.2 Water Quality Indicators – Van Arsdale to Outlet Creek - 34 3.4.3 Instream Heat Loading Capacity and TMDL - Van Arsdale to Outlet Creek- 34 3.4.4 Instream Heat Allocations – Van Arsdale to Outlet Creek - 35 3.4.5 Margin of Safety - 35 3.4.6 Seasonal Variation and Critical Conditions - 35 CHAPTER 4: SEDIMENT TMDL 4.1. -
Lake Mendocino Water Supply Reliability Evaluation Report Term 17
State Water Resources Control Board Order 5/1/2013 Lake Mendocino Water Supply Reliability Evaluation Report Term 17 April 30, 2015 Prepared by Sonoma County Water Agency 404 Aviation Blvd Santa Rosa, CA 95403 LAKE MENDOCINO WATER SUPPLY RELIABILITY EVALUATION REPORT TABLE OF CONTENTS Executive Summary ..................................................................................................................................... 1 1.0 Introduction .......................................................................................................................................... 3 1.1 Purpose and Scope ........................................................................................................................... 3 1.2 Organization of Report ..................................................................................................................... 3 2.0 Background ........................................................................................................................................... 4 2.1 Project History and Description ........................................................................................................ 4 2.2 Flood Management Operations ....................................................................................................... 5 2.3 Water Supply Operations ................................................................................................................. 5 2.4 Potter Valley Project Operations ..................................................................................................... -
Eel River Cooperative Cyanotoxin Analysis Summary 2013-2017
Eel River Cooperative Cyanotoxin Analysis Summary 2013-2017 By: Eli Asarian and Patrick Higgins Edited by: Diane Higgins Performed for: The Eel River Recovery Project August 2018 Business Sponsors of ERRP Cyanotoxin Analysis Thanks to Individual Crowdfunding Donors and Those Who Contributed Off-line to Support ERRP Cyanotoxin Work: Barbara & David Sopjes Dr. Andrew Stubblefield Mary Power Ree Slocum Bill Dietrich Ben Middlemiss Dean & Sharon Edell Judy Schriebman Jack Crider Daron Pedroja Tim Talbert Gil Anda Ken Miller Will Parrish Dani Walthall Chris McBride Zane and Amanda Ruddy Christina Tran Brett Lovelace Sarah Ottley Ken Vance-Borland Karen & Scott Welsh Thomas Daugherty Pureum Kim Keith Bouma-Gregson Alex Christie Lee McClellan Matthew Amberg Charlie Liphart Eric Damon Walters April Mason Amy Collette Jason Hartwick Marissa Adams Kristin McDonald John Filce Carl Zichella Robert Leher Thanks also to experiment.com, our crowdfunding host that raises funds for scientific research throughout the World: https://experiment.com/projects/when-does-the-eel-river-turn-toxic- patterns-in-cyanotoxin-occurrence-2013-2016. This study was postponed a year so we could collect 2017 cyanotoxin data. Thanks for your patience. Contents Acknowledgements ....................................................................................................................................... 1 Executive Summary ....................................................................................................................................... 2 Background -
Sedimentation of Lake Pillsbury Lake County California
Sedimentation of Lake Pillsbury Lake County California GEOLOGICAL SURVEY WATER-SUPPLY PAPER 1619-EE Prepared in cooperation with the State of California Department of fFater Resources Sedimentation of Lake Pillsbury Lake County California By G. PORTERFIELD and C. A. DUNNAM CONTRIBUTIONS TO THE HYDROLOGY OF THE UNITED STATES GEOLOGICAL SURVEY WATER-SUPPLY PAPER 1619-EE Prepared in cooperation with the State of California Department of fFater Resources UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1964 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 CONTENTS Paw Abstract___________________________________________ EEl Introduction._____________________________________________________ 2 Location and general features--___-__-____-_-_-_---__--_--_---_- 2 Purpose and scope_____________________________________________ 2 Acknowledgments ________________'__________________--_-_______ 2 Drainage basin.___________________________________________________ 3 Physiography and soils.._______________________________________ 3 Climate ______________________________________________________ 4 Vegetation__ _--_-_____________-_-___---___-----__-_-_-_-____ 5 Dam and reservoir_____-__-__-_____________-______-___-_-__-_-_-_ 5 Dam_________________________________________________________ 5 Datum.______________________________________________________ 7 Reservoir___________________________________________________ -
Thirsty Eel Oct. 11-Corrections
1 THE THIRSTY EEL: SUMMER AND WINTER FLOW THRESHOLDS THAT TILT THE EEL 2 RIVER OF NORTHWESTERN CALIFORNIA FROM SALMON-SUPPORTING TO 3 CYANOBACTERIALLY-DEGRADED STATES 4 5 In press, Special Volume, Copeia: Fish out of Water Symposium 6 Mary E. Power1, 7 Keith Bouma-Gregson 2,3 8 Patrick Higgins3, 9 Stephanie M. Carlson4 10 11 12 13 14 1. Department of Integrative Biology, Univ. California, Berkeley, Berkeley, CA 94720; Email: 15 [email protected] 16 17 2. Department of Integrative Biology, Univ. California, Berkeley, Berkeley, CA 94720; Email: 18 [email protected]> 19 20 3. Eel River Recovery Project, Garberville CA 95542 www.eelriverrecovery.org; Email: 21 [email protected] 22 23 4. Environmental Sciences, Policy and Management, University of California, Berkeley, Berkeley, CA 24 94720; Email: [email protected] 25 26 27 Running head: Discharge-mediated food web states 28 29 Key words: cyanobacteria, discharge extremes, drought, food webs, salmonids, tipping points 30 31 Although it flows through regions of Northwestern California that are thought to be relatively well- 32 watered, the Eel River is increasingly stressed by drought and water withdrawals. We discuss how critical 33 threshold changes in summer discharge can potentially tilt the Eel from a recovering salmon-supporting 34 ecosystem toward a cyanobacterially-degraded one. To maintain food webs and habitats that support 35 salmonids and suppress harmful cyanobacteria, summer discharge must be sufficient to connect mainstem 36 pools hydrologically with gently moving, cool base flow. Rearing salmon and steelhead can survive even 37 in pools that become isolated during summer low flows if hyporheic exchange is sufficient. -
An Estimation of Potential Salmonid Habitat Capacity in the Upper Mainstem Eel River, California
AN ESTIMATION OF POTENTIAL SALMONID HABITAT CAPACITY IN THE UPPER MAINSTEM EEL RIVER, CALIFORNIA By Emily Jeanne Cooper A Thesis Presented to The Faculty of Humboldt State University In Partial Fulfillment of the Requirements for the Degree Master of Science in Natural Resources: Environmental and Natural Resource Science Committee Membership Dr. Alison O’Dowd, Committee Chair Dr. James Graham, Committee Member Dr. Darren Ward, Committee Member Dr. Alison O’Dowd, Graduate Coordinator May 2017 ABSTRACT AN ESTIMATION OF POTENTIAL SALMONID HABITAT CAPACITY IN THE UPPER MAINSTEM EEL RIVER, CALIFORNIA Emily Jeanne Cooper In Northern California’s Eel River watershed, the two dams that make up the Potter Valley Project (PVP) restrict the distribution and production of anadromous salmonids, and current populations of Chinook Salmon (Oncorhynchus tshawytscha) and steelhead trout (O. mykiss) in the upper mainstem Eel River are in need of recovery. In anticipation of the upcoming FERC relicensing of the PVP, this project provides an estimation of the extent of potential salmonid habitat and its capacity for steelhead trout and Chinook Salmon in the upper mainstem Eel River watershed above the impassable Scott Dam. Using three fish passage scenarios, potential Chinook Salmon habitat was estimated between 89-127 km (55-79 mi) for spawning and rearing; potential steelhead trout habitat was estimated between 318-463 km (198-288 mi) for spawning and between 179-291 km (111-181 mi) for rearing. Rearing habitat capacity was modeled with the Unit Characteristic Method, which used surrogate fish density values specific to habitat units (i.e. pools, riffles, runs) that were adjusted by measured habitat conditions. -
A Tale of Two Rivers, 2004
A Tale of Two Rivers Photograph by Michael Amsler Gently Down the Stream: Russian RiverKeeper Don McEnhill out on a recent sampling foray. The Russian, the Eel and why you should care about both every single time you turn on a tap By R.V. Scheide, June 2004 Editor's note: This is the first in a summer-long series about the history, health and impact of the Russian and Eel rivers on the North Bay's environment and citizenry. The Russian River begins as a trickle in the pine-studded hills at the far end of Redwood Valley, a dozen or so miles north of Ukiah. It's not much to speak of, this narrow, meandering rivulet; in some places, it's possible to easily step across from one bank to the other. Fed by the creeks and culverts etched into the hillsides, the stream gradually gains breadth, if not depth, as it courses south, where just past the lumberyards of Ukiah, the main stem joins forces with its east fork, and the Russian River, at least as we commonly perceive it, begins. Picking up speed and volume, the thick band of olive-drab water winds through southern Mendocino County, farms and vineyards suckling its banks, and enters Sonoma County just north of Cloverdale. It cuts through a scenic serpentine canyon and pours into the Alexander Valley, where more thirsty vineyards nestle up to the trough, patchwork swatches of green and gold blanketing the valley floor. Gazing out over this vast, verdant empire, which receives nearly four times the average rainfall of Southern California, it's tempting to think that water is not a problem for us, like it is for, say, Los Angeles, which over the years has developed an unseemly reputation for stealing water from other regions. -
Salmonid Habitat and Population Capacity Estimates for Steelhead Trout and Chinook Salmon Upstream of Scott Dam in the Eel River, California
Emily J. Cooper1, Alison P. O’Dowd, and James J. Graham, Humboldt State University, 1 Harpst Street, Arcata, California 95521 Darren W. Mierau, California Trout, 615 11th Street, Arcata, California 95521 William J. Trush, Humboldt State University, 1 Harpst Street, Arcata, California 95521 and Ross Taylor, Ross Taylor and Associates, 1660 Central Avenue # B, McKinleyville, California 95519 Salmonid Habitat and Population Capacity Estimates for Steelhead Trout and Chinook Salmon Upstream of Scott Dam in the Eel River, California Abstract Estimating salmonid habitat capacity upstream of a barrier can inform priorities for fisheries conservation. Scott Dam in California’s Eel River is an impassable barrier for anadromous salmonids. With Federal dam relicensing underway, we demonstrated recolonization potential for upper Eel River salmonid populations by estimating the potential distribution (stream-km) and habitat capacity (numbers of parr and adults) for winter steelhead trout (Oncorhynchus mykiss) and fall Chinook salmon (O. tshawytscha) upstream of Scott Dam. Removal of Scott Dam would support salmonid recovery by increasing salmonid habitat stream-kms from 2 to 465 stream-km for steelhead trout and 920 to 1,071 stream-km for Chinook salmon in the upper mainstem Eel River population boundaries, whose downstream extents begin near Scott Dam and the confluence of South Fork Eel River, respectively. Upstream of Scott Dam, estimated steelhead trout habitat included up to 463 stream-kms for spawning and 291 stream-kms for summer rearing; estimated Chinook salmon habitat included up to 151 stream-kms for both spawning and rearing. The number of returning adult estimates based on historical count data (1938 to 1975) from the South Fork Eel River produced wide ranges for steelhead trout (3,241 to 26,391) and Chinook salmon (1,057 to 10,117). -
Initial Study Report for FERC Projects
Potter Valley Project FERC Project No. 77 Initial Study Report September 2020 ©2020, Potter Valley Project Notice of Intent Parties California Trout Humboldt County Mendocino County Inland Water and Power Commission Round Valley Indian Tribes Sonoma County Water Agency This Page Intentionally Left Blank POTTER VALLEY PROJECT NOTICE OF INTENT PARTIES Potter Valley Hydroelectric Project FERC Project No. 77 Initial Study Report September 2020 ©2020, Potter Valley Project Notice of Intent Parties California Trout Humboldt County Mendocino County Inland Water and Power Commission Round Valley Indian Tribes Sonoma County Water Agency This Page Intentionally Left Blank Potter Valley Project, FERC Project No. 77 Initial Study Report TABLE OF CONTENTS SECTION 1.0 INTRODUCTION .................................................................................... 1-1 1.1 Project Background ....................................................................................... 1-1 1.2 FERC Requirements for Proposed Modification to Approved Studies and New Studies .................................................................................................... 1-4 SECTION 2.0 STATUS OF FERC-APPROVED STUDIES AND PROPOSED STUDY MODIFICATIONS .............................................. 2-1 2.1 AQ 1 – Hydrology .......................................................................................... 2-3 2.2 AQ 2 – Water Temperature ........................................................................... 2-5 2.3 AQ 3 – Water Quality ................................................................................... -
Are California'! Orth Coast River
1u i A7 .( ARE CALIFORNIA'! I 19 ORTH COAST RIVER: On the Impacts 1 Of River Diversion Published in Arcata, California, 1982 Printing by Neuberg Photography & Printing Hayfork. California Available From: Rivers Paper - Northcoast Environmental Center 1091 H Street ,, Arcata, Calif. 9552 1 (707) 822-69 18 postal orders: $2°0/copy wholesale prices available 0 1982 .*. .. i ;(i,{.,~TVl ..' EASii.4 RESOURCE LIBRARY ARE CALIFORNIA'S NORTH COAST RIVERS REALLY "WASTING AWAY TO SEA?" By: Paul Bodin, Geologist William Brock, Fishery Biologist Phillip Buttolph, Estuarine Biologist Harvey KeIsey, GeoIogi st Thomas Lisle, Hydrologist Bruce Marcot, WlIdlife Biologist $amy Reichard, ~~drologis~ Robert ~Lnner.Plant Ecologist Table of Contents Preface .............................................1 Summary ............................................1 Introduction ..........................................2 The Potter Valley Project .................................3 The Proposed Dos Rios Diversion and the Existing Trinity Diversion: Project Descriptions .................3 Effects of Impoundment and Diversion on Sediment Transport ...........................4 Effects of a Dos Rios Dam on HiIIsIope Stability ................................9 Effects of Impoundment and Diversion on Fishery Resources ............................9 Potential Effects of the Dos Rios Project on the Middle Fork Eel River Fishery ...............10 Economic Evaluation of the Middle Fork Eel Fishery .............................11 Potential Effects of the Dos Rios Project on the