Solar Energy Technologies Program Multi-Year Program Plan: 2008-2012

Total Page:16

File Type:pdf, Size:1020Kb

Solar Energy Technologies Program Multi-Year Program Plan: 2008-2012 Multi Year Program Plan 2008-2012 April 15, 2008 Solar Energy Technologies Program – 2008-2012 MYPP 1 A Letter from the Program Manager April 2008 Washington, D.C. Welcome to the 2008-2012 Multi-Year Program Plan for the U.S. Department of Energy’s Solar Energy Technologies Program (Solar Program). The Solar Program is responsible for carrying out the Federal role in researching, developing, demonstrating and deploying solar energy technologies. This document presents a look inside the Solar Program’s plans for the next five years, as well as the areas of work that we intend to emphasize. The Solar Program is driven by the Solar America Initiative (SAI), a Presidential initiative launched in 2007 with the goal of achieving grid-parity for solar electricity produced by photovoltaic (PV) systems across the nation by 2015 - making the SAI a nine-year effort. This plan covers years two through six of the SAI, which can be considered the core of the initiative. The activities covered within this plan highlight what efforts the Solar Program will undertake to reach the SAI goal. We will not, however, reach the SAI goal alone. During the first year of the SAI, the Solar Program was able to lay the initial foundation for success through aggressive research and development (R&D) efforts in collaboration with private industry and national laboratories, and expanded that effort to universities in early 2008. Simultaneously, the program launched a groundbreaking market transformation effort to help commercialize solar technologies by targeting and eliminating market barriers to solar energy, as well as promoting deployment opportunities, through partnerships with cities, companies, non-profits, and universities. The 2008-2012 activities detailed herein build off of these early successes of the SAI. Several areas of emphasis characterize the 2008-2012 timeframe: 1. Fully incorporating concentrating solar power (CSP) efforts into the SAI. 2. Improving storage technologies for both CSP and PV technologies. 3. Better integrating solar technologies into the electric grid, in both distributed and centralized generation applications. 4. Eliminating city and state level technical and regulatory barriers to solar technology deployment. 5. Improving the ability of DOE and its laboratories and partners to quickly and effectively transfer R&D concepts from basic to applied science and then to the marketplace. 6. Exploring and developing the next generation of PV technologies that will reach consumers beyond the SAI timeframe (post-2015). 7. Assisting U.S. industry in regaining its leadership role in the global solar marketplace. 8. Promoting increased understanding of environmental and organizational safety across all Solar Program activities by all participants. Solar Energy Technologies Program – 2008-2012 MYPP 2 We appreciate the many years of support from our partners across the solar field and look forward to continued and improved collaboration. We remain your publicly-funded Federal solar program and strive to conduct the most relevant, highly-valued activities to our stakeholders. Your input is always welcomed. Thomas P. Kimbis Program Manager Solar Energy Technologies Program Office of Energy Efficiency and Renewable Energy U.S. Department of Energy Solar Energy Technologies Program – 2008-2012 MYPP 3 Table of Contents 1.0 Solar Energy Program Overview.................................................................................................... 5 1.1 MARKET OVERVIEW AND ROLE OF THE FEDERAL PROGRAM..............................................................................................5 1.1.1 Solar Electric Power Markets Using PV Technologies...............................................................................6 1.1.1.1 Global PV Market Development ..............................................................................................................6 1.1.1.2 U.S. PV Market Development ..................................................................................................................7 1.1.2 Solar Electric Power Markets Using CSP Technologies ............................................................................8 1.2 SOLAR PROGRAM MISSION.......................................................................................................................................13 1.3 SOLAR PROGRAM VISION .........................................................................................................................................13 1.4 SOLAR PROGRAM DESIGN........................................................................................................................................13 1.4.1 Program Structure ....................................................................................................................................13 1.4.2 Program Logic ..........................................................................................................................................14 1.5 SOLAR PROGRAM GOALS AND MULTIYEAR TARGETS .....................................................................................................16 1.5.1 GPRA and Solar Program Strategic Goals...............................................................................................16 2.0 Solar Technology Research, Development, Deployment and Demonstration Plan............................ 19 2.1 PHOTOVOLTAICS ....................................................................................................................................................19 2.1.1 Photovoltaics Support of Program Strategic Goals..................................................................................21 2.1.2 Photovoltaics Support of Program Performance Goals............................................................................21 2.1.3 Photovoltaics Technical and Market Challenges and Barriers ................................................................26 2.1.4 Photovoltaics Approach/Strategies for Overcoming Challenges and Barriers.........................................26 2.1.4.1 PV Systems & Module Development......................................................................................................27 2.1.4.2 PV Materials & Cell Technologies ........................................................................................................29 2.1.4.3 PV Technology Testing & Evaluation....................................................................................................31 2.1.4.4 Grid and Building Integration................................................................................................................38 2.2 CONCENTRATING SOLAR POWER...............................................................................................................................42 2.2.1 Concentrating Solar Power Support of Program Strategic Goals............................................................43 2.2.2 Concentrating Solar Power Support of Program Performance Goals .....................................................43 2.2.3 Concentrating Solar Power Technical and Market Challenges and Barriers ..........................................44 2.2.4 CSP Approach/Strategies for Overcoming Challenges and Barriers .......................................................45 2.3 MARKET TRANSFORMATION ......................................................................................................................................49 2.3.1 Market Transformation Goals...................................................................................................................49 2.3.2 Market Transformation Challenges and Barriers.....................................................................................50 2.3.3 Strategies for Overcoming Challenges and Barriers ................................................................................50 2.3.3.1 Market Transformation Activities ..........................................................................................................51 2.4 PARTNERSHIPS WITH OTHER PROGRAMS ....................................................................................................................55 2.4.1 Basic Research Partnerships ....................................................................................................................55 2.4.2 Partnerships with Other Federal Agencies ...............................................................................................56 3.0 Program Management ................................................................................................................ 57 3.1 PROGRAM PORTFOLIO MANAGEMENT PROCESS ...........................................................................................................57 3.1.1 Solar Program Portfolio Development & Prioritization...........................................................................57 3.1.2 Solar Program Administration..................................................................................................................59 3.2 COMMUNICATIONS AND OUTREACH ............................................................................................................................62 3.3 PROGRAM ANALYSIS ...............................................................................................................................................63 3.4 PROGRAM EVALUATION ...........................................................................................................................................65
Recommended publications
  • Improved Cost, Reliability, and Grid Integration of High Concentration Photovoltaic Systems
    California Solar Initiative Research, Development, Demonstration and Deployment Program RD&D : Final Project Report: Improving Cost, Reliability and Grid Integration of High-Concentration Photovoltaic Systems Grantee: Amonix, Inc. January 2015 www.CalSolarResearch.ca.gov PREPARED BY 1709 Apollo Court Seal Beach, CA 90740 Principal Investigators: Project Partners: Robert McConnell University of California, Irvine (UCI) Amonix Director of Government Projects National Renewable Energy Laboratory (NREL) rmcconnell @ amonix.com U.S. Department of Energy (DOE) Southern California Edison (SCE) PREPARED FOR California Public Utilities Commission California Solar Initiative: Research, Development, Demonstration, and Deployment Program CSI RD&D PROGRAM MANAGER Program Manager: Project Manager: Smita Gupta Stephan Barsun Smita.Gupta @ itron.com Stephan.Barsun @ itron.com DISCLAIMER “Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the CPUC, Itron, Inc. or the CSI RD&D Program.” Additional information and links to project related documents can be found at http://www.calsolarresearch.ca.gov/Funded-Projects/ Preface The goal of the California Solar Initiative (CSI) Research, Development, Demonstration, and Deployment (RD&D) Program is to foster a sustainable and self-supporting customer-sited solar market. To achieve this, the California Legislature authorized the California Public Utilities Commission (CPUC) to allocate $50 million of the CSI budget to an RD&D program. Strategically, the RD&D program seeks to leverage cost-sharing funds from other state, federal and private research entities, and targets activities across these four stages: • Grid integration, storage, and metering: 50-65% • Production technologies: 10-25% • Business development and deployment: 10-20% • Integration of energy efficiency, demand response, and storage with photovoltaics (PV) There are seven key principles that guide the CSI RD&D Program: 1.
    [Show full text]
  • WHAT IS the FUTURE ENERGY JOBS ACT? an In-Depth Look Into Illinois’ New Energy Legislation
    CUB WHAT IS THE FUTURE ENERGY JOBS ACT? An in-depth look into Illinois’ new energy legislation The Future Energy Jobs Act (Senate Bill of negotiations between energy companies, 2814) is one of the most signifi cant pieces consumer advocates, and environmental groups. of energy legislation ever to pass the Illinois This fact sheet is designed to show you how General Assembly. It followed nearly two years the new law will impact electric customers. MAIN FEATURES OF THE ACT HOW DO THESE CONSUMER PROTECTIONS HELP ME? ENERGY EFFICIENCY Energy Effi ciency • Requires Commonwealth Edison and Ameren Illinois— What the act does: the state’s two biggest electric utilities—to dramatically It requires Illinois’ largest electric utilities to launch one of expand their energy effi ciency programs and reduce the nation’s most ambitious plans for customer electricity electricity waste, lowering Illinois power bills by billions savings. By 2030, ComEd must expand and enhance custom- of dollars through 2030. er effi ciency programs to cut electricity waste by a record • Expands the defi nition of “low income” beyond just 21.5 percent, and Ameren by 16 percent. people who qualify for state assistance, and it directs the utilities to engage with economically disadvantaged communities in designing and delivering new programs 21.5% 16% for customers most challenged to pay bills. RENEWABLE ENERGY Why that’s important: For years, Illinois effi ciency standards have required utilities to • Fixes Illinois’ renewable energy laws, which will spark offer a whole menu of helpful programs—such as refrigerator billions of dollars in new investment to develop wind and recycling and rebates on effi cient appliances—that allow cus- solar power in Illinois.
    [Show full text]
  • Challenges in the Design of Concentrator Photovoltaic (CPV) Modules to Achieve Highest Efficiencies M
    APPLIED PHYSICS REVIEWS 5, 041601 (2018) Challenges in the design of concentrator photovoltaic (CPV) modules to achieve highest efficiencies M. Wiesenfarth,1,a) I. Anton,2 and A. W. Bett1 1Fraunhofer Institute for Solar Energy Systems, ISE, Heidenhofstraße 2, 79110 Freiburg, Germany 2Instituto de Energıa Solar (IES), Universidad Politecnica de Madrid (UPM), Av. Complutense, 30, 28040 Madrid, Spain (Received 1 July 2018; accepted 22 October 2018; published online 15 November 2018) Concentrator photovoltaics (CPV) is a special high efficiency system technology in the world of PV-technologies. The idea of CPV is to use optical light concentrators to increase the incident power on solar cells. The solar cell area is comparatively tiny, thus saving expensive semiconduc- tor materials and allowing the use of more sophisticated and more costly multi-junction solar cells. The highest CPV module efficiency achieved is 38.9%. This CPV module uses four-junction III-V- based solar cells. Moreover, mini-modules have already achieved an efficiency of 43.4%. The interaction between optics, cells, and layout of the module and tracker determines the overall field performance. Today, some utility scale CPV plants are installed. The CPV technology allows for many technical solutions for system designs and for optimizing performance while maintaining the economics. This paper will review the achievements and discuss the challenges for the CPV mod- ule technology and its components. We discuss the different components and the most important effects regarding the module design. Furthermore, we present the module designs that have shown the highest efficiencies. Published by AIP Publishing. https://doi.org/10.1063/1.5046752 TABLE OF CONTENTS F.
    [Show full text]
  • Environmental and Economic Benefits of Building Solar in California Quality Careers — Cleaner Lives
    Environmental and Economic Benefits of Building Solar in California Quality Careers — Cleaner Lives DONALD VIAL CENTER ON EMPLOYMENT IN THE GREEN ECONOMY Institute for Research on Labor and Employment University of California, Berkeley November 10, 2014 By Peter Philips, Ph.D. Professor of Economics, University of Utah Visiting Scholar, University of California, Berkeley, Institute for Research on Labor and Employment Peter Philips | Donald Vial Center on Employment in the Green Economy | November 2014 1 2 Environmental and Economic Benefits of Building Solar in California: Quality Careers—Cleaner Lives Environmental and Economic Benefits of Building Solar in California Quality Careers — Cleaner Lives DONALD VIAL CENTER ON EMPLOYMENT IN THE GREEN ECONOMY Institute for Research on Labor and Employment University of California, Berkeley November 10, 2014 By Peter Philips, Ph.D. Professor of Economics, University of Utah Visiting Scholar, University of California, Berkeley, Institute for Research on Labor and Employment Peter Philips | Donald Vial Center on Employment in the Green Economy | November 2014 3 About the Author Peter Philips (B.A. Pomona College, M.A., Ph.D. Stanford University) is a Professor of Economics and former Chair of the Economics Department at the University of Utah. Philips is a leading economic expert on the U.S. construction labor market. He has published widely on the topic and has testified as an expert in the U.S. Court of Federal Claims, served as an expert for the U.S. Justice Department in litigation concerning the Davis-Bacon Act (the federal prevailing wage law), and presented testimony to state legislative committees in Ohio, Indiana, Kansas, Oklahoma, New Mexico, Utah, Kentucky, Connecticut, and California regarding the regulations of construction labor markets.
    [Show full text]
  • Rural Electrification in Bolivia Through Solar Powered Stirling Engines
    Rural electrification in Bolivia through solar powered Stirling engines Carlos Gaitan Bachelor of ScienceI Thesis KTH School of Industrial Engineering and Management Energy Technology EGI-2014 SE-100 44 STOCKHOLM Bachelor of Science Thesis EGI-2014 Rural electrification in Bolivia through solar powered Stirling engines Carlos Gaitan Approved Examiner Supervisor Catharina Erlich Commissioner Contact person II Abstract This study focuses on the rural areas of Bolivia. The village investigated is assumed to have 70 households and one school. Electrical supply will be covered with the help of solar powered Stirling engines. A Stirling engine is an engine with an external heat source, which could be fuel or biomass for example. The model calculates the electrical demand for two different cases. One low level demand and one high level demand. By studying the total electrical demand of the village, the model can calculate a sizing for the Stirling system. However, for the sizing to be more accurate, more research needs to be done with regards to the demand of the village and the incoming parameters of the model. III Sammanfattning Den här studien fokuserar på landsbygden i Bolivia. En by som antas ha 70 hushåll och en skola är det som ligger till grund för studien. Byn ska försörjas med el med hjälp av soldrivna Stirling motorer. En Stirling motor är en motor som drivs med en extern värmekälla. Denna värmekälla kan vara exempelvis biomassa eller annan bränsle. Modellen som tas fram i projektet beräknar elektricitetsbehovet för byn för två nivåer, ett lågt elbehov och ett högt elbehov. Genom att studera det totala elbehovet över dagen kan modellen beräkna fram en storlek för Stirling systemet.
    [Show full text]
  • Analysis of Solar Community Energy Storage for Supporting Hawaii's 100% Renewable Energy Goals Erin Takata [email protected]
    The University of San Francisco USF Scholarship: a digital repository @ Gleeson Library | Geschke Center Master's Projects and Capstones Theses, Dissertations, Capstones and Projects Spring 5-19-2017 Analysis of Solar Community Energy Storage for Supporting Hawaii's 100% Renewable Energy Goals Erin Takata [email protected] Follow this and additional works at: https://repository.usfca.edu/capstone Part of the Natural Resources Management and Policy Commons, Oil, Gas, and Energy Commons, and the Sustainability Commons Recommended Citation Takata, Erin, "Analysis of Solar Community Energy Storage for Supporting Hawaii's 100% Renewable Energy Goals" (2017). Master's Projects and Capstones. 544. https://repository.usfca.edu/capstone/544 This Project/Capstone is brought to you for free and open access by the Theses, Dissertations, Capstones and Projects at USF Scholarship: a digital repository @ Gleeson Library | Geschke Center. It has been accepted for inclusion in Master's Projects and Capstones by an authorized administrator of USF Scholarship: a digital repository @ Gleeson Library | Geschke Center. For more information, please contact [email protected]. This Master's Project Analysis of Solar Community Energy Storage for Supporting Hawaii’s 100% Renewable Energy Goals by Erin Takata is submitted in partial fulfillment of the requirements for the degree of: Master of Science in Environmental Management at the University of San Francisco Submitted: Received: ...................................……….. ................................………….
    [Show full text]
  • Turkey Lake Feasibility Study
    A Comprehensive Solar Energy Power System for the Turkey Lake Service Plaza Contract #: BDK75-977-18 7 January 2010 Project Research Team Charles J. Kibert, Ph.D., P.E., Principal Investigator S.A. Sherif, Ph.D. Robert Ries, Ph.D. Edward Minchin, Ph.D., P.E. Russell Walters, Ph.D., P.E. Lauren Hertel Consultant Al Simpler, President, Simpler Solar, Inc. Research Assistants Kevin Priest Jason Sanders Sean Snowden Srikanth Madala Milind Gholap 01/07/2010 iii EXECUTIVE SUMMARY The Florida Turnpike Enterprise (FTE) has the bold vision of maximizing the use of renewable energy in their operations and potentially supplying all the energy needs of their facilities via solar technologies. To determine the technical and financial feasibility of executing this vision, the FTE selected the Turkey Lake Service Plaza on the Florida Turnpike for a case study to explore this potential shift to renewable energy sources. A University of Florida research team collaborated with FTE and Florida Department of Transportation staff to examine contemporary solar technologies, particularly solar photovoltaic (PV) systems, for their potential to meet the energy needs of the Turkey Lake Service Plaza. The scope of the research included: 1. Evaluation of Solar Electric (PV), Solar Thermal (hot water), and Solar Lighting systems. 2. Assessment of the renewable energy generation potential of the Service Plaza. 3. Designing and planning of photovoltaic systems to determine the energy output. 4. Identification of innovative financing options. 5. Development of a marketing and education concept for the project. The research team concluded that by implementing the Net Zero Energy scenario, the annual electrical energy needs of all the facilities at the Turkey Lake Service Plaza could be met.
    [Show full text]
  • CSPV Solar Cells and Modules from China
    Crystalline Silicon Photovoltaic Cells and Modules from China Investigation Nos. 701-TA-481 and 731-TA-1190 (Preliminary) Publication 4295 December 2011 U.S. International Trade Commission Washington, DC 20436 U.S. International Trade Commission COMMISSIONERS Deanna Tanner Okun, Chairman Irving A. Williamson, Vice Chairman Charlotte R. Lane Daniel R. Pearson Shara L. Aranoff Dean A. Pinkert Robert B. Koopman Acting Director of Operations Staff assigned Christopher Cassise, Senior Investigator Andrew David, Industry Analyst Nannette Christ, Economist Samantha Warrington, Economist Charles Yost, Accountant Gracemary Roth-Roffy, Attorney Lemuel Shields, Statistician Jim McClure, Supervisory Investigator Address all communications to Secretary to the Commission United States International Trade Commission Washington, DC 20436 U.S. International Trade Commission Washington, DC 20436 www.usitc.gov Crystalline Silicon Photovoltaic Cells and Modules from China Investigation Nos. 701-TA-481 and 731-TA-1190 (Preliminary) Publication 4295 December 2011 C O N T E N T S Page Determinations.................................................................. 1 Views of the Commission ......................................................... 3 Separate Views of Commission Charlotte R. Lane ...................................... 31 Part I: Introduction ............................................................ I-1 Background .................................................................. I-1 Organization of report.........................................................
    [Show full text]
  • Design and Experiment of a Sun-Powered Smart Building Envelope with Automatic Control
    Energy & Buildings 223 (2020) 110173 Contents lists available at ScienceDirect Energy & Buildings journal homepage: www.elsevier.com/locate/enb Design and experiment of a sun-powered smart building envelope with automatic control Qiliang Lin a, Yanchu Zhang a, Arnaud Van Mieghem b, Yi-Chung Chen c, Nanfang Yu d, Yuan Yang d, ⇑ Huiming Yin a, a Department of Civil Engineering and Engineering Mechanics, Columbia University, United States b Department of Electrical Engineering ESAT, Katholieke Universiteit Leuven, Belgium c Department of Electrical and Computer Engineering, Tennessee State University, United States d Department of Applied Physics and Applied Mathematics, Columbia University, United States article info abstract Article history: A novel sun-powered smart window blind (SPSWB) system has been designed and developed for the Received 26 February 2020 smart control of building envelopes to achieve the optimal internal comfort with minimum energy Revised 15 May 2020 expenditure. Its self-powered sensing, controlling, and actuation significantly simplify the installation Accepted 21 May 2020 and maintenance of the system. The energy is harvested by the attached thin-film photovoltaic cells, after Available online 29 May 2020 which it is voltage-regulated for the permanent storage into a rechargeable battery with 55% energy effi- ciency. The excessive heat absorbed by the solar cells is dissipated by a PVdF-HFP porous coating with Keywords: more than 9% temperature reduction. The smart control of the energy harvesting and the cooling is Smart building envelope achieved based on the blinds’ surface temperature by an Arduino-based sensing, controlling, and actuat- Window blinds Energy harvesting ing system, whose energy consumption is closely monitored.
    [Show full text]
  • US Solar Industry Year in Review 2009
    US Solar Industry Year in Review 2009 Thursday, April 15, 2010 575 7th Street NW Suite 400 Washington DC 20004 | www.seia.org Executive Summary U.S. Cumulative Solar Capacity Growth Despite the Great Recession of 2009, the U.S. solar energy 2,500 25,000 23,835 industry grew— both in new installations and 2,000 20,000 employment. Total U.S. solar electric capacity from 15,870 2,108 photovoltaic (PV) and concentrating solar power (CSP) 1,500 15,000 technologies climbed past 2,000 MW, enough to serve -th MW more than 350,000 homes. Total U.S. solar thermal 1,000 10,000 MW 1 capacity approached 24,000 MWth. Solar industry 494 revenues also surged despite the economy, climbing 500 5,000 36 percent in 2009. - - A doubling in size of the residential PV market and three new CSP plants helped lift the U.S. solar electric market 37 percent in annual installations over 2008 from 351 MW in 2008 to 481 MW in 2009. Solar water heating (SWH) Electricity Capacity (MW) Thermal Capacity (MW-Th) installations managed 10 percent year-over-year growth, while the solar pool heating (SPH) market suffered along Annual U.S. Solar Energy Capacity Growth with the broader construction industry, dropping 10 1,200 1,099 percent. 1,036 1,000 918 894 928 Another sign of continued optimism in solar energy: 865 -th 725 758 742 venture capitalists invested more in solar technologies than 800 542 any other clean technology in 2009. In total, $1.4 billion in 600 481 2 351 venture capital flowed to solar companies in 2009.
    [Show full text]
  • Low-Income Solar Ownership in Vermont: Overcoming Barriers to Equitable Access
    LOW-INCOME SOLAR OWNERSHIP IN VERMONT: OVERCOMING BARRIERS TO EQUITABLE ACCESS A report for the Vermont Low Income Trust for Electricity, Inc. I. ACKNOWLEDGEMENTS The Energy Clinic at Vermont Law School authored this report. The Energy Clinic is a program of Vermont Law School’s Institute for Energy and the Environment (vermontlaw. edu/energy). The Energy Clinic works to advance community ownership of renewable energy and has a focus on assisting underserved communities to gain access to clean, local, renewable energy. The Energy Clinic prepared this report for the Vermont Low-Income Trust for Electricity (VLITE) to explore the barriers to low-income solar ownership for Vermonters and to offer policy recommendations that will help to overcome these barriers. Our research has included speaking with people from a range of sectors involved with energy policy including financial institutions, housing authorities, nonprofit organizations and low-income residents. The list of organizations interviewed in developing this report is included in Section IX. Additionally, we have investigated existing approaches used across the United States as well as ideas for innovative applications that are most appropriate for Vermont. The purpose of this report is to inform policymakers, industry and interested citizens and to prompt action towards addressing the low carbon energy needs of the low-income population in Vermont and throughout the country. We would like to express our appreciation to the Vermont Low Income Trust for Electricity, which provided the financial support for this report. Our work on these policy issues has also benefited by related work funded by Jane’s Trust Foundation, the John Merck Fund, and the USDA Rural Development program.
    [Show full text]
  • Sentimental Journey the Long, Winding Road to a Renewable Energy Future
    EYE ON THE MARKET • ENERGY OUTLOOK 2016 Sentimental Journey The long, winding road to a renewable energy future J.P. MORGAN PRIVATE BANK On a sentimental journey, some of the images you recall seeing were real, some were based in reality but weren’t exactly what you thought they were, and others existed only in the realm of your imagination. This year’s topics include a status report on renewable energy penetration compared to some prior forecasts, a look at New York’s ambitious conservation and renewable energy plan, the latest on electric cars, the potential for more hydropower in the US, the commodity super-cycle and oil prices in 2017, and how utilities in sunny US states are changing their customer billing as distributed solar power grows. EYE ON THE MARKET • MICHAEL CEMBALEST • J.P. MORGAN Sentimental Journey: the long, winding road to a renewable energy future June 2016 The journey to a renewable energy future is taking longer than many analysts and agencies expected. How so? The solid line in the first chart shows the percentage of US primary energy1 derived from renewable sources, alongside some over-optimistic prior forecasts2. Similarly, most forecasts for nd electric vehicles (EVs and plug-in hybrid vehicles) have been too high as well, as shown in the 2 chart. The share of US primary energy coming from renewable Another generation of electric car projections out of sources, and some notable forecasts sync with reality, EV+PHEV sales as % of total car sales 50% Physicist Bent Sorensen 12% Deutsche Bank Google 2030 Clean ● US 40% Energy Plan 10% PwC ● Global Frost & Sullivan Bloomberg NEF Amory Lovins (RMI) 8% 30% IEA Carter Admin Roland Berger (solar only) Nat'l 6% 20% Renew.
    [Show full text]