New Projects at EMBL Approved in 2004 Protein Crystallography

Total Page:16

File Type:pdf, Size:1020Kb

New Projects at EMBL Approved in 2004 Protein Crystallography New Projects at EMBL Approved in 2004 Protein Crystallography PX-03-366 Structure determination of laccase from Panus Mangani Siena Tigrinus PX-03-404 Tetracycline repressor with tetracycline analogs Hinrichs Greifswald PX-03-405 GsiB from Bsu Hinrichs Greifswald PX-03-406 mtDBP DNA binding protein Sixma Amsterdam PX-03-407 Mariner Transposase Walkinshaw Edinburgh PX-03-408 Structure analysis of the complex of BMP-2 and Mueller Würzburg the inhibitory protein Chordin PX-03-409 Human Complement Factor H Domains 18-20 Goldman Helsinki PX-03-410 SeMet MltA mutant complex Dijkstra Groningen PX-03-411 Argonaute protein from Pyroccocus Furiosus Barford London PX-03-412 Collagen triple helix mimics Berisio Napoli PX-03-413 Structure of a polysaccharide deacetylase from Kokkinidis Heraklion Bacillus cereus PX-03-414 Phosphoribosyl isomerase (PriA) Fulop Coventry PX-03-415 Structure determination of a small GTPase Rudolph Göttingen PX-03-416 Crystal structure of a microbial beta-Xylosidase Schomburg Köln PX-03-417 Substrate recognition by lytic transglycosylase Dijkstra Groningen MltA PX-03-418 Structure and mechanism of HNL from flax Kratky Graz (Linum usitatissimum) PX-03-419 Synthetic peptides which form a leucine zipper Höhne Berlin PX-03-420 Structural analysis of NRPS Te-domains Essen Marburg PX-03-421 ATCases from extremophiles in complex with Beeumen Ghent effectors and inhibitors PX-03-422 Putative GST transferase from Shewanella Beeumen Ghent Oneidensis PX-03-423 Structural studies of glutathione amide reductase Beeumen Ghent in complex with substrates and inhibitors PX-03-424 Structure-function relationships of xylanases Beeumen Ghent from extremophiles at ultrahigh resolution PX-03-425 The crystal structure of the exchange factor EF- Berisio Napoli 1beta isolated from Sulfolobus solfataricus PX-04-001 Alpha-L-fucosidase from Sulfolobus sulfataricus Bolognesi Genova PX-04-002 GDP-D-mannose dehydratase from Paramecium Bolognesi Genova bursaria chlorella virus - 1 (PBCV-1) PX-04-003 Acylphosphatases from mesophiles and Bolognesi Genova extremophiles PX-04-004 Slow structural changes of Pterocarpus Wyns Brussels angolensis lectin upon demetallization: a time- resolved study PX-04-005 Structural and functional consequences of Wyns Brussels remetallization of metal-free Ptreocarpus angolensis lectin PX-04-006 Plasmid addiction and programmed bacterial cell Wyns Brussels death PX-04-007 Bacterial fimbrial adhesins Wyns Brussels PX-04-008 Carbohydrate recognition by plant lectins Wyns Brussels PX-04-009 Microbial nucleoside hydrolases Wyns Brussels PX-04-010 VHH antibody fragments from camels Wyns Brussels PX-04-011 Structural studies of bacterial type II secretion Wyns Brussels systems PX-04-012 Crystal Structure of Aminopeptidase FrvX from Baumann Bern P. horikoshii PX-04-013 Argonaute protein from Pyroccocus Furiosus Barford London PX-04-014 Structure determination of a transient complex of Leys Leicester redox partners: human ETF:MCAD PX-04-015 Structure determination of a transient complex of Leys Leicester redox partners: [TMADH-ETF] PX-04-016 Atomic structure of aromatic amine Leys Leicester dehydrogenase: a time-resolved study PX-04-017 Dimethylglycine oxidase: investigating Leys Leicester channelling and the disease non-ketotic hyperglycinemia PX-04-018 Mechanism of aminomethyltransferase: structure Leys Leicester of the E.coli T-protein:H-protein complex PX-04-019 Structure determination of the SHP:DHC Leys Leicester complex: a novel bacterial respiratory system PX-04-020 Atomic resolution studies of a mycobacterial Leys Leicester P450 PX-04-021 Structure of a thermophilic DNA-lyase Leys Leicester PX-04-022 Structure of the human DMGDH-ETF complex Leys Leicester PX-04-023 Structure determination of a DNA-binding Leys Leicester protein involved in regulating halorespiration PX-04-024 Structure determination of a novel thermophilic Leys Leicester proline dehydrogenase PX-04-025 Crystal structure of RdmE Schneider Stockholm PX-04-026 Structure of DHPY Schneider Stockholm PX-04-027 Structure of OCDC Schneider Stockholm PX-04-028 Phosphoserine aminotransferase from Papageorgiou Turku alkaliphilic sources PX-04-029 Dpr Papageorgiou Turku PX-04-030 PHB Depolymerase (PhaZ7) Papageorgiou Turku PX-04-031 Asparaginase Papageorgiou Turku PX-04-032 Structural studies of protein translocation Kuehlbrandt Frankfurt am Main PX-04-033 Crystallisation of the Noradrenaline transporter Kuehlbrandt Frankfurt am from M. jannasschii Main PX-04-034 X-ray crystallographic studies of tranlation Song Singapore termination factor RF3 from E. coli PX-04-035 X-ray crystallographic studies of RNA helicase Song Singapore protein hUpf1p PX-04-036 Structural studies on human mitochondrial Wierenga Oulu enoyl-CoA isomerase PX-04-037 Structural studies on peptide binding domain of Wierenga Oulu human collagen prolyl 4-hydroxylase PX-04-038 16-mer from hammerhead rybozyme Rypniewski Poznan PX-04-039 Taxol structure Rypniewski Poznan PX-04-040 Crystallographic studies of cytokinin-specific Jaskolski Poznan binding proteins (CSBP) PX-04-041 Crystallographic studies of LlPR10 proteins, Jaskolski Poznan second sublass PX-04-042 Structure-function studies of wild type and Wierenga Oulu mutant bacterial and human thiolases PX-04-043 Structural studies on MFE-1 Wierenga Oulu PX-04-044 SAD-phasing of a highly twinned GTPase Rudolph Göttingen crystal using strontium PX-04-045 CPDA2 Blankenfeldt Dortmund PX-04-046 Structural studies of RNA helicases Rudolph Göttingen PX-04-047 Test data collection for different protein crystals Betzel Hamburg (in term of a student course) PX-04-048 Structure of ML 1 and 3 and complexes with Betzel Hamburg target molecules PX-04-049 Laccase from Melanocarpus albomyces Rouvinen Joensuu PX-04-050 Xylanase IV from Trichoderma reesei Rouvinen Joensuu PX-04-051 ENA Fab-fragments Rouvinen Joensuu PX-04-052 Glucose/Xylose isomerase Rouvinen Joensuu PX-04-053 Hydrophobin Rouvinen Joensuu PX-04-054 M1 Fab-fragment Rouvinen Joensuu PX-04-055 Structural studies of Dcps, a scavenger Song Singapore decapping enzyme im mRNA turnover PX-04-056 DHFR from thermophilic bacteria and structural Betzel Hamburg influence towards thermostability PX-04-057 Glutathione S-transferases from helminths Betzel Hamburg PX-04-058 High resolution structural analysis of PLA2s and Betzel Hamburg inhibitor complexes PX-04-059 Oxidized form of human peroxiredoxin 5 Declercq Louvain-la-Neuve PX-04-060 Structure of human peroxiredoxin 4 Declercq Louvain-la-Neuve PX-04-061 Structure of human peroxiredoxin 3 Declercq Louvain-la-Neuve PX-04-062 Structure of human thioredoxin 2 Declercq Louvain-la-Neuve PX-04-063 Structural studies of fatty acyl CoA thioesterases Wierenga Oulu PX-04-064 Structural studies of Alpha-methylacyl-CoA Wierenga Oulu racemase PX-04-065 Microgravity grown crystals Declercq Louvain-la-Neuve PX-04-066 Complexes of apoferritin Declercq Louvain-la-Neuve PX-04-067 Selected mutants of beta-lactamase Declercq Louvain-la-Neuve PX-04-068 Structure of S-layer proteins Declercq Louvain-la-Neuve PX-04-069 C-terminal Binding Protein 3/Brefeldin A ADP Bolognesi Genova Ribosylated Substrate CtBP3/BARS) PX-04-070 SH3BGRL3, glutaredoxin-like protein Bolognesi Genova PX-04-071 The structure of a cell wall invertase from Rabijns Leuven Arabidopsis thaliana PX-04-072 Structure of Triticum aestivum xylanase inhibitor Rabijns Leuven II (TAXI II) PX-04-073 Structure of TAXI-I endoxylanase complex Rabijns Leuven soaked with different arabinoxylans PX-04-074 Rab-Geranylgeranyl transferase:Rab Escort Blankenfeldt Dortmund Protein:Rab7 complex PX-04-075 A new class of pectate lyases in complex with its Rabijns Leuven ligand PX-04-076 Rab-Geranylgeranyl transferase:Rab Escort Blankenfeldt Dortmund Protein inhibitor complex PX-04-077 Rab-Geranylgeranyl transferase:Rab Escort Blankenfeldt Dortmund Protein inhibitor complex PX-04-078 Structure of inactivated fructan-exohydrolase IIa Rabijns Leuven in complex with ligands PX-04-079 Structure of an endoxylanase which is no longer Rabijns Leuven inhibited by proteinaceous endoxylanase inhibitors PX-04-080 Rap1:Rap1GAP complex Blankenfeldt Dortmund PX-04-081 StyR: styrene-catabolism regulator in Bolognesi Genova Pseudomonas fluorescens PX-04-082 Structure of "truncated" hemoglobin HbO from Bolognesi Genova M. leprae PX-04-083 Studies of mutants of "truncated" hemoglobins Bolognesi Genova PX-04-084 Rho associated kinase Blankenfeldt Dortmund PX-04-085 Study of cytoglobin cavities with proper ligand Bolognesi Genova PX-04-086 Structure of drosophila melanogaster hemoglobin Bolognesi Genova PX-04-087 Methyltransferase aviRb Schulz Freiburg PX-04-088 Protein phosphatase 5 Barford London PX-04-089 Glycosyltransferases from Streptomyces Schulz Freiburg PX-04-090 Phenylalanine ammonia-lyase (PAL) Schulz Freiburg PX-04-091 Atomic resolution crystallography of TIM- Wierenga Oulu transition state complexes PX-04-092 Protein engineering: towards a new substrate Wierenga Oulu specificity of a monomeric variant of TIM PX-04-093 Adaptor proteins (continuation of PX-03-317, Gajhede Copenhagen 390, 391, and 403) PX-04-094 Cell adhesion molecules (continuation of PX-03- Gajhede Copenhagen 335 and 336) PX-04-095 Ionotropic glutamate receptors (continuation of Gajhede Copenhagen PX-03-330 and 334) PX-04-096 Enzymes and enzyme-ligand complexes Gajhede Copenhagen (continuation of PX-03-328, 331, and 389) PX-04-097 ToxB Schulz Freiburg PX-04-098 Structural investigation of the Betaine carrier Kuehlbrandt Frankfurt am BetP from C. bacterium glutamicum
Recommended publications
  • Quantum Chemical Cluster Modeling of Enzymatic Reactions Rong-Zhen
    Quantum Chemical Cluster Modeling of Enzymatic Reactions Rong-Zhen Liao 1 Rong-Zhen Liao, Stockholm, 2010 ISBN 978-91-7447-129-8 Printed in Sweden by US-AB, Stockholm 2010 Distributor: Department of Organic Chemistry, Stockholm University 2 3 4 Abstract The Quantum chemical cluster approach has been shown to be quite powerful and efficient in the modeling of enzyme active sites and reaction mechanisms. In this thesis, the reaction mechanisms of several enzymes have been investigated using the hybrid density functional B3LYP. The enzymes studied include four dinuclear zinc enzymes, namely dihydroorotase, N-acyl-homoserine lactone hydrolase, RNase Z, and human renal dipeptidase, two trinuclear zinc enzymes, namely phospholipase C and nuclease P1, two tungstoenzymes, namely formaldehyde ferredoxin oxidoreductase and acetylene hydratase, aspartate α-decarboxylase, and mycolic acid cyclopropane synthase. The potential energy profiles for various mechanistic scenarios have been calculated and analyzed. The role of the metal ions as well as important active site residues has been discussed. In the cluster approach, the effects of the parts of the enzyme that are not explicitly included in the model are taken into account using implicit solvation methods. With aspartate α-decarboxylase as an example, systematic evaluation of the solvation effects with the increase of the model size has been performed. At a model size of 150-200 atoms, the solvation effects almost vanish and the choice of the dielectric constant becomes rather insignificant. For all six zinc-dependent enzymes studied, the di-zinc bridging hydroxide has been shown to be capable of performing nucleophilic attack on the substrate. In addition, one, two, or even all three zinc ions participate in the stabilization of the negative charge in the transition states and intermediates, thereby lowering the barriers.
    [Show full text]
  • UNIVERSITY of EMBU EDWARD NDERITU KARANJA Phd 2020
    UNIVERSITY OF EMBU EDWARD NDERITU KARANJA PhD 2020 MICROBIAL COMMUNITY DIVERSITY AND STRUCTURE WITHIN ORGANIC AND CONVENTIONAL FARMING SYSTEMS IN CENTRAL HIGHLANDS OF KENYA EDWARD NDERITU KARANJA (MSc) A THESIS SUBMITTED IN PARTIAL FULFILLMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN APPLIED MICROBIOLOGY IN THE UNIVERSITY OF EMBU NOVEMBER, 2020 DECLARATION This thesis is my original work and has not been presented for a degree in any other University Signature……………………………. Date………….……….. Edward Nderitu Karanja Department of Biological Science B801/147/2015 This thesis has been submitted for examination with our approval as the University Supervisors Signature……………………………. Date………….………. Prof. Romano Mwirichia Department of Biological science University of Embu (UoEm), Kenya Signature………. …………………………. Date………….…………. Dr. Andreas Fliessbach Department of Soil Science Research Institute of Organic Agriculture - FIBL, Switzerland i DEDICATION I dedicated to my family; my wife Anne Kelly Kambura, my children; Shawn Karanja, Melissa Wangithi, Joseph Munyuithia, Shayne Koome and Ann Wanjiku, my parents; Mr. Samuel Karanja and Mrs. Agnes Wangithi, my siblings, Ruth Wairimu, Juliet Muthoni, Alex Ngochi, James Karuma and Nelly Njoki. I appreciate the support you have accorded me during my studies. Your inspiration and backing in this journey made it easier to manage all challenges encountered. ii ACKNOWLEDGEMENT I express gratitude toward Almighty God for his mercies from the beginning of this long and thought-provoking journey. This was conducted in the framework of long-term systems comparison program, with financial support from Biovision Foundation, Coop Sustainability Fund, Liechtenstein Development Service (LED) and the Swiss Agency for Development and Cooperation (SDC). I acknowledge icipe core funding for the kind contribution provided by UK-Aid from UK Government, Swedish International Development Cooperation Agency, Swiss Agency for Development and Cooperation, Federal Democratic Republic of Ethiopia and the Kenyan Government.
    [Show full text]
  • Fermentation of Acetylene by an Obligate Anaerobe, Pelobacter Acetylenicus Sp
    Archives of Arch Microbiol (1985) 142: 295- 301 Microbiology Springer-Verlag 1985 Fermentation of acetylene by an obligate anaerobe, Pelobacter acetylenicus sp. nov. * Bernhard Schink Fakult/it ffir Biologie, Universit/it Konstanz, Postfach 5560, D-7750 Konstanz, Federal Republic of Germany Abstract. Four strains of strictly anaerobic Gram-negative tion reactions (Schink 1985a). No significant anaerobic rod-shaped non-sporeforming bacteria were enriched and degradation could be observed with ethylene (ethene), the isolated from marine and freshwater sediments with acety- most simple unsaturated hydrocarbon (Schink 1985 a, b). lene (ethine) as sole source of carbon and energy. Acetylene, It was reported recently that also acetylene can be metab- acetoin, ethanolamine, choline, 1,2-propanediol, and glyc- olized in the absence of molecular oxygen (Watanabe and erol were the only substrates utilized for growth, the latter de Guzman 1980). Enrichment cultures with acetylene as two only in the presence of small amounts of acetate. Sub- sole carbon source were obtained in mineral media with strates were fermented by disproportionation to acetate and sulfate as electron acceptor, and acetate could be identified ethanol or the respective higher acids and alcohols. No as an intermediary metabolite (Culbertson et al. 1981). How- cytochromes were detectable; the guanine plus cytosine ever, these enrichment cultures were difficult to maintain, content of the DNA was 57.1 _+ 0.2 tool%. Alcohol dehy- and the acetylene-degrading bacteria could not be identified drogenase, aldehyde dehydrogenase, phosphate acetyl- (C. W. Culbertson and R. S. Oremland, Abstr. 3rd Int. transferase, and acetate kinase were found in high activities Syrup.
    [Show full text]
  • ATP-Dependent Substrate Reduction at an [Fe8s9] Double-Cubane Cluster
    ATP-dependent substrate reduction at an [Fe8S9] double-cubane cluster Jae-Hun Jeounga and Holger Dobbeka,1 aInstitut für Biologie, Strukturbiologie/Biochemie, Humboldt-Universität zu Berlin, D-10099 Berlin, Germany Edited by Amy C. Rosenzweig, Northwestern University, Evanston, IL, and approved February 2, 2018 (received for review November 23, 2017) Chemically demanding reductive conversions in biology, such as the We have characterized the two components of a widespread reduction of dinitrogen to ammonia or the Birch-type reduction of system of the third type and find that the electron-accepting – aromatic compounds, depend on Fe/S-cluster containing ATPases. component features a double-cubane [Fe8S9]-cluster. This [Fe8S9]- These reductions are typically catalyzed by two-component systems, cluster, so far unknown to biology, catalyzes reductive reactions in which an Fe/S-cluster–containing ATPase energizes an electron to otherwise associated only with the complex iron–sulfur clusters reduce a metal site on the acceptor protein that drives the reductive of nitrogenases. Our results reveal several parallels between the reaction. Here, we show a two-component system featuring a double-cubane cluster-containing enzymes and nitrogenases μ double-cubane [Fe8S9]-cluster [{Fe4S4(SCys)3}2( 2-S)]. The double- and suggest that an unexplored biochemical reactivity space cubane–cluster-containing enzyme is capable of reducing small mol- may be hidden among the diverse ATP-dependent two-component − ecules, such as acetylene (C2H2), azide (N3 ), and hydrazine (N2H4). enzymes. We thus present a class of metalloenzymes akin in fold, metal clus- ters, and reactivity to nitrogenases. Results Distribution of Double-Cubane Cluster Protein-Like Proteins.
    [Show full text]
  • Substratstereochemie Und Untersuchungen Zum Mechanismus Der 4-Hydroxybutyryl-Coa-Dehydratase Aus Clostridium Aminobutyricum
    Substratstereochemie und Untersuchungen zum Mechanismus der 4-Hydroxybutyryl-CoA-Dehydratase aus Clostridium aminobutyricum Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) dem Fachbereich Biologie der Philipps-Universität Marburg vorgelegt von Peter Friedrich aus Marburg/Lahn Marburg/Lahn 2008 Die Untersuchungen zur vorliegenden Arbeit wurden von November 2003 bis November 2008 am Fachbereich Biologie der Philipps-Universität Marburg unter der Leitung von Herrn Prof. Dr. W. Buckel durchgeführt. Vom Fachbereich Biologie der Philipps-Universität Marburg als Dissertation am angenommen. Erstgutachter: Prof. Dr. W. Buckel Zweitgutachter: Prof. Dr. R. Thauer Tag der mündlichen Prüfung: 18.12.2008 für meine Familie für Christine Die Ergebnisse dieser Dissertation sind in folgenden Publikationen veröffentlicht: Friedrich P, Darley DJ, Golding BT, Buckel W (2008) The complete stereochemistry of the enzymatic dehydration of 4-hydroxybutyryl coenzyme A to crotonyl coenzyme A. Angew. Chem. Int. Ed. Engl. 47:3254-3257. Der stereochemische Verlauf der enzymatischen Wassereliminierung von 4-Hydroxybutyryl-Coenzym A zu Crotonyl- Coenzym A. Angew. Chem. 120:3298-3301 Martins BM, Messerschmidt A, Friedrich P, Zhang J, Buckel W (2007) 4-Hydroxybutyryl- CoA dehydratase. In: Messerschmidt A (ed) Handbook of Metalloproteins Online Edition. John Wiley & Sons Ltd., Sussex, UK. Publisched online Dez 2007 weitere Veröffentlichungen: Scott R, Näser U, Friedrich P, Selmer T, Buckel W, Golding BT (2004) Stereochemistry of hydrogen
    [Show full text]
  • Catalysis Science & Technology
    Catalysis Science & Technology Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/catalysis Page 1 of 34 Catalysis Science & Technology The selective addition of water Verena Resch a,b and Ulf Hanefeld* a a Gebouw voor Scheikunde, Biokatalyse, Afdeling Biotechnologie, Technische Universiteit Delft, Manuscript Julianalaan 136, 2628BL Delft, Nederland. bOrganische und Bioorganische Chemie, Institut für Chemie, Karl-Franzens-Universität Graz, Heinrichstrasse 28, 8010 Graz, Österreich. Abstract: Water is omnipresent and essential. Yet at the same time it is a rather unreactive Accepted molecule. The direct addition of water to C=C double bonds is therefore a challenge not answered convincingly. In this perspective we critically evaluate the selectivity and the applicability of the different catalytic approaches for water addition reactions, homogeneous, heterogeneous and bio- catalytic.
    [Show full text]
  • Mechanism of Tungsten-Dependent Acetylene Hydratase from Quantum Chemical Calculations
    Mechanism of tungsten-dependent acetylene hydratase from quantum chemical calculations Rong-Zhen Liaoa,b, Jian-Guo Yub, and Fahmi Himoa,1 aDepartment of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden; and bCollege of Chemistry, Beijing Normal University, Beijing, 100875, People’s Republic of China Edited* by Arieh Warshel, University of Southern California, Los Angeles, CA, and approved November 12, 2010 (received for review September 20, 2010) Acetylene hydratase is a tungsten-dependent enzyme that cata- lyzes the nonredox hydration of acetylene to acetaldehyde. Density functional theory calculations are used to elucidate the reaction mechanism of this enzyme with a large model of the active site devised on the basis of the native X-ray crystal structure. Based Scheme 1. Reaction catalyzed by AH. on the calculations, we propose a new mechanism in which the acetylene substrate first displaces the W-coordinated water mole- The catalytic mechanism of AH is presently poorly under- cule, and then undergoes a nucleophilic attack by the water mole- stood. The mechanistic proposals can be divided into two groups, cule assisted by an ionized Asp13 residue at the active site. This is first- and second-shell mechanisms. Based on the crystal struc- followed by proton transfer from Asp13 to the newly formed vinyl ture, Seiffert et al. proposed a second-shell mechanism in which anion intermediate. In the subsequent isomerization, Asp13 shut- the W-bound water functions as an electrophile to deliver a pro- tles a proton from the hydroxyl group of the vinyl alcohol to the ton to the acetylene substrate (9).
    [Show full text]
  • SUPERCLUSTERS a Search for Novel Structures and Functions Of
    ytSolZo 0o )H(* SUPERCLUSTERS A search for novel structures and functions of biological iron-sulfur clusters A.F. Arendsen 5^2-C^ ~Y^8 Promotoren: DrC .Veeger , Emeritus hoogleraar ind eBiochemi e Landbouwuniversiteit te Wageningen DrW.R .Hagen , Hoogleraar ind eFysisch eChemi e KatholiekeUniversitei t Nijmegen (U <MO27.O! . £i<f£> A.F. Arendsen SUPERCLUSTERS Asearc hfo rnove lstructure san d functions ofbiologica liron-sulfu r clusters Proefschrift ter verkrijging van de graad van doctor opgeza g van derecto r magnificus, DrCM .Karsse n in het openbaar te verdedigen op 1oktobe r 1996 desnamiddag st evie r uuri nd eAul a van de Landbouwuniversiteit te Wageningen W-YAV-Z7 <r- r) »to. - » IWO ISBN 90-5485-595-9 The research described in this thesis was financially supported by the Netherlands Organization of Scientific Research (NWO) under the auspices of the Netherlands Foundation for Chemical Research (SON) 1. Het afbeelden van de natuur als een levende, uitvoerende instantie is een vorm van wetenschappelijk animisme. J.J.P. Frausto da Silva & RJ.P. Williams (1991) in The Biological Chemistry of the Elements, Oxford University Press, Oxford. 2. Het ferredoxine uit Desulfovibrio vulgaris (Hildenborough) is mogelijkerwijs een ferreguline. Dit proefschrift, hoofdstuk 5 3. De hoge redoxpotentiaal van de wolfraam in het aldehyde oxidoreductase uit Pyrococcus furiosus doet geen lampje opgaan over de biologische functie van dit metaal. Dit proefschrift, hoofdstuk 6 4. Het veelvuldig citeren uit overzichtsartikelen betekent een onderwaardering van het oorspronkelijke, experimentele werk, leidt gemakkelijk tot verspreiding van onjuist gei'nterpreteerde of foutief overgenomen gegevens, en dient om deze redenen vermeden te worden.
    [Show full text]
  • Status of Inorganic Chemistry Research in India
    Proc Indian Natn Sci Acad 86 No. 2 June 2020 pp. 983-999 Printed in India. DOI: 10.16943/ptinsa/2019/49735 Review Article Status of Inorganic Chemistry Research in India V CHANDRASEKHAR1,2,* and A CHAKRABORTY2 1Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, India 2Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad 500 107, India (Received on 03 March 2019; Revised on 25 May 2019; Accepted on 05 June 2019) The current status of research in the area of Inorganic chemistry in India is discussed. The article focuses on various aspects of inorganic chemistry being pursued in the country such as main-group chemistry, coordination chemistry, supramolecular chemistry, molecular materials and bio-inorganic chemistry. The strengths of the subject in the country and the possible future directions are discussed. Keywords: Inorganic Chemistry; Modern Chemistry; Chemical Research; Mercurous Nitrite Introduction for a long time and the amount of funding was substantially lower. It is only in the last two decades Modern chemistry research in India began with that reasonable funding became available for Acharya Prafulla Chandra Ray in Kolkata. The fact researchers across the country and this is reflected that he was an inorganic chemist by training is in the number of publications resulting from the incidental. His influence on chemical research in India country. The increased funding has resulted in higher is profound (Chakravorty, 2014). His most important number of publications. By a search of web-of-science contribution is the preparation of mercurous nitrite, using the key words “India” and “Address” (in topics Hg (NO ) , whose molecular structure was 2 2 2 search) the publications in the decades 1980-2019 is established several years later (Samanta et al., 2011).
    [Show full text]
  • On the Michael Addition of Water to C = C Bonds
    ON THE MICHAEL ADDITION OF WATER TO C = C BONDS ON THE MICHAEL ADDITION OF WATER TO C = C BONDS Proefschrift ter verkrijging van de graad van doctor aan de Technische Universiteit Delft, op gezag van de RectorMagnificus Prof. ir. K. C. A. M. Luyben, voorzitter van het College voor Promoties, in het openbaar te verdedigen op dinsdag 01 September 2015 om 10:00 uur door Bishuang CHEN Master in Organic Chemistry, Xiamen University, Xiamen, China geboren te Putian, Fujian Province, China Dit proefschrift is goedgekeurd door de promotoren: Prof. dr. Ulf Hanefeld Samenstelling promotiecommissie: Rector Magnificus, voorzitter Prof. dr. Ulf Hanefeld, Technische Universiteit Delft, promotor Prof. dr. W.R. Hagen, Technische Universiteit Delft Dr. ir. F. Hollmann Technische Universiteit Delft Prof. dr. W.J.H. van Berkel Wageningen University Prof. dr. J.G. Roelfes University of Groningen Prof. dr. H. Gröger Bielefeld University, Duitsland Dr. V.A. Resch University of Graz, Graz Prof. dr. I.W.C.E. Arends Technische Universiteit Delft, reserved water, Michael hydratase, ene-reductase, Rhodococcus, Keywords: -hydroxy carbonyl compound Printed by: Ipskamp Drukkers biocatalysis, lipase, β Cover by: Huayang Cai ISBN: 978-94-6259-773-0 Copyright © 2015 Bishuang CHEN An electronic version of this dissertation is available at http://repository.tudelft.nl/ All rights reserved. No parts of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photo-copying, recording, or otherwise, without the prior written permission of the author. To my parents Contents 1 Stereochemistry of enzymatic water addition to C=C bonds ..................
    [Show full text]
  • All Enzymes in BRENDA™ the Comprehensive Enzyme Information System
    All enzymes in BRENDA™ The Comprehensive Enzyme Information System http://www.brenda-enzymes.org/index.php4?page=information/all_enzymes.php4 1.1.1.1 alcohol dehydrogenase 1.1.1.B1 D-arabitol-phosphate dehydrogenase 1.1.1.2 alcohol dehydrogenase (NADP+) 1.1.1.B3 (S)-specific secondary alcohol dehydrogenase 1.1.1.3 homoserine dehydrogenase 1.1.1.B4 (R)-specific secondary alcohol dehydrogenase 1.1.1.4 (R,R)-butanediol dehydrogenase 1.1.1.5 acetoin dehydrogenase 1.1.1.B5 NADP-retinol dehydrogenase 1.1.1.6 glycerol dehydrogenase 1.1.1.7 propanediol-phosphate dehydrogenase 1.1.1.8 glycerol-3-phosphate dehydrogenase (NAD+) 1.1.1.9 D-xylulose reductase 1.1.1.10 L-xylulose reductase 1.1.1.11 D-arabinitol 4-dehydrogenase 1.1.1.12 L-arabinitol 4-dehydrogenase 1.1.1.13 L-arabinitol 2-dehydrogenase 1.1.1.14 L-iditol 2-dehydrogenase 1.1.1.15 D-iditol 2-dehydrogenase 1.1.1.16 galactitol 2-dehydrogenase 1.1.1.17 mannitol-1-phosphate 5-dehydrogenase 1.1.1.18 inositol 2-dehydrogenase 1.1.1.19 glucuronate reductase 1.1.1.20 glucuronolactone reductase 1.1.1.21 aldehyde reductase 1.1.1.22 UDP-glucose 6-dehydrogenase 1.1.1.23 histidinol dehydrogenase 1.1.1.24 quinate dehydrogenase 1.1.1.25 shikimate dehydrogenase 1.1.1.26 glyoxylate reductase 1.1.1.27 L-lactate dehydrogenase 1.1.1.28 D-lactate dehydrogenase 1.1.1.29 glycerate dehydrogenase 1.1.1.30 3-hydroxybutyrate dehydrogenase 1.1.1.31 3-hydroxyisobutyrate dehydrogenase 1.1.1.32 mevaldate reductase 1.1.1.33 mevaldate reductase (NADPH) 1.1.1.34 hydroxymethylglutaryl-CoA reductase (NADPH) 1.1.1.35 3-hydroxyacyl-CoA
    [Show full text]
  • The Prokaryotic Mo/W-Bispgd Enzymes Family: a Catalytic Workhorse in Bioenergetic☆
    Biochimica et Biophysica Acta 1827 (2013) 1048–1085 Contents lists available at SciVerse ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbabio Review The prokaryotic Mo/W-bisPGD enzymes family: A catalytic workhorse in bioenergetic☆ Stéphane Grimaldi a, Barbara Schoepp-Cothenet a, Pierre Ceccaldi a,b, Bruno Guigliarelli a,⁎, Axel Magalon b,⁎⁎ a CNRS, Aix Marseille Université, IMM FR3479, Unité de Bioénergétique et Ingénierie des Protéines (BIP) UMR 7281, F-13402 Marseille Cedex 20, France b CNRS, Aix Marseille Université, IMM FR3479, Laboratoire de Chimie Bactérienne (LCB) UMR 7283, F-13402 Marseille Cedex 20, France article info abstract Article history: Over the past two decades, prominent importance of molybdenum-containing enzymes in prokaryotes has been put Received 23 November 2012 forward by studies originating from different fields. Proteomic or bioinformatic studies underpinned that the list of Received in revised form 21 January 2013 molybdenum-containing enzymes is far from being complete with to date, more than fifty different enzymes Accepted 23 January 2013 involved in the biogeochemical nitrogen, carbon and sulfur cycles. In particular, the vast majority of prokaryotic Available online 31 January 2013 molybdenum-containing enzymes belong to the so-called dimethylsulfoxide reductase family. Despite its extraordi- nary diversity, this family is characterized by the presence of a Mo/W-bis(pyranopterin guanosine dinucleotide) Keywords: Molybdenum cofactor at the active site. This review highlights what has been learned about the properties of the catalytic site, Prokaryote the modular variation of the structural organization of these enzymes, and their interplay with the isoprenoid qui- Bioenergetic nones. In the last part, this review provides an integrated view of how these enzymes contribute to the bioenergetics Iron–sulfur of prokaryotes.
    [Show full text]