WO 2019/020811 Al O

Total Page:16

File Type:pdf, Size:1020Kb

WO 2019/020811 Al O (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2019/020811 Al 31 January 2019 (31.01.2019) W !P O PCT (51) International Patent Classification: C12N 9/10 (2006.01) C12N 9/14 (2006.01) C12N 9/ 2 (2006.01) (21) International Application Number: PCT/EP20 18/070479 (22) International Filing Date: 27 July 2018 (27.07.2018) (25) Filing Language: English (26) Publication Langi English (30) Priority Data: 17306006.2 27 July 2017 (27.07.2017) EP (71) Applicant: EUKARYS [FR/FR]; 4 rue Pierre Fontaine, 91058 Evry (FR). (72) Inventor: JAIS, Philippe; 58 avenue du Bas-Meudon, 92130 Issy-Les-Moulineaux (FR). (74) Agent: BRINGER IP; 1 Place du President Thomas Wil son, 31000 Toulouse (FR). (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG). Published: — with international search report (Art. 21(3)) — with sequence listing part of description (Rule 5.2(a)) o0 0 © (54) Title: NEW CHIMERIC ENZYMES AND THEIR APPLICATIONS © (57) Abstract: The present invention relates to a chimeric enzyme comprising or consisting of at least one catalytic domain of a capping enzyme and at least one RNA-binding domain of a protein-RNA tethering system as well as its application for the production of an RNA molecule with a 5'-terminal cap. NEW CHIMERIC ENZYMES AND THEIR APPLICATIONS The present invention relates to the field of expression systems, particularly in eukaryotic cells. In particular, the invention relates to a chimeric enzyme useful for the production of RNA molecules with 5'-term inal cap structures and preferably with a 3' poly(A) tail. In the eukaryotes, precursors of messenger RNA (m RNA) , i.e. the pre-m RNAs, are synthesized by the RNA polymerase II and then undergoes multiple post-transcriptional modifications, which are required for their biological activities including translation, stability or imm une response modulation. Two of these modifications are particularly critical for mRNA metabolism and its translation : the addition of a cap at their 5'-end and a polyadenylation tail at their 3'-end. The capping is a specialized structure found at the 5'-end of nearly all eukaryotic messenger RNAs. The simplest cap structure, cap-0, results of the addition of a guanine nucleoside methylated at N7 that is joined by 5'-5' triphosphate bound to the end of primary RNA (i.e. m7GpppN where N is any base, p denotes a phosphate and m a methyl group) . In the so called canonical pathway, the formation of the cap-0 involves a series of three enzymatic reactions: RNA triphosphatase (RTPase) removes the γ phosphate residue of 5' triphosphate end of nascent pre-m RNA to diphosphate, RNA guanylyltransferase (GTase) transfers GMP from GTP to the diphosphate 5' end of nascent RNA term inus, and RNA N7-guanine methyltransferase (N7-MTase) adds a methyl residue on azote 7 of guanine to the GpppN cap (Furuichi and Shatkin 2000) . In higher eukaryotes and some viruses, the 2'-hydroxyl group of the ribose of the first (i.e. cap-1 structures; m7GpppNm 2'- °pN) and second (i.e. cap2 structures; m7GpppNm 2' 0 pNm 2' 0 ) transcribed nucleotides can be methylated by two separate ribose-2'-0 MTases, respectively named capl - and cap2-specific MTases (Langberg and Moss 1981 ). However, In contrast to the cellular N7-MTase activity that is exclusively nuclear, cap-1 ribose-2'-0 MTase activity has been detected in both the cytoplasm and nucleus of HeLa cells, whereas cap2 MTase activity is exclusively found in their cytoplasm (Langberg and Moss 1981 ). The formation of the 5'-term inal m7GpppN cap is the first step of pre-m RNA processing. The m7GpppN cap plays important roles in mRNA stability and its transport from the nucleus to the cytoplasm (Huang and Steitz 2005, Kohler and Hurt 2007) . In addition, the 5'-term inal m7GpppN cap is important for the translation of mRNA to protein by anchoring the eukaryotic translation initiation factor 4F (el F4F) complex, which mediates the recruitment of the 16S portion of the small ribosomal subunit to mRNA (Furuichi, LaFiandra et al. 1977, Gingras, Raught et al. 1999, Rhoads 1999) . The 5'-terminal m7GpppN cap therefore enhances drastically the translation of mRNA both in vitro (Lo, Huang et al. 1998) , and in cellulo (Malone, Feigner et al. 1989, Gallie 1991 , Lo, Huang et al. 1998, Kozak 2005) .The cap-0, cap-1 and cap-2 modifications participate in the innate immune response, by distinguishing self from non-self RNA through the RNA sensor RIG-1 and MDA5, which in turn induce an interferon type-l response (Hornung, Ellegast et al. 2006, Daffis, Szretter et al. 201 0). Since they are widely used in the life sciences, biotechnology and medicines, many expression systems have been designed to efficiently produce proteins and/or RNAs particularly in eukaryotic cells. The inventor has developed in the past an artificial expression system (i.e. a chimeric enzyme) for efficient transgenesis in eukaryotic cells, which autonomously generates mRNA molecules, in particular in the cytoplasm of said cells (WO 201 1/ 128444) . Using this system , RNA chains are synthesized by RNA polymerase moiety of this chimeric enzyme and are capped at 5'-end by its mRNA capping enzyme moiety. In addition, a poly(A) tail can be produced at the 3'-end of transcripts by transcription of a polyadenosine track from DNA templates. This system has notably the advantage of not using the endogenous RNA transcription machinery of eukaryotic cells, e.g. RNA polymerase II and associated factors involved in transcription and post-transcription. Other attempts to couple capping to transcription and thus to improve the translatability of uncapped transcripts produced by the T7 RNA polymerase by fusing the carboxyl-terminal domain (CTD) of the largest subunit of the RNA polymerase II (POLR2A) , have to enhance the capping of both constitutively and alternatively spliced substrates in cellulo (Kaneko, Chu et al. 2007, Natalizio, Robson-Dixon et al. 2009) . The CTD comprises 25-52 heptapeptide repeats of the consensus sequence YSPTSPS 7, which is highly conserved throughout evolution and subject to reversible phosphorylation during the transcription cycle (Palancade and Bensaude 2003) . When phosphorylated, the CTD is thought to mediate the coupling of transcription and capping of nascent transcripts, by binding one or more subunits of the mRNA capping enzymes in yeast (Cho, Takagi et al. 1997, McCracken, Fong et al. 1997) and mammals (McCracken, Fong et al. 1997, Yue, Maldonado et al. 1997) . Noticeably, RNA polymerase II with Ser -phosphorylated CTD repeats undergoes promoter proximal pausing which is coincident with the co-transcriptional capping of the nascent transcripts (Komarnitsky, Cho et al. 2000, Schroeder, Schwer et al. 2000) . However, in contrast to what could be expected intuitively, the fusion of the CTD to the single-unit T7 RNA polymerase is not sufficient to enhance the capping of both constitutively and alternatively spliced substrates in vivo (Kaneko, Chu et al. 2007, Natalizio, Robson-Dixon et al. 2009) . There remains therefore a significant need in the art for new and improved expression systems, in particular in eukaryotic cells, which are appropriate for gene therapy and large-scale protein production without cytotoxicity or induced-cytotoxicity. The present inventor has made a significant step forward with the invention disclosed herein. The purpose of the invention is to fulfill this need by providing new chimeric enzymes, which make it possible to solve in whole or part the problems mentioned-above. Unexpectedly, the inventor has notably demonstrated that monomeric or oligomeric chimeric (non- natural) enzymes comprising catalytic domains of a capping enzyme, particularly a catalytic domain of a RNA triphosphatase, a catalytic domain of a guanylyltransferase, a catalytic domain of a N7-guanine methyltransferase, and a RNA-binding domain of a protein-RNA tethering system , said RNA-binding domain binding specifically to a RNA element consisting of a specific RNA sequence and/or structure, allows to highly increase the capping rate of specific mRNAs produced by a RNA polymerase. These results are surprising since the formation of the cap is a complex process and that the capping of exogenous transcripts cannot be achieved by most other approaches, such as the fusion enzyme CTD-T7 RNA polymerase (Kaneko, Chu et al. 2007, Natalizio, Robson-Dixon et al.
Recommended publications
  • Changes to Virus Taxonomy 2004
    Arch Virol (2005) 150: 189–198 DOI 10.1007/s00705-004-0429-1 Changes to virus taxonomy 2004 M. A. Mayo (ICTV Secretary) Scottish Crop Research Institute, Invergowrie, Dundee, U.K. Received July 30, 2004; accepted September 25, 2004 Published online November 10, 2004 c Springer-Verlag 2004 This note presents a compilation of recent changes to virus taxonomy decided by voting by the ICTV membership following recommendations from the ICTV Executive Committee. The changes are presented in the Table as decisions promoted by the Subcommittees of the EC and are grouped according to the major hosts of the viruses involved. These new taxa will be presented in more detail in the 8th ICTV Report scheduled to be published near the end of 2004 (Fauquet et al., 2004). Fauquet, C.M., Mayo, M.A., Maniloff, J., Desselberger, U., and Ball, L.A. (eds) (2004). Virus Taxonomy, VIIIth Report of the ICTV. Elsevier/Academic Press, London, pp. 1258. Recent changes to virus taxonomy Viruses of vertebrates Family Arenaviridae • Designate Cupixi virus as a species in the genus Arenavirus • Designate Bear Canyon virus as a species in the genus Arenavirus • Designate Allpahuayo virus as a species in the genus Arenavirus Family Birnaviridae • Assign Blotched snakehead virus as an unassigned species in family Birnaviridae Family Circoviridae • Create a new genus (Anellovirus) with Torque teno virus as type species Family Coronaviridae • Recognize a new species Severe acute respiratory syndrome coronavirus in the genus Coro- navirus, family Coronaviridae, order Nidovirales
    [Show full text]
  • A-Lovisolo.Vp:Corelventura
    Acta zoologica cracoviensia, 46(suppl.– Fossil Insects): 37-50, Kraków, 15 Oct., 2003 Searching for palaeontological evidence of viruses that multiply in Insecta and Acarina Osvaldo LOVISOLO and Oscar RÖSLER Received: 31 March, 2002 Accepted for publication: 17 Oct., 2002 LOVISOLO O., RÖSLER O. 2003. Searching for palaeontological evidence of viruses that multiply in Insecta and Acarina. Acta zoologica cracoviensia, 46(suppl.– Fossil Insects): 37-50. Abstract. Viruses are known to be agents of important diseases of Insecta and Acarina, and many vertebrate and plant viruses have arthropods as propagative vectors. There is fossil evidence of arthropod pathogens for some micro-organisms, but not for viruses. Iso- lated virions would be hard to detect but, in fossil material, it could be easier to find traces of virus infection, mainly virus-induced cellular structures (VICS), easily recognisable by electron microscopy, such as virions encapsulated in protein occlusion bodies, aggregates of membrane-bounded virus particles and crystalline arrays of numerous virus particles. The following main taxa of viruses that multiply in arthropods are discussed both for some of their evolutionary aspects and for the VICS they cause in arthropods: A. dsDNA Poxviridae, Asfarviridae, Baculoviridae, Iridoviridae, Polydnaviridae and Ascoviridae, infecting mainly Lepidoptera, Hymenoptera, Coleoptera, Diptera and Acarina; B. ssDNA Parvoviridae, infecting mainly Diptera and Lepidoptera; C. dsRNA Reoviridae and Bir- naviridae, infecting mainly Diptera, Hymenoptera and Acarina, and plant viruses also multiplying in Hemiptera; D. Amb.-ssRNA Bunyaviridae and Tenuivirus, that multiply in Diptera and Hemiptera (animal viruses) and in Thysanoptera and Hemiptera (plant vi- ruses); E. -ssRNA Rhabdoviridae, multiplying in Diptera and Acarina (vertebrate vi- ruses), and mainly in Hemiptera (plant viruses); F.
    [Show full text]
  • ICTV Code Assigned: 2011.001Ag Officers)
    This form should be used for all taxonomic proposals. Please complete all those modules that are applicable (and then delete the unwanted sections). For guidance, see the notes written in blue and the separate document “Help with completing a taxonomic proposal” Please try to keep related proposals within a single document; you can copy the modules to create more than one genus within a new family, for example. MODULE 1: TITLE, AUTHORS, etc (to be completed by ICTV Code assigned: 2011.001aG officers) Short title: Change existing virus species names to non-Latinized binomials (e.g. 6 new species in the genus Zetavirus) Modules attached 1 2 3 4 5 (modules 1 and 9 are required) 6 7 8 9 Author(s) with e-mail address(es) of the proposer: Van Regenmortel Marc, [email protected] Burke Donald, [email protected] Calisher Charles, [email protected] Dietzgen Ralf, [email protected] Fauquet Claude, [email protected] Ghabrial Said, [email protected] Jahrling Peter, [email protected] Johnson Karl, [email protected] Holbrook Michael, [email protected] Horzinek Marian, [email protected] Keil Guenther, [email protected] Kuhn Jens, [email protected] Mahy Brian, [email protected] Martelli Giovanni, [email protected] Pringle Craig, [email protected] Rybicki Ed, [email protected] Skern Tim, [email protected] Tesh Robert, [email protected] Wahl-Jensen Victoria, [email protected] Walker Peter, [email protected] Weaver Scott, [email protected] List the ICTV study group(s) that have seen this proposal: A list of study groups and contacts is provided at http://www.ictvonline.org/subcommittees.asp .
    [Show full text]
  • ABSTRACT Title of Document: INTERFERENCE of HOST
    ABSTRACT Title of Document: INTERFERENCE OF HOST INNATE IMMUNE RESPONSE BY HEPATITIS E VIRUS Yuchen Nan, Ph.D., 2014 Directed By: Associate Professor Yanjin Zhang, Department of Veterinary Medicine The host antiviral innate immunity mainly relies on host pattern recognition receptors (PRR) and downstream interferon (IFN) signaling. Host PRR for RNA viruses include Toll-like receptors (TLR) and Retinoic acid-inducible gene I (RIG-I) like receptors (RLR). Activation of both TLR and RLR pathways can eventually lead to the secretion of type I IFNs, which can modulate both innate and adaptive immune responses against viral pathogens, including hepatitis E virus (HEV). HEV causes acute hepatitis in humans and has been responsible for several outbreaks of hepatitis across the world. Currently, no commercial vaccine is available for the prevention of HEV infection in any country except China. HEV biology and pathogenesis as well as its responses to host innate immunity are poorly understood, though other hepatitis viruses, including the hepatitis A, B and C viruses, have been much better studied. In this study, how HEV interferes with IFN induction and IFN-activated signaling had been examined. Results showed that the protein encoded by HEV ORF1 can inhibit type I IFN synthesis and downstream JAK/STAT signaling pathway. However, the HEV ORF3 product is able to enhance RIG-I-mediated signaling to a certain extent. These data suggest that HEV proteins interfere with the host innate immune response and may exert the diverse roles depending on the stage and/or context of infection. These studies contribute to a better understanding of HEV pathogenesis and may facilitate a strategy development for the prevention and control of HEV infection.
    [Show full text]
  • Overlapping Genes Produce Proteins with Unusual Sequence Properties And
    JVI Accepts, published online ahead of print on 29 July 2009 J. Virol. doi:10.1128/JVI.00595-09 Copyright © 2009, American Society for Microbiology and/or the Listed Authors/Institutions. All Rights Reserved. 1 Overlapping genes produce proteins with unusual sequence properties and 2 offer insight into de novo protein creation 3 4 Corinne Rancurel1, Mahvash Khosravi2, Keith A. Dunker2, Pedro R. Romero2*, and David Karlin3* 5 6 1 Architecture et Fonction des Macromolécules Biologiques, Case 932, Campus de Luminy, 13288 Marseille 7 Cedex 9, France 8 2 Center for Computational Biology and Bioinformatics, 410 West 10th Street, Suite 5000, Indiana University 9 - Purdue University, Indianapolis, IN 46202-5122, USA, Downloaded from 10 3 25, rue de Casssis, 13008 Marseille, FRANCE 11 12 * Corresponding authors: [email protected], [email protected] 13 14 Running Title : Overlapping proteins have unusual sequence properties http://jvi.asm.org/ 15 Keywords 16 de novo gene creation; de novo protein creation; novel proteins; new proteins; orphan proteins; orphan 17 genes; ORFans; overlapping genes; overlapping reading frames; overprinting; unstructured proteins; 18 disordered proteins; intrinsic disorder; structural disorder; disorder prediction; profile-profile comparison; on April 22, 2020 by guest 19 PFAM; viral genomics; viral bioinformatics; viral structural genomics. 20 21 Abbreviations 22 Only abbreviations used in the main text are listed here; others are given in the figure captions. 23 30K, conserved domain of the 30K family of movement proteins; aa, amino acid; dsRNA, double-stranded 24 RNA; GT, guanylyltransferase; MP, movement protein; MT, methyltransferase; N, nucleoprotein; NSs, non 25 structural protein of orthobunyaviruses; ORF, open reading frame; PDB, protein databank (database of 26 protein structures); PFAM, Protein families (database of families of protein sequences); ssRNA, single- 27 stranded RNA; TGB, triple gene block; RE, relative (compositional) entropy; tm, transmembrane segment.
    [Show full text]
  • Evidence to Support Safe Return to Clinical Practice by Oral Health Professionals in Canada During the COVID-19 Pandemic: a Repo
    Evidence to support safe return to clinical practice by oral health professionals in Canada during the COVID-19 pandemic: A report prepared for the Office of the Chief Dental Officer of Canada. November 2020 update This evidence synthesis was prepared for the Office of the Chief Dental Officer, based on a comprehensive review under contract by the following: Paul Allison, Faculty of Dentistry, McGill University Raphael Freitas de Souza, Faculty of Dentistry, McGill University Lilian Aboud, Faculty of Dentistry, McGill University Martin Morris, Library, McGill University November 30th, 2020 1 Contents Page Introduction 3 Project goal and specific objectives 3 Methods used to identify and include relevant literature 4 Report structure 5 Summary of update report 5 Report results a) Which patients are at greater risk of the consequences of COVID-19 and so 7 consideration should be given to delaying elective in-person oral health care? b) What are the signs and symptoms of COVID-19 that oral health professionals 9 should screen for prior to providing in-person health care? c) What evidence exists to support patient scheduling, waiting and other non- treatment management measures for in-person oral health care? 10 d) What evidence exists to support the use of various forms of personal protective equipment (PPE) while providing in-person oral health care? 13 e) What evidence exists to support the decontamination and re-use of PPE? 15 f) What evidence exists concerning the provision of aerosol-generating 16 procedures (AGP) as part of in-person
    [Show full text]
  • Biosafety in Microbiological and Biomedical Laboratories—6Th Edition
    Section VIII—Agent Summary Statements The agent summary statements contained in Section VIII of the sixth edition of Biosafety in Microbiological and Biomedical Laboratories (BMBL) are designed to assist the reader with the risk assessment for their work, as directed in Section II. The statements are assembled by subject matter experts and represent a summary of key information regarding pathogens with significance to the biomedical community. Although the statements provide recommendations regarding containment for specific activities, they should serve only as the starting point for a laboratory’s risk assessment and should not serve as a substitute for an assessment. The statements cannot fully factor in the change in risk due to the size of a sample, concentration of agent present, change in virulence or pathogenicity, nor any change in ability to provide medical countermeasures due to antibiotic or antiviral resistance. The following list of agents is also not comprehensive, and the reader is directed to other information to assist in the risk assessment, including the Public Health Agency of Canada’s Pathogen Safety Data Sheets (PSDS),1 the American Public Health Association’s Control of Communicable Diseases Manual,2 American Society for Microbiology Manual of Clinical Microbiology,3 and the ABSA Interna- tional Risk Group Database.4 References 1. Government of Canada [Internet]. Canada: Public Health Agency of Canada; c2018 [cited 2018 Dec 20]. Pathogen Safety Data Sheets. Available from: https://www.canada.ca/en/public-health/services/laboratory- biosafety-biosecurity/pathogen-safety-data-sheets-risk-assessment.html 2. Heymann DL, editor. Control of Communicable Diseases Manual. 20th ed.
    [Show full text]
  • The Springer Index of Viruses Springer Berlin Heidelberg New York Barcelona Hong Kong London Milan Paris Tokyo Christian A
    The Springer Index of Viruses Springer Berlin Heidelberg New York Barcelona Hong Kong London Milan Paris Tokyo Christian A. Tidona Gholamreza Darai (Eds.) The Springer Index of Viruses With 434 Figures and 1449 Tables 123 Editors Christian A. Tidona, PhD Gholamreza Darai, MD Buchener Str. 5a Professor of Virology 69429 Waldbrunn Institute for Medical Virology Germany University of Heidelberg Im Neuenheimer Feld 324 69120 Heidelberg Germany Special Editor Cornelia Büchen-Osmond, PhD Columbia Earth Institute Biosphere 2 Center Columbia University P.O. Box 689 Oracle, AZ 85623 USA ISBN 3-540-67167-6 Springer-Verlag Berlin Heidelberg New York Library of Congress Cataloging-in-Publication Data The Springer index of viruses / [editors] Christian A. Tidona, Gholamreza Darai ; [special editor, Cornelia Büchen-Osmond]. p. ; cm. title: Index of viruses. ISBN 3540671676 (hardcover : alk. paper) 1. Viruses--Handbooks, manuals, etc. I. Title: Index of viruses. II. Tidona, Christian A., 1971- III. Darai, Gholamraza. IV. Büchen-Osmond, Cornelia. [DNLM: 1. Viruses--Handbooks. QW 39 S769 2001] QR360 .S764 2001 579.2--dc2 2001042682 Die Deutsche Bibliothek - cip-Einheitsaufnahme Tidona, Christian A.: The Springer Index of Viruses / Christian A. Tidona ; Gholamreza Darai. - Berlin ; Heidelberg ; New York : Springer, 2001 ISBN 3-540-67167-6 0101 deutsche buecherei This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag.
    [Show full text]
  • Genetic Assays for Detecting Viral Recombination Rate
    (19) *EP003024948B1* (11) EP 3 024 948 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C12Q 1/6827 (2018.01) C12Q 1/70 (2006.01) 15.01.2020 Bulletin 2020/03 (86) International application number: (21) Application number: 14829649.4 PCT/US2014/048301 (22) Date of filing: 25.07.2014 (87) International publication number: WO 2015/013681 (29.01.2015 Gazette 2015/04) (54) GENETIC ASSAYS FOR DETECTING VIRAL RECOMBINATION RATE GENETISCHE TESTS ZUR BESTIMMUNG EINER VIRALEN REKOMBINATIONSFREQUENZ DOSAGES GÉNÉTIQUES POUR DÉTERMINER UNE FREQUENCE DE LA RECOMBINATION VIRALE (84) Designated Contracting States: • A. D. TADMOR ET AL: "Probing Individual AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Environmental Bacteria for Viruses by Using GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO Microfluidic Digital PCR", SCIENCE, vol. 333, no. PL PT RO RS SE SI SK SM TR 6038, 1 July 2011 (2011-07-01), pages 58-62, XP055344735, ISSN: 0036-8075, DOI: (30) Priority: 25.07.2013 US 201361858311 P 10.1126/science.1200758 -& A. D. TADMOR ET 01.11.2013 US 201361899027 P AL: "Probing Individual Environmental Bacteria for Viruses by Using Microfluidic Digital PCR - (43) Date of publication of application: Supporting Online Material", SCIENCE, vol. 333, 01.06.2016 Bulletin 2016/22 no. 6038, 30 June 2011 (2011-06-30), pages 1-48, XP055344921, ISSN: 0036-8075, DOI: (73) Proprietor: Bio-rad Laboratories, Inc. 10.1126/science.1200758 Hercules, CA 94547 (US) • K.
    [Show full text]
  • Kido Einlpoeto Aalbe:AIO(W H
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (43) International Publication Date (10) International Publication Number 18 May 2007 (18.05.2007) PCT WO 2007/056463 A3 (51) International Patent Classification: AT, AU, AZ, BA, BB, BU, BR, BW, BY, BZ, CA, CL CN, C12P 19/34 (2006.01) CO, CR, CU, CZ, DE, DK, DM, DZ, EC, FE, EU, ES, H, GB, GD, GE, GIL GM, UT, IAN, HIR, HlU, ID, IL, IN, IS, (21) International Application Number: JP, KE, KG, KM, KN, Kg KR, KZ, LA, LC, LK, LR, LS, PCT/US2006/043502 LI, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MY, M, PG, P, PL, PT, RO, RS, (22) International Filing Date:NA, NG, , NO, NZ, (22 InterntionaFilin Date:.006 RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, 9NR, TI, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of regional protection available): ARIPO (BW, GIL GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, (30) Priority Data: ZW), Eurasian (AM, AZ, BY, KU, KZ, MD, RU, TJ, TM), 60/735,085 9 November 2005 (09.11.2005) US European (AT, BE, BU, CIL CY, CZ, DE, DK, EE, ES, H, FR, GB, UR, IJU, JE, IS, IT, LI, LU, LV, MC, NL, PL, PT, (71) Applicant (for all designated States except US): RO, SE, SI, SK, IR), GAPI (BE BJ, C, CU, CI, CM, GA, PRIMERA BIOSYSTEMS, INC.
    [Show full text]
  • Viral Proteins Originated De Novo by Overprinting Can Be Identified by Codon Usage: Application to the ‘‘Gene Nursery’’ of Deltaretroviruses
    Viral Proteins Originated De Novo by Overprinting Can Be Identified by Codon Usage: Application to the ‘‘Gene Nursery’’ of Deltaretroviruses Angelo Pavesi1*, Gkikas Magiorkinis2, David G. Karlin2,3* 1 Department of Life Sciences, University of Parma, I-43124, Parma, Italy, 2 Department of Zoology, University of Oxford, Oxford, OX1 3PS, United Kingdom, 3 The Division of Structural Biology, University of Oxford, Oxford, OX3 7BN, United Kingdom Abstract A well-known mechanism through which new protein-coding genes originate is by modification of pre-existing genes, e.g. by duplication or horizontal transfer. In contrast, many viruses generate protein-coding genes de novo, via the overprinting of a new reading frame onto an existing (‘‘ancestral’’) frame. This mechanism is thought to play an important role in viral pathogenicity, but has been poorly explored, perhaps because identifying the de novo frames is very challenging. Therefore, a new approach to detect them was needed. We assembled a reference set of overlapping genes for which we could reliably determine the ancestral frames, and found that their codon usage was significantly closer to that of the rest of the viral genome than the codon usage of de novo frames. Based on this observation, we designed a method that allowed the identification of de novo frames based on their codon usage with a very good specificity, but intermediate sensitivity. Using our method, we predicted that the Rex gene of deltaretroviruses has originated de novo by overprinting the Tax gene. Intriguingly, several genes in the same genomic region have also originated de novo and encode proteins that regulate the functions of Tax.
    [Show full text]
  • Molecular Approaches and Techniques This Page Intentionally Left Blank INSECT PATHOGENS Molecular Approaches and Techniques
    INSECT PATHOGENS Molecular Approaches and Techniques This page intentionally left blank INSECT PATHOGENS Molecular Approaches and Techniques Edited by S. Patricia Stock Department of Entomology University of Arizona USA John Vanderberg USDA-ARS US Plant, Soil and Nutrition Laboratory USA Noël Boemare Institut National de la Recherche Agronomique (INRA) Université Montpellier France and Itamar Glazer Agricultural Research Organization The Volcani Centre Israel CABI is a trading name of CAB International CABI Head Offi ce CABI North American Offi ce Nosworthy Way 875 Massachusetts Avenue Wallingford 7th Floor Oxfordshire OX10 8DE Cambridge, MA 02139 UK USA Tel: +44 (0)1491 832111 Tel: +1 617 395 4056 Fax: +44 (0)1491 833508 Fax: +1 617 354 6875 E-mail: [email protected] E-mail: [email protected] Website: www.cabi.org ©CAB International 2009. All rights reserved. No part of this publication may be reproduced in any form or by any means, electronically, mechanically, by photocopying, recording or otherwise, without the prior permission of the copyright owners. A catalogue record for this book is available from the British Library, London, UK. Library of Congress Cataloging-in-Publication Data Insect pathogens : molecular approaches and techniques/edited by S. Patricia Stock . [et al.]. p. cm. Includes bibliographical references and index. ISBN 978-1-84593-478-1 (alk. paper) 1. Insects--Pathogens. 2. Insects--Molecular aspects. I. Stock, S. Patricia. II. Title. SB942.I57 2009 632'.7--dc22 2008031290 ISBN-13: 978 1 84593 478 1 Typeset by SPi, Pondicherry, India. Printed and bound in the UK by MPG Books Group. The paper used for the text pages in this book is FSC certified.
    [Show full text]