Development of an Influenza Virus Vaccine Using the Baculovirus-Insect Cell Expression System
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Artemia Spp., a Susceptible Host and Vector for Lymphocystis Disease Virus
viruses Article Artemia spp., a Susceptible Host and Vector for Lymphocystis Disease Virus Estefania J. Valverde, Alejandro M. Labella, Juan J. Borrego and Dolores Castro * Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, 29017 Málaga, Spain; [email protected] (E.J.V.); [email protected] (A.M.L.); [email protected] (J.J.B.) * Correspondence: [email protected]; Tel.: +34-952134214 Received: 8 May 2019; Accepted: 30 May 2019; Published: 1 June 2019 Abstract: Different developmental stages of Artemia spp. (metanauplii, juveniles and adults) were bath-challenged with two isolates of the Lymphocystis disease virus (LCDV), namely, LCDV SA25 (belonging to the species Lymphocystis disease virus 3) and ATCC VR-342 (an unclassified member of the genus Lymphocystivirus). Viral quantification and gene expression were analyzed by qPCR at different times post-inoculation (pi). In addition, infectious titres were determined at 8 dpi by integrated cell culture (ICC)-RT-PCR, an assay that detects viral mRNA in inoculated cell cultures. In LCDV-challenged Artemia, the viral load increased by 2–3 orders of magnitude (depending on developmental stage and viral isolate) during the first 8–12 dpi, with viral titres up to 2.3 102 × Most Probable Number of Infectious Units (MPNIU)/mg. Viral transcripts were detected in the infected Artemia, relative expression values showed a similar temporal evolution in the different experimental groups. Moreover, gilthead seabream (Sparus aurata) fingerlings were challenged by feeding on LCDV-infected metanauplii. Although no Lymphocystis symptoms were observed in the fish, the number of viral DNA copies was significantly higher at the end of the experimental trial and major capsid protein (mcp) gene expression was consistently detected. -
Using Cell Lines to Study Factors Affecting Transmission of Fish Viruses
Using cell lines to study factors affecting transmission of fish viruses by Phuc Hoang Pham A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Doctor of Philosophy in Biology Waterloo, Ontario, Canada, 2014 ©Phuc Hoang Pham 2014 AUTHOR'S DECLARATION I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii ABSTRACT Factors that can influence the transmission of aquatic viruses in fish production facilities and natural environment are the immune defense of host species, the ability of viruses to infect host cells, and the environmental persistence of viruses. In this thesis, fish cell lines were used to study different aspects of these factors. Five viruses were used in this study: viral hemorrhagic septicemia virus (VHSV) from the Rhabdoviridae family; chum salmon reovirus (CSV) from the Reoviridae family; infectious pancreatic necrosis virus (IPNV) from the Birnaviridae family; and grouper iridovirus (GIV) and frog virus-3 (FV3) from the Iridoviridae family. The first factor affecting the transmission of fish viruses examined in this thesis is the immune defense of host species. In this work, infections of marine VHSV-IVa and freshwater VHSV-IVb were studied in two rainbow trout cell lines, RTgill-W1 from the gill epithelium, and RTS11 from spleen macrophages. RTgill-W1 produced infectious progeny of both VHSV-IVa and -IVb. However, VHSV-IVa was more infectious than IVb toward RTgill-W1: IVa caused cytopathic effects (CPE) at a lower viral titre, elicited CPE earlier, and yielded higher titres. -
Changes to Virus Taxonomy 2004
Arch Virol (2005) 150: 189–198 DOI 10.1007/s00705-004-0429-1 Changes to virus taxonomy 2004 M. A. Mayo (ICTV Secretary) Scottish Crop Research Institute, Invergowrie, Dundee, U.K. Received July 30, 2004; accepted September 25, 2004 Published online November 10, 2004 c Springer-Verlag 2004 This note presents a compilation of recent changes to virus taxonomy decided by voting by the ICTV membership following recommendations from the ICTV Executive Committee. The changes are presented in the Table as decisions promoted by the Subcommittees of the EC and are grouped according to the major hosts of the viruses involved. These new taxa will be presented in more detail in the 8th ICTV Report scheduled to be published near the end of 2004 (Fauquet et al., 2004). Fauquet, C.M., Mayo, M.A., Maniloff, J., Desselberger, U., and Ball, L.A. (eds) (2004). Virus Taxonomy, VIIIth Report of the ICTV. Elsevier/Academic Press, London, pp. 1258. Recent changes to virus taxonomy Viruses of vertebrates Family Arenaviridae • Designate Cupixi virus as a species in the genus Arenavirus • Designate Bear Canyon virus as a species in the genus Arenavirus • Designate Allpahuayo virus as a species in the genus Arenavirus Family Birnaviridae • Assign Blotched snakehead virus as an unassigned species in family Birnaviridae Family Circoviridae • Create a new genus (Anellovirus) with Torque teno virus as type species Family Coronaviridae • Recognize a new species Severe acute respiratory syndrome coronavirus in the genus Coro- navirus, family Coronaviridae, order Nidovirales -
Virus Particle Structures
Virus Particle Structures Virus Particle Structures Palmenberg, A.C. and Sgro, J.-Y. COLOR PLATE LEGENDS These color plates depict the relative sizes and comparative virion structures of multiple types of viruses. The renderings are based on data from published atomic coordinates as determined by X-ray crystallography. The international online repository for 3D coordinates is the Protein Databank (www.rcsb.org/pdb/), maintained by the Research Collaboratory for Structural Bioinformatics (RCSB). The VIPER web site (mmtsb.scripps.edu/viper), maintains a parallel collection of PDB coordinates for icosahedral viruses and additionally offers a version of each data file permuted into the same relative 3D orientation (Reddy, V., Natarajan, P., Okerberg, B., Li, K., Damodaran, K., Morton, R., Brooks, C. and Johnson, J. (2001). J. Virol., 75, 11943-11947). VIPER also contains an excellent repository of instructional materials pertaining to icosahedral symmetry and viral structures. All images presented here, except for the filamentous viruses, used the standard VIPER orientation along the icosahedral 2-fold axis. With the exception of Plate 3 as described below, these images were generated from their atomic coordinates using a novel radial depth-cue colorization technique and the program Rasmol (Sayle, R.A., Milner-White, E.J. (1995). RASMOL: biomolecular graphics for all. Trends Biochem Sci., 20, 374-376). First, the Temperature Factor column for every atom in a PDB coordinate file was edited to record a measure of the radial distance from the virion center. The files were rendered using the Rasmol spacefill menu, with specular and shadow options according to the Van de Waals radius of each atom. -
United States Patent (19) 11 Patent Number: 5,030,200 Judy Et Al
United States Patent (19) 11 Patent Number: 5,030,200 Judy et al. (45) Date of Patent: "Jul. 9, 1991 54 METHOD FOR ERADICATING INFECTIOUS 4,708,715 11/1987 Troutner et al. ....................... 604/6 BIOLOGICAL CONTAMINANTS IN BODY 4,878,891 1 1/1989 Judy et al. .............................. 604/5 TISSUES Primary Examiner-Stephen C. Pellegrino (75) Inventors: Millard M. Judy; James L. Matthews; Assistant Examiner-Michael Rafa Joseph T. Newman; Franklin Attorney, Agent, or Firm-Johnson & Gibbs Sogandares-Bernal, all of Dallas, Tex. (57) ABSTRACT (73) Assignee: Baylor Research Foundation, Dallas, A method for externally eradicating infectious patho Tex. genic contaminants, such as enveloped viruses, bacteria, * Notice: The portion of the term of this patent trypanosomal and malarial parasites, present in body subsequent to Nov. 7, 2006 has been tissues, such as blood, blood components, semen, skin, disclaimed. and cornea, before the treated body tissues are intro 21) Appl. No.: 433,024 duced into, or transplanted onto, the body of a human or an animal. Such method includes the steps of: (1) 22) Filed: Nov. 6, 1989 admixing an effective, non-toxic amount of photoactive compound, which has a selectively for binding to the Related U.S. Application Data infectious pathogenic biological contaminants present (63) Continuation-in-part of Ser. No. 67,237, Jun. 25, 1987, therein, with the body tissues outside the body to pro Pat. No. 4,878,891. duce resulting body tissues; (2) maintaining the resulting 51 Int. Cl.............................................. A61M 37/00 body tissues in a suitable container in which there is no (52) U.S. -
(12) United States Patent (10) Patent No.: US 9,096,585 B2 Shaw Et Al
US009096585B2 (12) United States Patent (10) Patent No.: US 9,096,585 B2 Shaw et al. (45) Date of Patent: Aug. 4, 2015 (54) ANTIVIRAL COMPOUNDS AND USES (2013.01); C07D 413/10 (2013.01); C07D THEREOF 413/12 (2013.01); A61 K 3 1/5377 (2013.01); A61 K3I/55 (2013.01) (75) Inventors: Megan Shaw, New York, NY (US); (58) Field of Classification Search Hans-Heinrich Hoffmann, New York, CPC. A61K 31/4245; A61K31/5377; A61K31/55 NY (US); Adolfo Garcia-Sastre, New USPC .................................... 514/364, 217.1, 236.2 York, NY (US); Peter Palese, Leonia, NJ See application file for complete search history. US (US) (56) References Cited (73) Assignee: Icahn School of Medicine at Mount Sinai, New York, NY (US) U.S. PATENT DOCUMENTS 6,384,064 B2 5, 2002 Camden (*) Notice: Subject to any disclaimer, the term of this 8,278,342 B2 10/2012 Ricciardi patent is extended or adjusted under 35 Continued U.S.C. 154(b) by 210 days. (Continued) (21) Appl. No.: 13? 700,049 FOREIGN PATENT DOCUMENTS y x- - - 9 (22) PCT Filed1C Mavay 31,51, 2011 WO WO 2009,136979 A2 11/2009 OTHER PUBLICATIONS (86). PCT No.: PCT/US2011/038515 Chu et al. "Analysis of the endocytic pathway mediating the infec S371 (c)(1), tious entry of mosquito-borne flavivirus West Nile into Aedes (2), (4) Date: Feb. 14, 2013 albopictus mosquito (C6/36) cells.” Virology, 2006, vol. 349, pp. 463-475. (87) PCT Pub. No.: WO2011/150413 (Continued) PCT Pub. Date: Dec. 1, 2011 Primary Examiner — Shengjun Wang (65) Prior Publication Data (74) Attorney, Agent, or Firm — Jones Day US 2013/O137678A1 May 30, 2013 (57) ABSTRACT O O Described herein are Compounds, compositions comprising Related U.S. -
Viral Gastroenteritis
viral gastroenteritis What causes viral gastroenteritis? y Rotaviruses y Caliciviruses y Astroviruses y SRV (Small Round Viruses) y Toroviruses y Adenoviruses 40 , 41 Diarrhea Causing Agents in World ROTAVIRUS Family Reoviridae Genus Segments Host Vector Orthoreovirus 10 Mammals None Orbivirus 11 Mammals Mosquitoes, flies Rotavirus 11 Mammals None Coltivirus 12 Mammals Ticks Seadornavirus 12 Mammals Ticks Aquareovirus 11 Fish None Idnoreovirus 10 Mammals None Cypovirus 10 Insect None Fijivirus 10 Plant Planthopper Phytoreovirus 12 Plant Leafhopper OiOryzavirus 10 Plan t Plan thopper Mycoreovirus 11 or 12 Fungi None? REOVIRUS y REO: respiratory enteric orphan, y early recognition that the viruses caused respiratory and enteric infections y incorrect belief they were not associated with disease, hence they were considered "orphan " viruses ROTAVIRUS‐ PROPERTIES y Virus is stable in the environment (months) y Relatively resistant to hand washing agents y Susceptible to disinfection with 95% ethanol, ‘Lyy,sol’, formalin STRUCTURAL FEATURES OF ROTAVIRUS y 60‐80nm in size y Non‐enveloped virus y EM appearance of a wheel with radiating spokes y Icosahedral symmetry y Double capsid y Double stranded (ds) RNA in 11 segments Rotavirus structure y The rotavirus genome consists of 11 segments of double- stranded RNA, which code for 6 structural viral proteins, VP1, VP2, VP3, VP4, VP6 and VP7 and 6 non-structural proteins, NSP1-NSP6 , where gene segment 11 encodes both NSP5 and 6. y Genome is encompassed by an inner core consisting of VP2, VP1 and VP3 proteins. Intermediate layer or inner capsid is made of VP6 determining group and subgroup specifici ti es. y The outer capsid layer is composed of two proteins, VP7 and VP4 eliciting neutralizing antibody responses. -
Detection and Characterization of a Novel Marine Birnavirus Isolated from Asian Seabass in Singapore
Chen et al. Virology Journal (2019) 16:71 https://doi.org/10.1186/s12985-019-1174-0 RESEARCH Open Access Detection and characterization of a novel marine birnavirus isolated from Asian seabass in Singapore Jing Chen1†, Xinyu Toh1†, Jasmine Ong1, Yahui Wang1, Xuan-Hui Teo1, Bernett Lee2, Pui-San Wong3, Denyse Khor1, Shin-Min Chong1, Diana Chee1, Alvin Wee1, Yifan Wang1, Mee-Keun Ng1, Boon-Huan Tan3 and Taoqi Huangfu1* Abstract Background: Lates calcarifer, known as seabass in Asia and barramundi in Australia, is a widely farmed species internationally and in Southeast Asia and any disease outbreak will have a great economic impact on the aquaculture industry. Through disease investigation of Asian seabass from a coastal fish farm in 2015 in Singapore, a novel birnavirus named Lates calcarifer Birnavirus (LCBV) was detected and we sought to isolate and characterize the virus through molecular and biochemical methods. Methods: In order to propagate the novel birnavirus LCBV, the virus was inoculated into the Bluegill Fry (BF-2) cell line and similar clinical signs of disease were reproduced in an experimental fish challenge study using the virus isolate. Virus morphology was visualized using transmission electron microscopy (TEM). Biochemical analysis using chloroform and 5-Bromo-2′-deoxyuridine (BUDR) sensitivity assays were employed to characterize the virus. Next-Generation Sequencing (NGS) was also used to obtain the virus genome for genetic and phylogenetic analyses. Results: The LCBV-infected BF-2 cell line showed cytopathic effects such as rounding and granulation of cells, localized cell death and detachment of cells observed at 3 to 5 days’ post-infection. -
A Novel Family of Large Cationic Proteins That Condense Viral Genomic DNA for Encapsidation
biology Communication Ascovirus P64 Homologs: A Novel Family of Large Cationic Proteins That Condense Viral Genomic DNA for Encapsidation Dennis K. Bideshi 1,2,* , Tatsinda Spears 3, Heba A. H. Zaghloul 3, Yeping Tan 2, Yves Bigot 4 and Brian A. Federici 2,3 1 Department of Biological Sciences, California Baptist University, Magnolia Avenue, Riverside, CA 92504, USA 2 Department of Entomology, University of California, Riverside, CA 92521, USA; [email protected] (Y.T.); [email protected] (B.A.F.) 3 Graduate Program in Cell, Molecular and Developmental Biology, and Microbiology, University of California, Riverside, CA 92521, USA; [email protected] (T.S.); [email protected] (H.A.H.Z.) 4 UMR CNRS7247, Centre INRA Val de Loire, 37380 Nouzilly, France; [email protected] * Correspondence: [email protected]; Tel.: +1-951-343-4397 Received: 9 August 2018; Accepted: 7 September 2018; Published: 11 September 2018 Abstract: Eukaryotic dsDNA viruses use small basic protamine-like proteins or histones, typically <15 kDa, to condense and encapsidate their genomic (g)DNAs during virogenesis. Ascoviruses are large dsDNA (~100–200 kbp) viruses that are pathogenic to lepidopteran larvae. Little is known about the molecular basis for condensation and encapsidation of their gDNAs. Previous proteomic analysis showed that Spodoptera frugiperda ascovirus (SfAV-1a) virions contain a large unique DNA-binding protein (P64; 64 kDa, pI = 12.2) with a novel architecture proposed to condense its gDNA. Here we used physical, biochemical, and transmission electron microscopy techniques to demonstrate that P64’s basic C-terminal domain condenses SfAV-1a gDNA. Moreover, we demonstrate that only P64 homologs in other ascovirus virions are unique in stably binding DNA. -
Ecology and Pathology of Amphibian Ranaviruses
Vol. 87: 243–266, 2009 DISEASES OF AQUATIC ORGANISMS Published December 3 doi: 10.3354/dao02138 Dis Aquat Org OPENPEN ACCESSCCESS REVIEW Ecology and pathology of amphibian ranaviruses Matthew J. Gray1,*, Debra L. Miller1, 2, Jason T. Hoverman1 1274 Ellington Plant Sciences Building, Center for Wildlife Health, Department of Forestry Wildlife and Fisheries, Institute of Agriculture, University of Tennessee, Knoxville, Tennessee 37996-4563, USA 2Veterinary Diagnostic and Investigational Laboratory, College of Veterinary Medicine, University of Georgia, 43 Brighton Road, Tifton, Georgia 31793, USA ABSTRACT: Mass mortality of amphibians has occurred globally since at least the early 1990s from viral pathogens that are members of the genus Ranavirus, family Iridoviridae. The pathogen infects multiple amphibian hosts, larval and adult cohorts, and may persist in herpetofaunal and oste- ichthyan reservoirs. Environmental persistence of ranavirus virions outside a host may be several weeks or longer in aquatic systems. Transmission occurs by indirect and direct routes, and includes exposure to contaminated water or soil, casual or direct contact with infected individuals, and inges- tion of infected tissue during predation, cannibalism, or necrophagy. Some gross lesions include swelling of the limbs or body, erythema, swollen friable livers, and hemorrhage. Susceptible amphi- bians usually die from chronic cell death in multiple organs, which can occur within a few days fol- lowing infection or may take several weeks. Amphibian species differ in their susceptibility to rana- viruses, which may be related to their co-evolutionary history with the pathogen. The occurrence of recent widespread amphibian population die-offs from ranaviruses may be an interaction of sup- pressed and naïve host immunity, anthropogenic stressors, and novel strain introduction. -
CHARACTERIZATION of FIELD STRAINS of INFECTIOUS BURSAL DISEASE VIRUS (IBDV) USING MOLECULAR TECHNIQUES by ALEJANDRO BANDA (Under
CHARACTERIZATION OF FIELD STRAINS OF INFECTIOUS BURSAL DISEASE VIRUS (IBDV) USING MOLECULAR TECHNIQUES by ALEJANDRO BANDA (Under the Direction of Pedro Villegas) ABSTRACT This study was aimed to apply different molecular techniques in the genotyping of field strains of infectious bursal disease virus (IBDV) currently present in the United States and in some other countries. The different techniques included the reverse transcription-polymerase chain reaction / restriction fragment length polymorphism (RT- PCR/RFLP), heteroduplex mobility assay (HMA), nucleotide and amino acid sequence analysis, and riboprobe in situ hybridization (ISH). From 150 samples analyzed from the United States, 80% exhibited RFLP identical to the variant Delaware E strain, other strains detected included Sal-1, D-78, Lukert, PBG-98, Delaware A, GLS IBDV standard challenge strain –like (STC-like). The analysis of the deduced amino acid sequence of the VP2 hypervariable region from six strains classified as Delaware variant E, revealed some amino acid substitutions that make them somewhat different from the original variant E strain isolated in the mid 1980s. The isolate 9109 was classified as a standard strain, but, it exhibited a unique RFLP pattern characterized by the presence of the Ssp I restriction site characteristic of the very virulent IBDV (vvIBDV) strains. The pathogenic properties of this isolate were compared to those of isolate 9865 (variant strain) and the Edgar strain. All three strains induced subclinical disease, however by in situ hybridization some differences in the tissue tropism were observed. The viral replication of the variant isolate 9865 was more restricted to the bursa of Fabricius. Isolate 9109 and the Edgar strain were also observed in thymus, cecal tonsils, spleen, kidney and proventriculus. -
Viruses in a 14Th-Century Coprolite
AEM Accepts, published online ahead of print on 7 February 2014 Appl. Environ. Microbiol. doi:10.1128/AEM.03242-13 Copyright © 2014, American Society for Microbiology. All Rights Reserved. 1 Title: Viruses in a 14th-century coprolite 2 Running title: Viruses in a 14th-century coprolite 3 4 Sandra Appelt1,*, Laura Fancello1,*, Matthieu Le Bailly2, Didier Raoult1, Michel Drancourt1, 5 Christelle Desnues†,1 6 7 1 Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, 13385 8 Marseille, France. 9 2 Franche-Comté University, CNRS UMR 6249 Chrono-Environment, 25 030 Besançon, France. 10 * These authors have contributed equally to this work 11 † Corresponding author: 12 Christelle Desnues, Unité de recherche sur les maladies infectieuses et tropicales émergentes 13 (URMITE), UM63, CNRS 7278, IRD 198, Inserm 1095, Faculté de médecine, Aix Marseille 14 Université, 27 Bd Jean Moulin, 13385 Marseille, France. Tel: (+33) 4 91 38 46 30, Fax: (+33) 4 15 91 38 77 72. 16 Email: [email protected] 17 Number of words in Abstract: 133 words 18 Number of words in Main Text: 2538 words 19 Number of words in Methods: 954 words 20 Figures: 4, Supplementary Figures: 3 21 Tables: 0, Supplementary Tables: 6 22 Keywords: coprolite, paleomicrobiology, metagenomics, bacteriophages, viruses, ancient DNA 1 23 Abstract 24 Coprolites are fossilized fecal material that can reveal information about ancient intestinal and 25 environmental microbiota. Viral metagenomics has allowed systematic characterization of viral 26 diversity in environmental and human-associated specimens, but little is known about the viral 27 diversity in fossil remains. Here, we analyzed the viral community of a 14th-century coprolite 28 from a closed barrel in a Middle Age site in Belgium using electron microscopy and 29 metagenomics.