United States Patent (19) 11 Patent Number: 5,030,200 Judy Et Al

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent (19) 11 Patent Number: 5,030,200 Judy Et Al United States Patent (19) 11 Patent Number: 5,030,200 Judy et al. (45) Date of Patent: "Jul. 9, 1991 54 METHOD FOR ERADICATING INFECTIOUS 4,708,715 11/1987 Troutner et al. ....................... 604/6 BIOLOGICAL CONTAMINANTS IN BODY 4,878,891 1 1/1989 Judy et al. .............................. 604/5 TISSUES Primary Examiner-Stephen C. Pellegrino (75) Inventors: Millard M. Judy; James L. Matthews; Assistant Examiner-Michael Rafa Joseph T. Newman; Franklin Attorney, Agent, or Firm-Johnson & Gibbs Sogandares-Bernal, all of Dallas, Tex. (57) ABSTRACT (73) Assignee: Baylor Research Foundation, Dallas, A method for externally eradicating infectious patho Tex. genic contaminants, such as enveloped viruses, bacteria, * Notice: The portion of the term of this patent trypanosomal and malarial parasites, present in body subsequent to Nov. 7, 2006 has been tissues, such as blood, blood components, semen, skin, disclaimed. and cornea, before the treated body tissues are intro 21) Appl. No.: 433,024 duced into, or transplanted onto, the body of a human or an animal. Such method includes the steps of: (1) 22) Filed: Nov. 6, 1989 admixing an effective, non-toxic amount of photoactive compound, which has a selectively for binding to the Related U.S. Application Data infectious pathogenic biological contaminants present (63) Continuation-in-part of Ser. No. 67,237, Jun. 25, 1987, therein, with the body tissues outside the body to pro Pat. No. 4,878,891. duce resulting body tissues; (2) maintaining the resulting 51 Int. Cl.............................................. A61M 37/00 body tissues in a suitable container in which there is no (52) U.S. Cl. ......................................... 604/5; 424/529 net mass transfer, and (3) irradiating the resulting body 58) Field of Search ........................................ 604/4-6; tissues in the container for an effective period of time 424/101, 529-531; 128/395 with an effective level of radiation such that the radia tion penetrates the resulting body tissues and eradicates (56) References Cited the photoactive-compound-bound contaminants pres U.S. PATENT DOCUMENTS ent in the resulting body tissues and produces a decon 4,613,322 9/1986. Edelson ............................... 354/321 taminated body tissue suitable for introducing into, or 4,614, 190 9/1986 Stanco et al. ....................... 28/395 transplanting onto, the body of a human or animal. 4,649,151 3/1987 Dougherty et al. ................ 514/410 4,684,521 8/1987 Edelson ............................... 424/10 66 Claims, 7 Drawing Sheets SYRINGE WITH BODY FLUID ATTACHED TO ATTACHED TO INFUSION PUMP COLLECTING WIAL U.S. Patent July 9, 1991 Sheet 1 of 7 5,030,200 SYRINGE WITH BODY FLUID ATTACHED TO ATTACHED TO INFUSION PUMP FIG. 7 COLLECTING WIAL FIG 2 PLANAR SUPPORT U.S. Patent July 9, 1991 Sheet 2 of 7 5,030,200 U.S. Patent July 9, 1991 Sheet 3 of 7 5,030,200 Y 22/ YZ W O * 30 i. /// FIG.REFLECTING 5 MIRROR Z REFLECTING MIRROR FIG. So U.S. Patent July 9, 1991 Sheet 4 of 7 5,030,200 Io Z44YY7 - - Y - YYZZY- - - - Y - 7 - 27-72-777-777 title -- assasaasayasses ease etes SA AC--------sea As Yasaw CWEleaayaays ZZZZZZZZZZZZYA. O. as 7 NYNNNNNNNNNNNNNNNN ILLUMINATED SURFACE OF THE IRRADIATION CELL FIG. Io U.S. Patent July 9, 1991 Sheet 5 of 7 5,030,200 AISNN HS) WW3 U.S. Patent July 9, 1991 Sheet 6 of 7 5,030,200 U.S. Patent July 9, 1991 Sheet 7 of 7 5,030,200 5,030,200 1 2 Localization of Pulmonary Malignancy, In Recent Re METHOD FOR ERADICATING INFECTIOUS sults in Cancer Research, Vol. 82, Springer-Verlag, Ber BIOLOGICAL CONTAMINANTS IN BODY lin-Heidelberg, 1982,90; Benson, R. D., et al, Detection TISSUES and Localization of In Situ Carcinoma of the Bladder with Hematoporphyrin Derivative. Mayo Clinic Proc., BACKGROUND OF THE INVENTION 57: 548, 1982). The present application is a continuation-in-part of Although the unique photodynamic properties of U.S. patent application Ser. No. 07/067,237 now U.S. Hpd, as well as its affinity toward tumor cells, had long Pat. No. 4,878,891, filed on Jun. 25, 1987, which is in been known, it was more than half a century later that corporated by reference as if reproduced in its entirety. O the potential of using Hpd to selectively destroy tumor 1. Field of the Invention cells was explored. The bulk of the research on the use The present invention relates generally to decontami of Hipd to selectively destroy tumor cells in human has nation of body tissues; and more particularly, but not by been reviewed by Dougherty et al. (Dougherty, T. J. et way of limitation, to external eradication of infectious al., Photoradiation Therapy-clinical and Drug Ad pathogenic biological contaminants from blood or 15 vances. In Porphyrin Photosensitization, D. Kessel and T. blood products prior to intravenous injection of such J. Dougherty, Eds., Plenum Press, N.Y. PP. 3-13, blood or blood products into a patient's body. 1983). The present invention also relates to external eradica The emphasis on using Hpd as the photoactivating or tion of infectious pathogenic biological contaminants light-activating compound in photoradiation of tumors from skin, cornea or semen prior to transplanting or 20 is based on two important properties of Hpd. Firstly, as introducing of such tissues into the recipient's body. judged by fluorescence, Hpd is preferentially accumu 2. Brief Description of the Prior Art lated, and retained to a higher degree in malignant tu One of the many problems that plagues the use of mors than in surrounding normal tissue or benign tu blood transfusions is the transmission of agents causing mors. Secondly, when properly photoactivated, Hpd infectious disease. A number of these infectious agents 25 causes the destruction of cells and tissue in which it are of serious clinical importance in that such agents are not only dangerous to the recipient patients, but can resides. The generally accepted mechanism of cell kill also pose a danger to physicians, and other hospital by Hpd is that when activated by appropriate light, the personnel, handling the blood and blood products. Hpd can undergo an energy transfer process with oxy Many efforts have been made to ensure that the blood 30 gen to form a singlet oxygen, which subsequently oxi to be transfused is free of pathogenic biological contam dizes, hence kills the cells or tissues to which it has inants. So far, screening of blood donors and blood attached as a substrate. (Weishaupt, K. R., Gomer, C.J. samples is the only effective method to ensure that the and Dougherty, T. J., Identification of Singlet Oxygen blood to be transfused is not contaminated with infec as the Cytotoxic Agent in Photoinactivation of a Mu tious agents. Unfortunately despite screening tech 35 rine Tumor. Cancer Res. 36: 2326-2329, 1976). niques, infections still occur following blood transfu Despite the enormous progress and research in the SOS use of light-activated photosensitizer, such as Hpd, to U.S. Pat. No. 3,041,242 describes a process for eradi pinpoint the location of malignant tumor cells and to cation of virus contained in dried plasma wherein the eradicate them, relatively little work has been done to dried plasma is heated at an elevated temperature for a 40 determine if such a photosensitizer will behave similarly length of time followed by applying a gas lethal to toward virus, bacteria, fungi, protozoa, or other para microorganisms, under high vacuum conditions. How sites. ever, the method is not applicable to the treatment of U.S. Pat. No. 4,649,151 to Dougherty, et al., discloses human whole blood; and the viability of the dried the preparation, purification and utilization of tumor plasma would most likely be impaired during the pro 45 selective, photosensitizing drugs (i.e. mixtures of por CSS. phyrins) in the localization and treatment of neoplastic It has been known for over 30 years that hematopor tissue, such as tumors or cancers in patients and animals. phyrin derivatives accumulate in neoplastic, embryonic, A time delay of several hours to several days is required and regenerating tissues. Thus, injected hematoporphy between injection of the drug and illumination in order rin has been found to have localized and fluoresced in 50 for the drug to metabolically clear normal tissue and several types of tumor induced in mice (Figge, F. H. J., hence achieve the best therapeutic ratio of drug in Weiland G. S., Mangiollo, L. O.: Cancer Detection and tumor cells to drug in normal cells. One of the objects Therapy. Affinity of Neoplastic, Embryonic, and Trau set forth in Dougherty, et al., is to provide a drug which matized Tissues for Porphyrins and Metalloporphyrins. is selective to certain pathogens within an animal or Proc. Soc. Exp. Biol. Med. 64: 640-641, 1948). 55 within blood, blood plasma or serum or fractions The red fluorescence of hematoporphyrin has also thereof and which permits photochemical destruction been observed under ultraviolet light in various malig of the pathogens in vivo or in vitro. However, the refer nant tumors in patients who had been given large doses ence contains no teaching or suggestion of the external of crude mixtures of hematoporphyrin compounds purification of human tissues such as human blood, (hereinafter referred to as Hpd) (Rasmussen-Taxdal, D. 60 blood plasma, serum, semen, skin or cornea utilizing a S., Ward, G. E., and Figge, F. H. J.: Fluorescence of mixture of porphyrins to eradicate infectious pathogens Human Lymphatic and Cancer Tissues Following High and to provide purified and sterilized human tissues Doses of Intravenous Hematoporphyrin. Cancer 8: . such as human blood, blood plasma, human serum, se 78-81, 1955).
Recommended publications
  • Artemia Spp., a Susceptible Host and Vector for Lymphocystis Disease Virus
    viruses Article Artemia spp., a Susceptible Host and Vector for Lymphocystis Disease Virus Estefania J. Valverde, Alejandro M. Labella, Juan J. Borrego and Dolores Castro * Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, 29017 Málaga, Spain; [email protected] (E.J.V.); [email protected] (A.M.L.); [email protected] (J.J.B.) * Correspondence: [email protected]; Tel.: +34-952134214 Received: 8 May 2019; Accepted: 30 May 2019; Published: 1 June 2019 Abstract: Different developmental stages of Artemia spp. (metanauplii, juveniles and adults) were bath-challenged with two isolates of the Lymphocystis disease virus (LCDV), namely, LCDV SA25 (belonging to the species Lymphocystis disease virus 3) and ATCC VR-342 (an unclassified member of the genus Lymphocystivirus). Viral quantification and gene expression were analyzed by qPCR at different times post-inoculation (pi). In addition, infectious titres were determined at 8 dpi by integrated cell culture (ICC)-RT-PCR, an assay that detects viral mRNA in inoculated cell cultures. In LCDV-challenged Artemia, the viral load increased by 2–3 orders of magnitude (depending on developmental stage and viral isolate) during the first 8–12 dpi, with viral titres up to 2.3 102 × Most Probable Number of Infectious Units (MPNIU)/mg. Viral transcripts were detected in the infected Artemia, relative expression values showed a similar temporal evolution in the different experimental groups. Moreover, gilthead seabream (Sparus aurata) fingerlings were challenged by feeding on LCDV-infected metanauplii. Although no Lymphocystis symptoms were observed in the fish, the number of viral DNA copies was significantly higher at the end of the experimental trial and major capsid protein (mcp) gene expression was consistently detected.
    [Show full text]
  • A Novel Family of Large Cationic Proteins That Condense Viral Genomic DNA for Encapsidation
    biology Communication Ascovirus P64 Homologs: A Novel Family of Large Cationic Proteins That Condense Viral Genomic DNA for Encapsidation Dennis K. Bideshi 1,2,* , Tatsinda Spears 3, Heba A. H. Zaghloul 3, Yeping Tan 2, Yves Bigot 4 and Brian A. Federici 2,3 1 Department of Biological Sciences, California Baptist University, Magnolia Avenue, Riverside, CA 92504, USA 2 Department of Entomology, University of California, Riverside, CA 92521, USA; [email protected] (Y.T.); [email protected] (B.A.F.) 3 Graduate Program in Cell, Molecular and Developmental Biology, and Microbiology, University of California, Riverside, CA 92521, USA; [email protected] (T.S.); [email protected] (H.A.H.Z.) 4 UMR CNRS7247, Centre INRA Val de Loire, 37380 Nouzilly, France; [email protected] * Correspondence: [email protected]; Tel.: +1-951-343-4397 Received: 9 August 2018; Accepted: 7 September 2018; Published: 11 September 2018 Abstract: Eukaryotic dsDNA viruses use small basic protamine-like proteins or histones, typically <15 kDa, to condense and encapsidate their genomic (g)DNAs during virogenesis. Ascoviruses are large dsDNA (~100–200 kbp) viruses that are pathogenic to lepidopteran larvae. Little is known about the molecular basis for condensation and encapsidation of their gDNAs. Previous proteomic analysis showed that Spodoptera frugiperda ascovirus (SfAV-1a) virions contain a large unique DNA-binding protein (P64; 64 kDa, pI = 12.2) with a novel architecture proposed to condense its gDNA. Here we used physical, biochemical, and transmission electron microscopy techniques to demonstrate that P64’s basic C-terminal domain condenses SfAV-1a gDNA. Moreover, we demonstrate that only P64 homologs in other ascovirus virions are unique in stably binding DNA.
    [Show full text]
  • Ecology and Pathology of Amphibian Ranaviruses
    Vol. 87: 243–266, 2009 DISEASES OF AQUATIC ORGANISMS Published December 3 doi: 10.3354/dao02138 Dis Aquat Org OPENPEN ACCESSCCESS REVIEW Ecology and pathology of amphibian ranaviruses Matthew J. Gray1,*, Debra L. Miller1, 2, Jason T. Hoverman1 1274 Ellington Plant Sciences Building, Center for Wildlife Health, Department of Forestry Wildlife and Fisheries, Institute of Agriculture, University of Tennessee, Knoxville, Tennessee 37996-4563, USA 2Veterinary Diagnostic and Investigational Laboratory, College of Veterinary Medicine, University of Georgia, 43 Brighton Road, Tifton, Georgia 31793, USA ABSTRACT: Mass mortality of amphibians has occurred globally since at least the early 1990s from viral pathogens that are members of the genus Ranavirus, family Iridoviridae. The pathogen infects multiple amphibian hosts, larval and adult cohorts, and may persist in herpetofaunal and oste- ichthyan reservoirs. Environmental persistence of ranavirus virions outside a host may be several weeks or longer in aquatic systems. Transmission occurs by indirect and direct routes, and includes exposure to contaminated water or soil, casual or direct contact with infected individuals, and inges- tion of infected tissue during predation, cannibalism, or necrophagy. Some gross lesions include swelling of the limbs or body, erythema, swollen friable livers, and hemorrhage. Susceptible amphi- bians usually die from chronic cell death in multiple organs, which can occur within a few days fol- lowing infection or may take several weeks. Amphibian species differ in their susceptibility to rana- viruses, which may be related to their co-evolutionary history with the pathogen. The occurrence of recent widespread amphibian population die-offs from ranaviruses may be an interaction of sup- pressed and naïve host immunity, anthropogenic stressors, and novel strain introduction.
    [Show full text]
  • Viruses in a 14Th-Century Coprolite
    AEM Accepts, published online ahead of print on 7 February 2014 Appl. Environ. Microbiol. doi:10.1128/AEM.03242-13 Copyright © 2014, American Society for Microbiology. All Rights Reserved. 1 Title: Viruses in a 14th-century coprolite 2 Running title: Viruses in a 14th-century coprolite 3 4 Sandra Appelt1,*, Laura Fancello1,*, Matthieu Le Bailly2, Didier Raoult1, Michel Drancourt1, 5 Christelle Desnues†,1 6 7 1 Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, 13385 8 Marseille, France. 9 2 Franche-Comté University, CNRS UMR 6249 Chrono-Environment, 25 030 Besançon, France. 10 * These authors have contributed equally to this work 11 † Corresponding author: 12 Christelle Desnues, Unité de recherche sur les maladies infectieuses et tropicales émergentes 13 (URMITE), UM63, CNRS 7278, IRD 198, Inserm 1095, Faculté de médecine, Aix Marseille 14 Université, 27 Bd Jean Moulin, 13385 Marseille, France. Tel: (+33) 4 91 38 46 30, Fax: (+33) 4 15 91 38 77 72. 16 Email: [email protected] 17 Number of words in Abstract: 133 words 18 Number of words in Main Text: 2538 words 19 Number of words in Methods: 954 words 20 Figures: 4, Supplementary Figures: 3 21 Tables: 0, Supplementary Tables: 6 22 Keywords: coprolite, paleomicrobiology, metagenomics, bacteriophages, viruses, ancient DNA 1 23 Abstract 24 Coprolites are fossilized fecal material that can reveal information about ancient intestinal and 25 environmental microbiota. Viral metagenomics has allowed systematic characterization of viral 26 diversity in environmental and human-associated specimens, but little is known about the viral 27 diversity in fossil remains. Here, we analyzed the viral community of a 14th-century coprolite 28 from a closed barrel in a Middle Age site in Belgium using electron microscopy and 29 metagenomics.
    [Show full text]
  • ICTV Code Assigned: 2011.001Ag Officers)
    This form should be used for all taxonomic proposals. Please complete all those modules that are applicable (and then delete the unwanted sections). For guidance, see the notes written in blue and the separate document “Help with completing a taxonomic proposal” Please try to keep related proposals within a single document; you can copy the modules to create more than one genus within a new family, for example. MODULE 1: TITLE, AUTHORS, etc (to be completed by ICTV Code assigned: 2011.001aG officers) Short title: Change existing virus species names to non-Latinized binomials (e.g. 6 new species in the genus Zetavirus) Modules attached 1 2 3 4 5 (modules 1 and 9 are required) 6 7 8 9 Author(s) with e-mail address(es) of the proposer: Van Regenmortel Marc, [email protected] Burke Donald, [email protected] Calisher Charles, [email protected] Dietzgen Ralf, [email protected] Fauquet Claude, [email protected] Ghabrial Said, [email protected] Jahrling Peter, [email protected] Johnson Karl, [email protected] Holbrook Michael, [email protected] Horzinek Marian, [email protected] Keil Guenther, [email protected] Kuhn Jens, [email protected] Mahy Brian, [email protected] Martelli Giovanni, [email protected] Pringle Craig, [email protected] Rybicki Ed, [email protected] Skern Tim, [email protected] Tesh Robert, [email protected] Wahl-Jensen Victoria, [email protected] Walker Peter, [email protected] Weaver Scott, [email protected] List the ICTV study group(s) that have seen this proposal: A list of study groups and contacts is provided at http://www.ictvonline.org/subcommittees.asp .
    [Show full text]
  • A Systematic Review of the Natural Virome of Anopheles Mosquitoes
    Review A Systematic Review of the Natural Virome of Anopheles Mosquitoes Ferdinand Nanfack Minkeu 1,2,3 and Kenneth D. Vernick 1,2,* 1 Institut Pasteur, Unit of Genetics and Genomics of Insect Vectors, Department of Parasites and Insect Vectors, 28 rue du Docteur Roux, 75015 Paris, France; [email protected] 2 CNRS, Unit of Evolutionary Genomics, Modeling and Health (UMR2000), 28 rue du Docteur Roux, 75015 Paris, France 3 Graduate School of Life Sciences ED515, Sorbonne Universities, UPMC Paris VI, 75252 Paris, France * Correspondence: [email protected]; Tel.: +33-1-4061-3642 Received: 7 April 2018; Accepted: 21 April 2018; Published: 25 April 2018 Abstract: Anopheles mosquitoes are vectors of human malaria, but they also harbor viruses, collectively termed the virome. The Anopheles virome is relatively poorly studied, and the number and function of viruses are unknown. Only the o’nyong-nyong arbovirus (ONNV) is known to be consistently transmitted to vertebrates by Anopheles mosquitoes. A systematic literature review searched four databases: PubMed, Web of Science, Scopus, and Lissa. In addition, online and print resources were searched manually. The searches yielded 259 records. After screening for eligibility criteria, we found at least 51 viruses reported in Anopheles, including viruses with potential to cause febrile disease if transmitted to humans or other vertebrates. Studies to date have not provided evidence that Anopheles consistently transmit and maintain arboviruses other than ONNV. However, anthropophilic Anopheles vectors of malaria are constantly exposed to arboviruses in human bloodmeals. It is possible that in malaria-endemic zones, febrile symptoms may be commonly misdiagnosed.
    [Show full text]
  • Comparative Genomic Analyses and Expression of a Set of Overlapping Open Reading Frames of Frog Virus 3, Type Species of Ranavirus (Family Iridoviridae)
    Western Michigan University ScholarWorks at WMU Dissertations Graduate College 4-2006 Comparative Genomic Analyses and Expression of a Set of Overlapping Open Reading Frames of Frog Virus 3, Type Species of Ranavirus (Family Iridoviridae) Wendy Guat Hoon Tan Western Michigan University Follow this and additional works at: https://scholarworks.wmich.edu/dissertations Part of the Animal Sciences Commons, Biology Commons, and the Cell and Developmental Biology Commons Recommended Citation Tan, Wendy Guat Hoon, "Comparative Genomic Analyses and Expression of a Set of Overlapping Open Reading Frames of Frog Virus 3, Type Species of Ranavirus (Family Iridoviridae)" (2006). Dissertations. 995. https://scholarworks.wmich.edu/dissertations/995 This Dissertation-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Dissertations by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. COMPARATIVE GENOMIC ANALYSES AND EXPRESSION OF A SET OF OVERLAPPING OPEN READING FRAMES OF FROG VIRUS 3, TYPE SPECIES OF R A N A V IR U S (FAM ILY IRIDOVIRIDAE) by Wendy Guat Hoon Tan A Dissertation Submitted to the Faculty of The Graduate College in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Department of Biological Sciences Dr. Karim Essani, Advisor Western Michigan University Kalamazoo, Michigan April 2006 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. COMPARATIVE GENOMIC ANALYSES AND EXPRESSION OF A SET OF OVERLAPPING OPEN READING FRAMES OF FROG VIRUS 3, TYPE SPECIES OF RANAVIRUS (FAMILY IRIDOVIRIDAE) Wendy Guat Hoon Tan, Ph.D.
    [Show full text]
  • Comparative Analysis of Transcriptional Regulation Patterns: Understanding the Gene Expression Profile in Nucleocytoviricota
    pathogens Review Comparative Analysis of Transcriptional Regulation Patterns: Understanding the Gene Expression Profile in Nucleocytoviricota Fernanda Gil de Souza †,Jônatas Santos Abrahão * and Rodrigo Araújo Lima Rodrigues *,† Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; [email protected] * Correspondence: [email protected] (J.S.A.); [email protected] (R.A.L.R.) † These authors contributed equally to this work. Abstract: The nucleocytoplasmic large DNA viruses (NCLDV) possess unique characteristics that have drawn the attention of the scientific community, and they are now classified in the phylum Nucleocytoviricota. They are characterized by sharing many genes and have their own transcriptional apparatus, which provides certain independence from their host’s machinery. Thus, the presence of a robust transcriptional apparatus has raised much discussion about the evolutionary aspects of these viruses and their genomes. Understanding the transcriptional process in NCLDV would provide information regarding their evolutionary history and a better comprehension of the biology of these viruses and their interaction with hosts. In this work, we reviewed NCLDV transcription and performed a comparative functional analysis of the groups of genes expressed at different times of infection of representatives of six different viral families of giant viruses. With this analysis, it was possible to observe
    [Show full text]
  • Evidence to Support Safe Return to Clinical Practice by Oral Health Professionals in Canada During the COVID-19 Pandemic: a Repo
    Evidence to support safe return to clinical practice by oral health professionals in Canada during the COVID-19 pandemic: A report prepared for the Office of the Chief Dental Officer of Canada. November 2020 update This evidence synthesis was prepared for the Office of the Chief Dental Officer, based on a comprehensive review under contract by the following: Paul Allison, Faculty of Dentistry, McGill University Raphael Freitas de Souza, Faculty of Dentistry, McGill University Lilian Aboud, Faculty of Dentistry, McGill University Martin Morris, Library, McGill University November 30th, 2020 1 Contents Page Introduction 3 Project goal and specific objectives 3 Methods used to identify and include relevant literature 4 Report structure 5 Summary of update report 5 Report results a) Which patients are at greater risk of the consequences of COVID-19 and so 7 consideration should be given to delaying elective in-person oral health care? b) What are the signs and symptoms of COVID-19 that oral health professionals 9 should screen for prior to providing in-person health care? c) What evidence exists to support patient scheduling, waiting and other non- treatment management measures for in-person oral health care? 10 d) What evidence exists to support the use of various forms of personal protective equipment (PPE) while providing in-person oral health care? 13 e) What evidence exists to support the decontamination and re-use of PPE? 15 f) What evidence exists concerning the provision of aerosol-generating 16 procedures (AGP) as part of in-person
    [Show full text]
  • Family Iridoviridae
    Iridoviridae FAMILY IRIDOVIRIDAE TAXONOMIC STRUCTURE OF THE FAMILY Family Iridoviridae Genus Iridovirus Genus Chloriridovirus Genus Ranavirus Genus Lymphocystivirus DNA Genus Megalocytivirus DS VIRION PROPERTIES MORPHOLOGY Figure 1: (Top left) Outer shell of Invertebrate iridescent virus 2 (IIV-2) (From Wrigley, et al. (1969). J. Gen. Virol., 5, 123. With permission). (Top right) Schematic diagram of a cross-section of an iridovirus particle, showing capsomers, transmembrane proteins within the lipid bilayer, and an internal filamentous nucleoprotein core (From Darcy-Tripier, F. et al. (1984). Virology, 138, 287. With permission). (Bottom left) Transmission electron micrograph of a fat head minnow cell infected with an isolate of European catfish virus. Nucleus (Nu); virus inclusion body (VIB); paracrystalline array of non-enveloped virus particles (arrows); incomplete nucleocapsids (arrowheads); cytoplasm (cy); mitochondrion (mi). The bar represents 1 µm. (From Hyatt et al. (2000). Arch. Virol. 145, 301, with permission). (insert) Transmission electron micrograph of particles of Frog virus 3 (FV-3), budding from the plasma membrane. Arrows and arrowheads identify the viral envelope (Devauchelle et al. (1985). Curr. Topics Microbiol. Immunol., 116, 1, with permission). The bar represents 200 nm. 145 Part II - The Double Stranded DNA Viruses Virions display icosahedral symmetry and are usually 120-200 nm in diameter, but may be up to 350 nm (e.g. genus Lymphocystivirus). The core is an electron-dense entity consisting of a nucleoprotein filament surrounded by a lipid membrane containing transmembrane proteins of unknown function. The capsid is composed of identical capsomers, the number of which depends on virion size. Capsomers are organized to form trisymmetrons and pentasymmetrons in members of the Iridovirus and Chloriridovirus genera.
    [Show full text]
  • A Decade of Advances in Iridovirus Research
    ADVANCES IN VIRUS RESEARCH, VOL 65 A DECADE OF ADVANCES IN IRIDOVIRUS RESEARCH Trevor Williams,*† Vale´rie Barbosa-Solomieu,‡ and V. Gregory Chinchar§ *Departmento de Produccio´n Agraria, Universidad Pu´blica de Navarra 31006 Pamplona, Spain †ECOSUR, Tapachula, Chiapas 30700, Mexico ‡Unite´ de Virologie Mole´culaire et Laboratoire de Ge´ne´tique des Poissons, INRA 78350 Jouy-en-Josas, France §Department of Microbiology, University of Mississippi Medical Center, Jackson Mississippi 39216 I. Introduction: Impact of Iridoviruses on the Health of Ectothermic Vertebrates II. Taxonomy A. Definition of the Family Iridoviridae B. Features Distinguishing the Genera C. Features Delineating the Species D. Relationships with Other Families of Large DNA Viruses III. Genomic Studies A. Genetic Content B. Gene Order and Elucidation of Gene Function IV. Viral Replication Strategy A. General Features of Iridovirus Replication B. RNA Synthesis: Virion-Associated and Virus-Induced Transcriptional Activators C. Inhibition of Host Macromolecular Synthesis D. Apoptosis V. Vertebrate Iridoviruses: Pathology and Diagnosis VI. Immune Responses to Vertebrate Iridoviruses VII. Ecology of Vertebrate Iridoviruses A. Infections in Natural Populations B. Infections in Farmed Populations VIII. Structure of Invertebrate Iridescent Viruses IX. Ecology of Invertebrate Iridescent Viruses A. Patent IIV Infections Are Usually Rare B. Seasonal Trends in Infections C. Covert Infections Can Be Common D. Covert Infections Are Detrimental to Host Fitness E. Host Range F. Transmission and Route of Infection G. Moisture is Crucial to IIV Survival in the Environment X. Iridoviruses in Noninsect Marine and Freshwater Invertebrates XI. Conclusions References 173 Copyright 2005, Elsevier Inc. All rights reserved. 0065-3527/05 $35.00 DOI: 10.1016/S0065-3527(05)65006-3 174 TREVOR WILLIAMS ET AL.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,144,575 B2 Agnew Et Al
    US009 144575B2 (12) United States Patent (10) Patent No.: US 9,144,575 B2 Agnew et al. (45) Date of Patent: Sep. 29, 2015 (54) ANTI-VIRAL AZDE CONTAINING FOREIGN PATENT DOCUMENTS COMPOUNDS EP O249.561 12/1987 EP O480901 4f1992 (75) Inventors: Brian Agnew, Eugene, OR (US); David WO 87/O1586 3, 1987 Graham, Baltimore, MD (US); Upinder WO 88.01862 3, 1988 Singh, Eugene, OR (US); Scott Grecian, WO 98.00111 1, 1998 Fall Creek, OR (US) WO 98.58629 12/1998 WO OO 38681 T 2000 WO O3,101972 12/2003 (73) Assignees: LIFE TECHNOLOGIES WO O3,105805 12/2003 CORPORATION, Carlsbad, CA (US); WO 2005/039533 5, 2005 THE JOHNS HOPKINS WO 2005/093O49 A1 10/2005 UNIVERSITY, Baltimore, MD (US) WO 2008/O29281 3, 2008 WO 2009/067663 5, 2009 (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 OTHER PUBLICATIONS U.S.C. 154(b) by 0 days. Harper, David R. and Gilbert, Ruth L.; “Viral Lipoproteins' Reviews in medical virology, (1992) 2 p. 107-115.* (21) Appl. No.: 13/192,959 Piroux, Nathalie etal; "Geminivirus pathogenicity protein C4 inter acts with arabidopsis thaliana shaggy-rleated protein kinase Atsketa, (22) Filed: Jul. 28, 2011 a component of the brassinosteroid signalling pathway.” Virology (2007) 362 p. 428-440.* (65) Prior Publication Data Sasaki, Jun and Nakashima, Nobuhiko; "Translation initiation at the CUU codon is mediated by the internal ribosome entry site of an US 2012/OO27846A1 Feb. 2, 2012 insect picorna-like virus in vitro.” J. Virol. (1999) p.
    [Show full text]