Download Issue/Low Resolution

Total Page:16

File Type:pdf, Size:1020Kb

Download Issue/Low Resolution Message from the Associate Dean NEWS he University of Arizona College of Science is developing a comprehensive outreach plan to New Grant Ttake advantage of the incredible opportunities Supports Study afforded us through facilities such as Biosphere 2, the Flandrau Science Center, Tumamoc Hill, and the of Plant, Microbe Mt. Lemmon SkyCenter. This effort will combine VOLUME 1-5 FALL 2010 both our informal, public outreach activities with our Effects on Weathering more formal K-12 education outreach programs. We he National Science Foundation Elliott Cheu believe that by helping to coordinate and integrate our (NSF) recently awarded a Associate Dean outreach efforts, we can have a significant, positive three-year, $424,623 grant to College of Science T impact on our local community. University of Arizona researchers to investigate how plants and microbes In the K-12 sector, we are developing a number of significant new programs. 1 influence mineral weathering and One example is a college-wide service learning program, where undergraduate leaching of mineral-forming elements. and graduate students will work with middle- and high-school students to This research will look at how tree provide mentoring and tutoring opportunities. This program will also include and grass species common to the sponsored trips to UA Science facilities such as Flandrau and Biosphere 2, western United States (Ponderosa where secondary school students will engage in fun, educational activities pine and Buffalo grass) affect bacterial to further explore the role of science in their lives. These trips will also help and fungal communities (particularly acquaint students to the UA as a future destination, breaking down some of mycorrhizal fungi) to promote the the barriers to higher education. weathering of rock-derived minerals Another K-12 outreach effort is an initiative to create a community of and the incipient formation of soil. educators, including K-12 teachers, UA staff and faculty. To build such a Scientists will focus on interactions community, we are creating a number of new resources that will help each between biological and mineral of these constituents to connect to each other. One such resource is a new components during laboratory-based website that has a searchable faculty/staff database that teachers can use weathering of four common rock to help find researchers engaged in activities such as classroom visits, lab types (basalt, granite, schist, and tours, and public lectures. We are also offering a series of Teacher Science rhyolite) and the extent to which this Cafes, where teachers can learn about science, interact with other teachers, weathering results in chemical loss and find out the latest offerings at the UA. We expect to expand upon these versus biomass accumulation or re- new initiatives to help build a broad and dynamic educator community. In precipitation of dissolution products. addition to these formal education programs, we are beginning to integrate The research team is led by Katerina the public outreach efforts throughout the College of Science. Dontsova, an assistant research We are very excited about the possibilities afforded us by our new outreach professor at Biosphere 2 Earthscience, activities. The new innovations and research within the UA College of Science and includes Travis Huxman, director will now be more readily shared with both the general public as well as our of Biosphere 2 and professor of colleagues in the K-12 education system. We expect that this will have a ecology and evolutionary biology, very positive impact on the Tucson region, and will further enhance the very in addition to professors Jon things that make Tucson a special place. n Grant, cont. on back INSIDE THIS ISSUE PAGE 2: Building PAGE 4: Biosphere 2 PAGE 5: Largest telescope PAGE 6: AZ Center for mountains in Biosphere 2. receives gift to conduct dedicated to public STEM Teachers completes storm water research. observing in the Southwest. second summer institute. Featured Research Building Mountains in Biosphere 2: The Landscape Evolution Observatory ven a short hike into the predictive models, and new teams of channel at all. You have reached the mountains of the Southwest can experts from a wide range of earth channel head, but you are not yet at Etake you across hot, dry, rocky science disciplines. the top of the ridge above you. The slopes covered with yucca, grass and unchanneled landscape above you is cactus, while just around a bend in With the goal of predicting how termed a hillslope. At this point, you the trail, a change in exposure might the terrestrial water cycle will might notice that the vast majority reveal cooler, shady—perhaps even respond to climate change, we have of the landscape around you is made up of hillslopes, not channels, and any rain that falls must either “This is the place, I said, that you would come if you cross or move through (infiltrate) wanted to know the truth about water” these hillslopes to get to the river channel. Depending on the climate, —Craig Childs, in the Grand Canyon elevation, geology, and direction the slope is facing, the hillslope will moist—slopes of juniper and oak. begun the largest structural change have a certain type of soils, plants, From Tucson, we just need to look to Biosphere 2 since its original and shape. Many different processes upward to see that the mountain construction over 20 years ago. We will occur on it during rain storms, slopes also change dramatically with are building three two-million-pound such as interception by plants, runoff elevation – from open rocky desert artificial landscapes inside the former over the surface, infiltration into at the base up to the cool, moist pine agriculture biome. These huge underlying soil, and erosion of tiny 2 forest at the peaks. We understand physical models will allow us to tackle bits of soil. The large landscapes intuitively that when it rains here, two significant scientific questions: we are building in the LEO are some areas generate runoff quickly How does rainwater interact with and dry rapidly with the reappearance and change landscapes of the warm sun, while other areas over time, and how does stay cooler and damp through the biological activity change landscapes over time? Both VOLUME 1-5 rainy FALL 2010 seasons. We see that our limited rainfall is used opportunistically by questions are tremendously plants and animals; vegetation can complicated, and require change from day to day as the rains unprecedented cooperation come and go. The brief periods of between scientists from running water, wet ground and thick, a range of earth-science green mesquite and palo verde trees disciplines and development give desert dwellers a sense of the of new tools that permit dynamic nature of life in arid regions, detailed measurement and the importance of water above all of water, life and energy else in our natural environment. in a large-scale, highly controlled environment. As our climate warms, what will be the fate of arid places here and The three artificial everywhere that depend on local watersheds will be known as water sources, seasonal rains, and the Biosphere 2 Landscape the success of local ecosystems and Evolution Observatory agriculture for survival? Do we fully (LEO). The landscapes are understand how much-needed rains intended to be physical are distributed across landscapes, models of “hillslopes." into the soil, plants, groundwater What is a hilllslope? If you reservoirs, rivers and streams, and are hiking to the upper back to the atmosphere? Each reaches of a mountain of these systems is complicated canyon, you can continue enough when studied in isolation; upstream until the stream understanding how all of these channel in which you are components of the water cycle work walking gets smaller until Preliminary structural model of the Lansdcape Evolution together requires new tools, new it no longer appears to be a Observatory watersheds. designed to replicate a wide range of these processes. But, because First Undergrad we are building them from scratch, we will know the specific physical Research Program characteristics of each one in a way a Success that we could never know in nature, iosphere 2 kicked off its and, even better, we can install a first Research Experiences variety of measurement devices into for Undergraduates (REU) and around the landscapes during B program this past summer thanks to construction that allow us to measure a $400,000 grant from the National how water and energy move across Science Foundation. The program and through them at a level of detail hosted 10 undergraduate students impossible in nature. from several disciplines within earth These 40-by-100-foot LEO and environmental sciences, who landscapes will be steel structures that came from 8 different universities Although we can’t construct an entire mountain reach over two stories tall, covered range in Biosphere 2, many of the earth systems across the country (including one in over three feet of engineered soil displayed in this figure will be simulated in the from the University of Arizona) and shaped to approximate the form Landscape Evolution Observatory. to live at Biosphere 2 and work of hillslopes in nature. Thousands in research labs there and at the of sensors will be embedded in the water moves through it. We plan University of Arizona. Each student VOLUME 1-5 FALL 2010 soil to measure soil moisture, water to observe how this physical system worked with a faculty mentor over availability, temperature, and soil evolves from its initial conditions, the course of 10 weeks to design and energy fluxes; specially designed and then introduce plants to see implement a research project from samplers will provide access to soil how the establishment of ecosystems start to finish.
Recommended publications
  • Campus Building & Department Index- Alphabetical
    CAMPUS BUILDING & DEPARTMENT INDEX- ALPHABETICAL 2009-2010 A --- Electrical & Computer Nuerology Clinic 522 (F1) Adminstration 66 (D5) Engineering Bldg. 104 (C4) Nugent, Robert L. 40 (C6) Admissions, Office of 40 (C6) Engineering & Mines, College of 72 (C4) Nursing, College of 203 (F2) African American Studies 128 (D4) Engineering Building 20 (C5) O --- Agricultural Sciences 38 (C6) Dennis DeConcini Environment Old Main Building 21 (C5) Agriculture, College of 36 (C6) & Natural Resources Bldg. 120 (B7) Optical Science(Meinel) 94 (F6) A.M.E. Building 119 (D3) Extended University 158 (A5) P --- Apache Hall 50A (D7) F --- Park Ave. Parking Garage 116 (B3) Architecture, College of 75 (C4) Facilities Mgmt., AHSC 206 (E1) Park Student Center 87 (A6) Art Annex, Ceramics 470 (C3) Facilities Mgmt., Annex 460 (E1) Parking and Transportation Services 181 (C7) AZ Coop. Wildlife & Fishery Facilities Mgmt., Renovation 470 (D3) Payroll Department 158 (A5) Research Unit 43 (D6) Facilities Mgmt. Warehouse 215 (E1) Pharmacy, College of 207 (F2) Arizona Hall 84 (A7) Faculty Office Building 220 (E1) PHASE 420 (B3) Arizona Health Sciences Ctr. 201 (F2) Faculty Senate Office 456 (C2) Physics & Atmospheric Science (PAS) 81 (C6) Basic Services 201 (F2) Family & Consumer Res. 33 (B6) Pima Hall 135 (D4) Biomed. Research Lab 209 (E1) Family Practice Unit, AHSC 204 (E2) Pinal Hall 59 (E7) Bookstore 201 (F2) Fine Arts, Faculty of 4 (B4) Plantarium, Flandrau 91 (E5) Cancer Center 222 (F2) Fluid Dynamics Res. Lab 112 (C4) Planetary Sci., Dept. of 92 (E5) Central Heat/Refrig. 205 (E2) Forbes (Agriculture) 36 (C6) Police Department 100 (F4) Cl. Sci.
    [Show full text]
  • Highly Sampled Measurements in a Controlled Atmosphere at the Biosphere 2 Landscape Evolution Observatory
    www.nature.com/scientificdata OpEN Highly sampled measurements Data DEscRiptor in a controlled atmosphere at the Biosphere 2 Landscape Evolution Observatory Jorge Arevalo 1,2 ✉ , Xubin Zeng 1,3, Matej Durcik3, Michael Sibayan4, Luke Pangle5, Nate Abramson6, Aaron Bugaj3, Wei-Ren Ng3, Minseok Kim3, Greg Barron-Gaford 3,7, Joost van Haren3,8,9, Guo-Yue Niu 1,3, John Adams3, Joaquin Ruiz3,6 & Peter A. Troch1,3 Land-atmosphere interactions at diferent temporal and spatial scales are important for our understanding of the Earth system and its modeling. The Landscape Evolution Observatory (LEO) at Biosphere 2, managed by the University of Arizona, hosts three nearly identical artifcial bare-soil hillslopes with dimensions of 11 × 30 m2 (1 m depth) in a controlled and highly monitored environment within three large greenhouses. These facilities provide a unique opportunity to explore these interactions. The dataset presented here is a subset of the measurements in each LEO’s hillslopes, from 1 July 2015 to 30 June 2019 every 15 minutes, consisting of temperature, water content and heat fux of the soil (at 5 cm depth) for 12 co-located points; temperature, relative humidity and wind speed above ground at 5 locations and 5 diferent heights ranging from 0.25 m to 9–10 m; 3D wind at 1 location; the four components of radiation at 2 locations; spatially aggregated precipitation rates, total subsurface discharge, and relative water storage; and the measurements from a weather station outside the greenhouses. Background & Summary Te understanding of land-atmosphere interactions is important for improvements in Earth System Modelling1–3 for climate assessment, weather prediction, and subseasonal-to-seasonal forecasts4.
    [Show full text]
  • Biosphere 2 (B2) PI: Katerina Dontsova, Phd Co-PI: Kevin Bonine, Phd Sponsors: National Science Foundation Research Experiences for Undergraduates (NSF REU) Program
    Biosphere 2 (B2) PI: Katerina Dontsova, PhD Co-PI: Kevin Bonine, PhD Sponsors: National Science Foundation Research Experiences for Undergraduates (NSF REU) Program BIOSPHERE 2 (B2) Kierstin Acuña The effect of nanochitosan on piñon pine (Pinus edulis) seedling mortality in heatwave conditions University of Maryland, Environmental Science and Policy Mentor: Dr. Dave Breshears, Jason Field and Darin Law – School of Natural Resources and the Environment Abstract Semiarid grasslands worldwide are facing woody plant encroachment, a process that dramatically alters carbon and nutrient cycling. This change in plant types can influence the function of soil microbial communities with unknown consequences for soil carbon cycling and storage. We used soils collected from a five-year passive warming experiment in Southern, AZ to test the effects of warming and substrate availability on microbial carbon use. We hypothesized that substrate addition would increase the diversity of microbial substrate use, and that substrate additions and warming would increase carbon acquisition, creating a positive feedback on carbon mineralization. Community Level Physiological Profiling (CLPP) of microbial activity was conducted using Biolog EcoPlateTMassays from soils collected in July 2018, one week after the start of monsoon rains. Two soil types common to Southern AZ, were amended with one of four treatments (surface juniper wood chips, juniper wood chips incorporated into the soil, surface biochar, or a no-amendment control) and were randomly assigned to a warmed or ambient temperature treatment. We found that surface wood chips resulted in the highest richness and diversity of carbon substrate use with control soils yielding the lowest. Substrate use was positively correlated with the total organic carbon but not with warming.
    [Show full text]
  • (Most Recent Update, March 16, 2020, 6 Pm) Stewa
    Steward/Astronomy Specific Guidelines for Responding/Adapting to C19 Pandemic (Most Recent Update, March 16, 2020, 6 p.m.) Steward Observatory and the Department of Astronomy are adopting policies that will minimize the risk of transmission of COVID-19 while allowing us to continue to support our educational, outreach, and research missions. Facts and information are being shared with us at a high rate -- and these policies will have to evolve with time. We appreciate your patience and attention to the information below. We have tried to identify by subsection the individuals to whom you should address questions, but please always start with your supervisor/advisor. Our policies are intended to be consistent with those of the University of Arizona and the College of Science. We refer you to their web pages at these links: https://www.arizona.edu/coronavirus-covid-19-information and https://science.arizona.edu/coronavirus This is an evolving situation. We will update this document based on Federal, State and University policies as they become available. Please check the Provost and College pages at least daily, as they are also being updated frequently. Effective Immediately -- These policies are effective March 16, 2020 and will be updated as needed to stay consistent with U Arizona and College of Science Policies Courses and Classes (undergraduate and graduate) - All courses will be 100% online for the remaining of the semester. If you are an instructor and are having trouble moving your course to on-line, please contact Associate Department Head Xiaohui Fan, who will help you find assistance. - No in-person component to any classes.
    [Show full text]
  • LSST Jan2005 3Page.Indd
    EMBARGOED FOR RELEASE: 12:30 p.m. PST, January 11, 2005 RELEASE: LSSTC-02 Steward Observatory Mirror Lab Awarded Contract for Large Synoptic Survey Telescope Mirror The LSST Corporation has awarded a $2.3 million contract to the University of Arizona Steward Observatory Mirror Lab to purchase the glass and begin engineering work for the 8.4-meter diameter main mirror for the Large Synoptic Survey Telescope (LSST). This award was announced today in San Diego at the 205th meeting of the American Astronomical Society. Acquiring the LSST primary mirror was made possible by a generous, private donation from Arizona businessman Richard Caris. The UA award covers the first of four phases in an estimated $13.8 million effort to design, cast, polish and integrate the mirror into the LSST mirror support cell. Coupled with substantial support provided by Research Corporation under the leadership of John Schaefer, these private funds boost the LSST off the drawing board and into production. The LSST is a proposed world-class, ground-based telescope that can survey the entire visible sky every three nights. It will generate an awesome 30 terabytes of data per night from a three billion-pixel digital camera, producing a vast database of information on the universe. LSST will take exposures every 10 seconds, opening a movie-like window on objects that change or move on rapid timescales -- exploding supernovae, Earth-approaching asteroids, and The contract for casting of the 8.4-meter primary mirror of the distant Kuiper belt objects. Via the light-bending gravity of dark matter, LSST Large Synoptic Survey Telescope by the University of Arizona will chart the history of the expansion of the universe, yielding a unique probe (UA) Mirror Lab is signed by (L-R) Dr.
    [Show full text]
  • Biosphere 2 Outreach Scholars Green Fund Proposal, January 2016 Kevin Bonine, Director of Education & Outreach, Biosphere 2 [email protected] 520-621-0232
    Biosphere 2 Outreach Scholars Green Fund Proposal, January 2016 Kevin Bonine, Director of Education & Outreach, Biosphere 2 [email protected] 520-621-0232 Poster symposium & certificate ceremony at Biosphere 2 Summer Science Academy. Note young students in blue shirts presenting their results and proud UA student Outreach Scholars in red shirts. PROPOSAL OVERVIEW Abstract Biosphere 2 Outreach Scholars are the reason the Biosphere 2 Summer Science Academy has been so successful in its first two years. By supporting these UA students, who serve as role-models and mentors for 80-90 middle and high school students, we are taking an important step in providing the educational base necessary for sustainable, evidence-based decisions in all facets of society. UA students will apply to be chosen as Green Fund–supported Outreach Scholars, receive intensive training and a $1,000 stipend for their time in residence at Biosphere 2 in summer 2016, and become better able to navigate the important intersection where science and education meet. This intersection is how sustainability can be realistically pursued and achieved in the future. The UA Green Fund Outreach Scholars will facilitate research experiences, collaboration skills, and leadership development of middle and high school students. Along the way, the scholars will expand their knowledge and capacity in these areas and perhaps pursue scientist-educator as a career path or be inspired to put their scientific training toward solving society’s grand challenges. Project Narrative “It was the most amazing week of my life.” -Biosphere 2 Summer Science Academy Participant The key to a sustainable future is effective education and evidence-based decision making.
    [Show full text]
  • The Southern Arizona Region
    This report was prepared for the Southern Arizona’s Regional Steering Committee as an input to the OECD Review of Higher Education in Regional and City Development. It was prepared in response to guidelines provided by the OECD to all participating regions. The guidelines encouraged constructive and critical evaluation of the policies, practices and strategies in HEIs’ regional engagement. The opinions expressed are not necessarily those of the Regional Steering Committee, the OECD or its Member countries. 2 TABLE OF CONTENTS ACKNOWLEDGEMENTS............................................................................................................. iii ACRONYMS..................................................................................................................................... v LIST OF FIGURES, TABLES AND APPENDICES....................................................... ………. vii EXECUTIVE SUMMARY.............................................................................................................. ix CHAPTER 1. OVERVIEW OF THE SOUTHERN ARIZONA REGION................................. 1 1.1 Introduction…………………………………………………………………............................... 1 1.2 The geographical situation............................................................................................................ 1 1.3 History of Southern Arizona…………………………….………………………….................... 3 1.4 The demographic situation………………………………………………………………............ 3 1.5 The regional economy………………………………………………………………………...... 14 1.6 Governance..................................................................................................................................
    [Show full text]
  • Physical Space Inventory Fall, 2015 Annual Report
    Planning, Design& Construction Space Management Physical Space Inventory Cover page photo credit: Bill Timmerman-Timmerman Photography http://www.billtimmerman.com/ Contact Information for the University of Arizona: Web Site: http://www.arizona.edu/ Planning, Design & Construction Space Management 220 W. 6th St. USA Building, 3rd Floor Tucson, Arizona 85701-1014 http://www.pdc.arizona.edu/ Produced and Published by: Jorge L. Zepeda, Business Analyst, Space Management Physical Space Inventory Fall, 2015 OVERVIEW The University of Arizona experienced a net growth of 1,109,473 gross square feet (GSF)/ 639,075 net assignable square feet (NASF) during the course of fiscal year 2015. The fiscal year was an active year for the University’s real estate portfolio with the construction of new facilities, large scale renovations, the acquisition of off-campus properties; in addition to, the completion of the University of Arizona Health Network (UAHN) and Banner Health transaction. New facilities include the award-winning Environment and Natural Resource Phase 2 (207,632 GSF/ 91,519 NASF) and the Arizona Cancer Center Phoenix (227,579 GSF/ 133,878 NASF). The Environment and Natural Resources Phase 2 facility provides faculty offices, research/instructional dry laboratories/work spaces to further advance interdisciplinary research in earth, environmental, natural resources, math and related sciences. As well as, supplying a large classroom auditorium to meet the demands of an increasing student population. The Arizona Cancer Center Phoenix houses new medical and research facilities equipped with modern technology to provide the highest quality cancer research and comprehensive care to patients across the state and nation. The University also expanded throughout the surrounding communities to continue providing educational services/opportunities across the state with the acquisitions of The Al- Marah Horse Ranch (84,999 GSF/ 77,368 NASF), Southwest Center (11,070 GSF/ 7,835 NASF) and the Ames Learning Center (8,866 GSF/ 7,555 NASF) in Cochise and Pima Counties respectively.
    [Show full text]
  • RECOMBINATION LINE VS. FORBIDDEN LINE ABUNDANCES in PLANETARY NEBULAE Steward Observatory, University of Arizona, 933 North Cher
    RECOMBINATION LINE VS. FORBIDDEN LINE ABUNDANCES IN PLANETARY NEBULAE MARK ROBERTSON-TESSI Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721; [email protected] AND DONALD R. GARNETT Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721; [email protected] ABSTRACT Recombination lines (RLs) of C II, N II, and O II in planetary nebulae (PNs) have been found to give abundances that are much larger in some cases than abundances from collisionally-excited forbidden lines (CELs). The origins of this abundance discrepancy are highly debated. We present new spectroscopic observations of O II and C II recombination lines for six planetary nebulae. With these data we compare the abundances derived from the optical recombination lines with those determined from collisionally-excited lines. Combining our new data with published results on RLs in other PNs, we examine the discrepancy in abundances derived from RLs and CELs. We find that there is a wide range in the measured abundance discrepancy ∆(O+2) = log O+2(RL) - log O+2(CEL), ranging from approximately 0.1 dex (within the 1σ measurement errors) up to 1.4 dex. This tends to rule out errors in the recombination coefficients as a source of the discrepancy. Most RLs yield similar abundances, with the notable exception of O II multiplet V15, known to arise primarily from dielectronic recombination, which gives abundances averaging 0.6 dex higher than other O II RLs. We compare ∆(O+2) against a variety of physical properties of the PNs to look for clues 2 as to the mechanism responsible for the abundance discrepancy.
    [Show full text]
  • Reflections on My Time in the Wolfe Den
    Reflections on my time in the Wolfe den H. Philip Stahl ABSTRACT The three and a half years I spent as a member of the Infrared Group were transitional. Bill Wolfe was the nexus. Bill played a role in getting me to Arizona and keeping me there. He helped me advance professionally and taught me how to think like a systems engineer. He played a central role in my effort to earn a PhD. And, he helped start me in SPIE. This paper contains my personal and honest reflections on the impact which Bill Wolfe has had on me. Keywords: History 1. INTRODUCTION When Mary Turner asked me to give a Wolfe Tribute talk, my first reaction was no; and, so was my second reaction. My reasons were simple. I didn’t think I had anything to say. I have not followed in his footsteps. I long ago left the field of infrared and radiometry for optical testing and interferometry. I have not contributed any new knowledge or theories based on Bill’s work. I have not worked my entire career with him nor do I know him well enough to shed light on his character or share any humorous stories. I have had a modest career, I am not a chief scientist or a tenured professor or a business owner or a corporate officer. And, I’m not even sure if I am officially a Bill Wolfe student. While Bill was my employer and adviser for my first three and a half years at the Optical Sciences Center, Martin Tomasko of the Lunar and Planetary Laboratory was the Principal Investigator for my project and I got my Master’s degree by paying $10 after passing my PhD preliminary examination so that I could teach introductory physics a Pima Community College – because as a new father I needed to supplement my assistantship to pay the hospital bill which was not covered by the student health plan.
    [Show full text]
  • Louis J. Scuderi: Curriculum Vitae
    Louis J. Scuderi University of Hawaii at Manoa Phone: (505) 270-4756 Institute for Astronomy Email: [email protected] 2680 Woodlawn Drive Homepage: http://www.ifa.hawaii.edu/∼lscuderi Honolulu, HI, 96822 Education B.S. Astronomy and Physics. University of Arizona, Steward Observatory. August 2011. M.S. Astronomy. University of Hawaii at Manoa, Institute for Astronomy. December 2013. Professional Appointments 2011-present Graduate Research Assistant, IfA, U. Hawaii at Manoa 2010-2011 NASA Undergraduate Space Grant Intern, LPL, U. Arizona 2008-2011 Undergraduate Student Researcher, Steward Observatory, U. Arizona Research Interests Planetary occurrence rates, planetary atmospheres, and planet formation history including both Terrestrial and Jovian type planets. Publications Journal Articles L.J. Scuderi, J.A. Dittmann, J.R. Males, E.M. Green, L.M. Close, 2010, ApJ 714 462. On the Apparent Orbital Inclination Change of the Extrasolar Transiting Planet TrES-2b. arXiv URL: http://arxiv.org/abs/0907.1685 M.A. Kenworthy, L. J. Scuderi, 2012 ApJ 752 313. Infrared Variability of the Gliese 569B System. arXiv URL: http://arxiv.org/abs/1204.3454 E. Sinukoff, B. Fulton, L. Scuderi, E. Gaidos, 2013 Space Science Reviews Volume 180, Issue 1-4, pp. 71-99. Below One Earth: The Detection, Formation, and Properties of Subterrestrial World. arxiv URL: http://arxiv.org/abs/1308.6308 J.A. Ditmann, L.M. Close, E.M. Green, L.J. Scuderi, J.R. Males, 2009 ApJ 669 L48-L51. Follow-up Observations of HAT-P-11b. arXiv URL: http://arxiv.org/abs/0905.1114 J.A. Dittmann, L.M. Close, L.J. Scuderi, M.D.
    [Show full text]
  • Lessons Learned from Biosphere 2 and Laboratory Biosphere Closed Systems Experiments for the Mars on Earth® Project
    Biological Sciences in Space, Vol.19 No.4 (2005): 250-260 © 2005 Jpn. Soc. Biol. Sci. Space Lessons Learned from Biosphere 2 and Laboratory Biosphere Closed Systems Experiments for the Mars On Earth® Project Abigail Alling1, Mark Van Thillo1, William Dempster2, Mark Nelson3, Sally Silverstone1, John Allen2 1Biosphere Foundation, P.O. Box 201 Pacific Palisades, CA 90272 USA 2Biospheric Design (a division of Global Ecotechnics) 1 Bluebird Court, Santa Fe, NM 87508 USA 3Institute of Ecotechnics, 24 Old Gloucester St., London WC1 U.K. Abstract Mars On Earth® (MOE) is a demonstration/research project that will develop systems for maintaining 4 people in a sustainable (bioregenerative) life support system on Mars. The overall design will address not only the functional requirements for maintaining long term human habitation in a sustainable artificial environment, but the aesthetic need for beauty and nutritional/psychological importance of a diversity of foods which has been noticeably lacking in most space settlement designs. Key features selected for the Mars On Earth® life support system build on the experience of operating Biosphere 2 as a closed ecological system facility from 1991-1994, its smaller 400 cubic meter test module and Laboratory Biosphere, a cylindrical steel chamber with horizontal axis 3.68 meters long and 3.65 meters in diameter. Future Mars On Earth® agriculture/atmospheric research will include: determining optimal light levels for growth of a variety of crops, energy trade-offs for agriculture (e.g. light intensity vs. required area), optimal design of soil-based agriculture/horticulture systems, strategies for safe re-use of human waste products, and maintaining atmospheric balance between people, plants and soils.
    [Show full text]