Ficetola Spatial Segregation Salamanders ACCEPTED VERSION

Total Page:16

File Type:pdf, Size:1020Kb

Ficetola Spatial Segregation Salamanders ACCEPTED VERSION 1 Published online in Population Ecology 2 http://link.springer.com/article/10.1007/s10144-012-0350-5 3 DOI 10.1007/s10144-012-0350-5 4 5 Spatial segregation among age classes in cave salamanders: habitat selection or 6 social interactions? 7 8 9 10 Gentile Francesco Ficetola 1,2 *, Roberta Pennati 2, Raoul Manenti 2 11 12 1: Dipartimento di Scienze dell’Ambiente e del Territorio, Università di Milano-Bicocca. Piazza 13 della Scienza 1, 20126 Milano, Italy 14 2: Dipartimento di Bioscienze, Università degli Studi di Milano. Via Celoria 26, 20133 Milano Italy 15 16 *Corresponding author. E-mail: [email protected] 17 1 18 Abstract 19 20 Within species, individuals with different sexes, morphs and age classes often show spatial 21 segregation. Both habitat selection and social processes have been proposed to explain intraspecific 22 spatial segretation, but their relative importance is difficult to assess. We investigated spatial 23 segregation between age classes in the cave salamander Hydromantes (Speleomantes ) strinatii , and 24 used a hypothetico-deductive approach to evaluate whether social or ecological processes explain 25 segregation pattern. We recorded the location and age class of salamanders along multiple caves; 26 we measured multiple microhabitat features of different sectors of caves that may determine 27 salamander distribution. We assessed age-class segregation, and used generalized mixed models 28 and an information-theoretic framework, to test if segregation is explained by social processes or by 29 differences in habitat selection. We found significant age-class segregation, juveniles living in more 30 external cave sectors than adults. Multiple environmental features varied along caves. Juveniles and 31 adults showed contrasting habitat selection patterns: juveniles were associated with sectors having 32 high invertebrate abundance, while adults were associated with scarce invertebrates and low 33 temperature. When the effect of environmental features was taken into account, the relationship 34 between juveniles and adults was non negative. This suggests that different habitat preferences, 35 related to distinct risk-taking strategies of age classes, can explain the spatial segregation. Juveniles 36 require more food and select more external sectors, even if they may be risky. Conversely, adults 37 may trade off food availability in favour of safe areas with stable micro-climate. 38 39 Keywords a priori inference · predation risk · spatial pattern · spider abundance · trade-off 2 40 Introduction 41 42 The identification of processes determining the distribution of organisms is a major challenge of 43 spatial ecology. Patterns of spatial segregation, defined here as differences in spatial organization 44 among individuals, can occur at both the interspecific and the intraspecific level. At the interspecific 45 level, the segregation at fine spatial scale allows the coexistence of species occupying similar 46 niches, and can be an important driver of biodiversity patterns (Firth and Crowe 2010; Darmon et 47 al. 2012). However, spatial segregation can also occur at the intraspecific level among morphs, 48 sexes or age classes (Formica et al. 2004; Field et al. 2005; Ruckstuhl 2007; Main 2008; van Toor 49 et al. 2011; Bjorneraas et al. 2012). For instance, in several vertebrates, sexes segregate in groups 50 showing distinct spatial organization and resource exploitation (Ruckstuhl 2007; Main 2008). Two 51 types of processes have been proposed to explain intra-specific spatial segregation patterns: the 52 social and the habitat segregation hypotheses. The social segregation hypotheses (SSH) suggest that 53 social processes (selection for neighbours with similar features, intraspecific competition, 54 cannibalism) are the major drivers of segregation. In contrast, the habitat segregation hypotheses 55 (HSH) suggest that segregation is mostly driven by habitat-selection processes, such as the selection 56 of sites on the basis of foraging quality or risk of predation (Ruckstuhl 2007; Main 2008). Under 57 habitat-selection processes, social segregation may occur as a simple by-product of differences in 58 habitat selection (Bowyer et al. 2002). 59 In organisms with complex life cycles, such as many insects and amphibians, the age classes 60 correspond to discrete, morphologically distinct phases that often exploit distinct habitats. It has 61 been proposed that the evolution of complex life cycles can be explained ecologically by the 62 reduction of intra-specific competition (Istock 1966; Wilbur 1980; Moran 1994), with mechanisms 63 somehow analogous to those proposed to explain spatial segregation. Complex life cycles are 64 extremely successful life-history strategies, suggesting that organisms minimizing interactions 65 between life-history stages (which usually correspond to age classes) have strong advantages 3 66 (Wilbur 1980; Moran 1994). The similarity between this ecological hypothesis for the evolution of 67 complex life cycles, and the HSH, suggests that spatial segregation among age classes (hereafter: 68 age-class segregation) may widely occur also in organisms without complex life cycles. However, 69 most analyses on intraspecific segregation have focused on sexual segregation in a few groups of 70 vertebrates (Ruckstuhl 2007; Main 2008). Very few studies investigated the causes of age-class 71 segregation in organisms with direct development (see Cransac et al. 1998; Bon et al. 2001; 72 Ruckstuhl and Festa-Bianchet 2001 for analyses with ungulates). 73 The identification of processes determining spatial segregation is challenging: for example, 74 multiple explanations have been suggested after the observation of sexual segregation in the same 75 species of ungulates (Ruckstuhl 2007). The HSH has been proposed as the most likely explanation 76 of sexual segregation (Main 2008; but see Singh et al. 2010). The few studies that assessed the 77 factors determining age-class segregation hypothesized both ecological differences (Labée-Lund et 78 al. 1993; Field et al. 2005) and aggressive / social interactions (Cransac et al. 1998; Salvidio and 79 Pastorino 2002; Galvan 2004; Harvey et al. 2008), but we are not aware of explicit tests to 80 distinguish the hypotheses. The hypothetico-deductive reasoning is an emerging approach to infer 81 processes from distribution patterns (McIntire and Fajardo 2009), and may help to identify the 82 causes of spatial segregation. This requires well distinct a priori hypotheses, formulated on the 83 basis of biological knowledge (Ruckstuhl 2007; McIntire and Fajardo 2009; Dochtermann and 84 Jenkins 2011), and the application of information-theoretic statistical models, explicitly testing the 85 support of alternative hypotheses on causal processes (McIntire and Fajardo 2009; Ficetola et al. 86 2010; Dochtermann and Jenkins 2011; Symonds and Moussalli 2011). Spatial segregation 87 determines clear distribution patterns of individuals, and the different underlying processes (i.e., 88 SSH vs. HSH) are expected to produce distinct patterns. If segregation is mostly determined by 89 social mechanisms (SSH), we predict a negative relationship between the distribution of different 90 classes of individuals (age, sexes, or morphs; Fig. 1a) but, when these social relationships are taken 91 into account, classes should show similar habitat selection patterns (Fig. 1b). Conversely, if 4 92 segregation is mostly determined by ecological differences (HSH), we predict different habitat 93 selection patterns between classes (Fig. 1d) and, when environmental features are controlled for, no 94 negative relationships between them (Fig. 1c). 95 European cave salamanders (genus Hydromantes , subgenus Speleomantes ) are ideal 96 organisms for the study of spatial segregation. Cave salamanders have direct development. They are 97 not obligate cave-dwellers but, when external conditions would be too harsh (e.g., dry, hot, and 98 particularly during warm seasons) for lungless terrestrial salamanders, they retreat to underground 99 environments where they find a more suitable microclimate (Cimmaruta et al. 1999; Camp and 100 Jensen 2007; Vignoli et al. 2008; Ficetola et al. 2012). When in the cave environment, they are 101 easily detectable (Ficetola et al. 2012) and show extremely limited displacements; for instance, in 102 H. strinatii , each individual usually occupies areas ≤ 8 m 2 (Salvidio et al. 1994). Therefore, 103 observed distribution patterns reflect the actual occupancy of the cave environment. Furthermore, 104 cave environments have relatively simple habitat features that can be well described by a limited 105 number of parameters representing abiotic and biotic features. 106 Previous studies observed spatial age-class segregation in cave salamanders, with juveniles 107 living more close to the cave entrance (Salvidio and Pastorino 2002). It has been proposed that 108 segregation may occur because juveniles avoid cannibalism, or are losers during competition for the 109 best home ranges (Salvidio and Pastorino 2002), in accordance with the SSH (avoidance of 110 aggression hypothesis; Ruckstuhl 2007). However, the processes determining segregation have not 111 been assessed. Here, we analyzed spatial segregation among age classes in the cave salamander, 112 Hydromantes (Speleomantes ) strinatii , and tested whether the distribution pattern supports the 113 predictions of the SSH or of the HSH (Fig. 1). 114 115 Methods 116 117 Study species and area 5 118 119 Hydromantes
Recommended publications
  • Effects of Emerging Infectious Diseases on Amphibians: a Review of Experimental Studies
    diversity Review Effects of Emerging Infectious Diseases on Amphibians: A Review of Experimental Studies Andrew R. Blaustein 1,*, Jenny Urbina 2 ID , Paul W. Snyder 1, Emily Reynolds 2 ID , Trang Dang 1 ID , Jason T. Hoverman 3 ID , Barbara Han 4 ID , Deanna H. Olson 5 ID , Catherine Searle 6 ID and Natalie M. Hambalek 1 1 Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA; [email protected] (P.W.S.); [email protected] (T.D.); [email protected] (N.M.H.) 2 Environmental Sciences Graduate Program, Oregon State University, Corvallis, OR 97331, USA; [email protected] (J.U.); [email protected] (E.R.) 3 Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA; [email protected] 4 Cary Institute of Ecosystem Studies, Millbrook, New York, NY 12545, USA; [email protected] 5 US Forest Service, Pacific Northwest Research Station, Corvallis, OR 97331, USA; [email protected] 6 Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; [email protected] * Correspondence [email protected]; Tel.: +1-541-737-5356 Received: 25 May 2018; Accepted: 27 July 2018; Published: 4 August 2018 Abstract: Numerous factors are contributing to the loss of biodiversity. These include complex effects of multiple abiotic and biotic stressors that may drive population losses. These losses are especially illustrated by amphibians, whose populations are declining worldwide. The causes of amphibian population declines are multifaceted and context-dependent. One major factor affecting amphibian populations is emerging infectious disease. Several pathogens and their associated diseases are especially significant contributors to amphibian population declines.
    [Show full text]
  • Reproductive Biology and Phylogeny of Urodela
    CHAPTER 13 Life Histories Richard C. Bruce 13.1 INTRODUCTION The life history of an animal is the sequence of morphogenetic stages from fertilization of the egg to senescence and death, which incorporates the probabilistic distributions of demographic parameters of an individual’s population as components of the life-history phenotype. At the population (or species) level, and in the context of ectothermic vertebrates, Dunham et al. (1989) have defined a life history in terms of a heritable set of rules that govern three categories of allocations: (1) allocation of time among such activities as feeding, mating, defense, and migration; (2) allocation of assimilated resources among growth, storage, maintenance, and reproduction; and (3) the mode of “packaging” of the reproductive allocation. An application of such an allocation-based definition in the study of salamander life histories was provided by Bernardo (1994). Implicit in the definition is the condition that life-history traits have a heritable basis; average plasticity in any trait reflects the average reaction norm, or the range in phenotypes expressed by a given genotype, averaged for all genotypes, over the range of environments experienced by all members of the population (Via 1993). Salamanders show greater diversity in life histories than any other vertebrate taxon of equivalent rank, which is all the more remarkable given the relatively small number (about 500) of known extant species. Beginning, somewhat arbitrarily, with the landmark studies of the plethodontids Desmognathus fuscus and Eurycea bislineata by Inez W. Wilder (1913, 1924) [who earlier published papers on salamanders under the name I. L. Whipple], this diversity has generated considerable interest by ecologists and herpetologists during the past 90 years.
    [Show full text]
  • Strasbourg, 22 May 2002
    Strasbourg, 21 October 2015 T-PVS/Inf (2015) 18 [Inf18e_2015.docx] CONVENTION ON THE CONSERVATION OF EUROPEAN WILDLIFE AND NATURAL HABITATS Standing Committee 35th meeting Strasbourg, 1-4 December 2015 GROUP OF EXPERTS ON THE CONSERVATION OF AMPHIBIANS AND REPTILES 1-2 July 2015 Bern, Switzerland - NATIONAL REPORTS - Compilation prepared by the Directorate of Democratic Governance / The reports are being circulated in the form and the languages in which they were received by the Secretariat. This document will not be distributed at the meeting. Please bring this copy. Ce document ne sera plus distribué en réunion. Prière de vous munir de cet exemplaire. T-PVS/Inf (2015) 18 - 2 – CONTENTS / SOMMAIRE __________ 1. Armenia / Arménie 2. Austria / Autriche 3. Belgium / Belgique 4. Croatia / Croatie 5. Estonia / Estonie 6. France / France 7. Italy /Italie 8. Latvia / Lettonie 9. Liechtenstein / Liechtenstein 10. Malta / Malte 11. Monaco / Monaco 12. The Netherlands / Pays-Bas 13. Poland / Pologne 14. Slovak Republic /République slovaque 15. “the former Yugoslav Republic of Macedonia” / L’« ex-République yougoslave de Macédoine » 16. Ukraine - 3 - T-PVS/Inf (2015) 18 ARMENIA / ARMENIE NATIONAL REPORT OF REPUBLIC OF ARMENIA ON NATIONAL ACTIVITIES AND INITIATIVES ON THE CONSERVATION OF AMPHIBIANS AND REPTILES GENERAL INFORMATION ON THE COUNTRY AND ITS BIOLOGICAL DIVERSITY Armenia is a small landlocked mountainous country located in the Southern Caucasus. Forty four percent of the territory of Armenia is a high mountainous area not suitable for inhabitation. The degree of land use is strongly unproportional. The zones under intensive development make 18.2% of the territory of Armenia with concentration of 87.7% of total population.
    [Show full text]
  • Using Hierarchical Spatial Models to Assess the Occurrence of an Island Endemism: the Case of Salamandra Corsica Daniel Escoriza1* and Axel Hernandez2
    Escoriza and Hernandez Ecological Processes (2019) 8:15 https://doi.org/10.1186/s13717-019-0169-5 RESEARCH Open Access Using hierarchical spatial models to assess the occurrence of an island endemism: the case of Salamandra corsica Daniel Escoriza1* and Axel Hernandez2 Abstract Background: Island species are vulnerable to rapid extinction, so it is important to develop accurate methods to determine their occurrence and habitat preferences. In this study, we assessed two methods for modeling the occurrence of the Corsican endemic Salamandra corsica, based on macro-ecological and fine habitat descriptors. We expected that models based on habitat descriptors would better estimate S. corsica occurrence, because its distribution could be influenced by micro-environmental gradients. The occurrence of S. corsica was modeled according to two ensembles of variables using random forests. Results: Salamandra corsica was mainly found in forested habitats, with a complex vertical structure. These habitats are associated with more stable environmental conditions. The model based on fine habitat descriptors was better able to predict occurrence, and gave no false negatives. The model based on macro-ecological variables underestimated the occurrence of the species on its ecological boundary, which is important as such locations may facilitate interpopulation connectivity. Conclusions: Implementing fine spatial resolution models requires greater investment of resources, but this is advisable for study of microendemic species, where it is important to reduce type II error (false negatives). Keywords: Amphibian, Corsica, Mediterranean islands, Microhabitat, Salamander Introduction reason, studies evaluating the niche of ectothermic verte- Macro-ecological models are popular for evaluating eco- brates associated with forests should include parameters logical and evolutionary hypotheses for vertebrates.
    [Show full text]
  • Salamander Species Listed As Injurious Wildlife Under 50 CFR 16.14 Due to Risk of Salamander Chytrid Fungus Effective January 28, 2016
    Salamander Species Listed as Injurious Wildlife Under 50 CFR 16.14 Due to Risk of Salamander Chytrid Fungus Effective January 28, 2016 Effective January 28, 2016, both importation into the United States and interstate transportation between States, the District of Columbia, the Commonwealth of Puerto Rico, or any territory or possession of the United States of any live or dead specimen, including parts, of these 20 genera of salamanders are prohibited, except by permit for zoological, educational, medical, or scientific purposes (in accordance with permit conditions) or by Federal agencies without a permit solely for their own use. This action is necessary to protect the interests of wildlife and wildlife resources from the introduction, establishment, and spread of the chytrid fungus Batrachochytrium salamandrivorans into ecosystems of the United States. The listing includes all species in these 20 genera: Chioglossa, Cynops, Euproctus, Hydromantes, Hynobius, Ichthyosaura, Lissotriton, Neurergus, Notophthalmus, Onychodactylus, Paramesotriton, Plethodon, Pleurodeles, Salamandra, Salamandrella, Salamandrina, Siren, Taricha, Triturus, and Tylototriton The species are: (1) Chioglossa lusitanica (golden striped salamander). (2) Cynops chenggongensis (Chenggong fire-bellied newt). (3) Cynops cyanurus (blue-tailed fire-bellied newt). (4) Cynops ensicauda (sword-tailed newt). (5) Cynops fudingensis (Fuding fire-bellied newt). (6) Cynops glaucus (bluish grey newt, Huilan Rongyuan). (7) Cynops orientalis (Oriental fire belly newt, Oriental fire-bellied newt). (8) Cynops orphicus (no common name). (9) Cynops pyrrhogaster (Japanese newt, Japanese fire-bellied newt). (10) Cynops wolterstorffi (Kunming Lake newt). (11) Euproctus montanus (Corsican brook salamander). (12) Euproctus platycephalus (Sardinian brook salamander). (13) Hydromantes ambrosii (Ambrosi salamander). (14) Hydromantes brunus (limestone salamander). (15) Hydromantes flavus (Mount Albo cave salamander).
    [Show full text]
  • Journal of Cave and Karst Studies
    June 2020 Volume 82, Number 2 JOURNAL OF ISSN 1090-6924 A Publication of the National CAVE AND KARST Speleological Society STUDIES DEDICATED TO THE ADVANCEMENT OF SCIENCE, EDUCATION, EXPLORATION, AND CONSERVATION Published By BOARD OF EDITORS The National Speleological Society Anthropology George Crothers http://caves.org/pub/journal University of Kentucky Lexington, KY Office [email protected] 6001 Pulaski Pike NW Huntsville, AL 35810 USA Conservation-Life Sciences Julian J. Lewis & Salisa L. Lewis Tel:256-852-1300 Lewis & Associates, LLC. [email protected] Borden, IN [email protected] Editor-in-Chief Earth Sciences Benjamin Schwartz Malcolm S. Field Texas State University National Center of Environmental San Marcos, TX Assessment (8623P) [email protected] Office of Research and Development U.S. Environmental Protection Agency Leslie A. North 1200 Pennsylvania Avenue NW Western Kentucky University Bowling Green, KY Washington, DC 20460-0001 [email protected] 703-347-8601 Voice 703-347-8692 Fax [email protected] Mario Parise University Aldo Moro Production Editor Bari, Italy [email protected] Scott A. Engel Knoxville, TN Carol Wicks 225-281-3914 Louisiana State University [email protected] Baton Rouge, LA [email protected] Exploration Paul Burger National Park Service Eagle River, Alaska [email protected] Microbiology Kathleen H. Lavoie State University of New York Plattsburgh, NY [email protected] Paleontology Greg McDonald National Park Service Fort Collins, CO The Journal of Cave and Karst Studies , ISSN 1090-6924, CPM [email protected] Number #40065056, is a multi-disciplinary, refereed journal pub- lished four times a year by the National Speleological Society.
    [Show full text]
  • Variability of a Subterranean Prey-Predator Community in Space and Time
    diversity Article Variability of A Subterranean Prey-Predator Community in Space and Time Sebastiano Salvidio 1,2,* , Andrea Costa 1, Fabrizio Oneto 1,2 and Mauro Valerio Pastorino 2 1 Dipartimento Scienze della Terra dell’Ambiente e della Vita—DISTAV, Università degli Studi di Genova, 16132 Genova, Italy; [email protected] (A.C.); [email protected] (F.O.) 2 Gruppo Speleologico “A. Issel”, Villa Comunale ex Borsino c.p. 21, 16012 BUSALLA (GE), Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-010-3358027 Received: 18 December 2019; Accepted: 27 December 2019; Published: 31 December 2019 Abstract: Subterranean habitats are characterized by buffered climatic conditions in comparison to contiguous surface environments and, in general, subterranean biological communities are considered to be relatively constant. However, although several studies have described the seasonal variation of subterranean communities, few analyzed their variability over successive years. The present research was conducted inside an artificial cave during seven successive summers, from 2013 to 2019. The parietal faunal community was sampled at regular intervals from outside to 21 m deep inside the cave. The community top predator is the cave salamander Speleomantes strinatii, while invertebrates, mainly adult flies, make up the rest of the faunal assemblage. Our findings indicate that the taxonomic composition and the spatial distribution of this community remained relatively constant over the seven-year study period, supporting previous findings. However, different environmental factors were shaping the distribution of predators and prey along the cave. Invertebrates were mainly affected by the illuminance, while salamanders were influenced by both illuminance and distance from the cave’s entrance.
    [Show full text]
  • Volume 2, Chapter 14-8: Salamander Mossy Habitats
    Glime, J. M. and Boelema, W. J. 2017. Salamander Mossy Habitats. Chapt. 14-8. In: Glime, J. M. Bryophyte Ecology. Volume 2. 14-8-1 Bryological Interaction.Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 19 July 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology2/>. CHAPTER 14-8 SALAMANDER MOSSY HABITATS Janice M. Glime and William J. Boelema TABLE OF CONTENTS Tropical Mossy Habitats – Plethodontidae........................................................................................................ 14-8-3 Terrestrial and Arboreal Adaptations ......................................................................................................... 14-8-3 Bolitoglossa (Tropical Climbing Salamanders) ......................................................................................... 14-8-4 Bolitoglossa diaphora ................................................................................................................................ 14-8-5 Bolitoglossa diminuta (Quebrada Valverde Salamander) .......................................................................... 14-8-5 Bolitoglossa hartwegi (Hartweg's Mushroomtongue Salamander) ............................................................ 14-8-5 Bolitoglossa helmrichi ............................................................................................................................... 14-8-5 Bolitoglossa jugivagans ............................................................................................................................
    [Show full text]
  • Speleomantes Strinatii
    Speleomantes strinatii Region: 10 Taxonomic Authority: (Aellen, 1958) Synonyms: Common Names: French Cave Salamander English geotritone di Strinati Italian North-west Italian Cave Salamande English Order: Caudata Family: Plethodontidae Notes on taxonomy: General Information Biome Terrestrial Freshwater Marine Geographic Range of species: Habitat and Ecology Information: This species is restricted to southeastern France and northwestern The species is found in the vicinity of streams and seepages, and Italy. It ranges from sea level to around 2,500m asl. amongst rocky outcrops and caves in mountainous areas. It reproduces through the direct development of a few terrestrial eggs. Conservation Measures: Threats: Prior to being considered a separate species S. strinatii was listed on There are no threats identified other than a localised loss of habitat. Appendix II of the Berne Convention under S. italicus; also listed on However, these threats are limited, and it is not believed to be Annex IV of the EU Natural Habitats Directive under S. italicus. It is not significantly threatened. known if the species is present in any protected areas. Species population information: Although there is little available information on the abundance of this species, it is not considered to be declining in Italy. Further information is needed on the status of the populations in France. Native - Native - Presence Presence Extinct Reintroduced Introduced Vagrant Country Distribution Confirmed Possible FranceCountry: Country:Italy Native - Native - Presence Presence Extinct Reintroduced Introduced FAO Marine Habitats Confirmed Possible Major Lakes Major Rivers Upper Level Habitat Preferences Score Lower Level Habitat Preferences Score 1.4 Forest - Temperate 1 Deciduous Broadleaf Wood 1 6 Rocky areas (eg.
    [Show full text]
  • Journal of Cave and Karst Studies Volume 74 Number 3 December 2012 278 292 243 251 262 271 235
    December 2012 Volume 74, Number 3 Journal of ISSN 1090-6924 A Publication of the National Cave and KArSt Speleological Society Journal of Cave and Karst Studies Volume 74 Number 3 December 2012 StudieS Journal of Article 235 Cave Electrical Resistivity Imaging of Cave Div Aska Jama, Slovenia Mihevc Andrej and Stepisnik Uros and Karst Article 243 A Survey of the Algal Flora of Anthropogenic Caves of Campi Flegrei (Naples, Italy) Archeological District Studies Paloa Cennamo, Chiara Marzano, Claudia Ciniglia, Gabriele Pinto, Piergiulio Cappelletti, Palolo Caputo, and Antonino Pollio Article 251 Assessment of Spatial Properties of Karst Areas on a Regional Scale using GIS and Statistics – The Case of Slovenia Marko Komac and Janko Urbanc Article 262 Lizards and Snakes (Lepidosauria, Squamata) from the Late Quaternary of the State of Ceará in Northeastern Brazil Annie Schmaltz Hsiou, Paulo Victor De Oliveira, Celso Lira Ximenes, and Maria Somália Sales Viana Article 271 Diet of the Newt, Triturus Carnifex (Laurenti, 1768), in the Flooded Karst Sinkhole Pozzo Del Merro, Central Italy Antonio Romano, Sebastiano Salvidio, Roberto Palozzi, and Velerio Sbordoni Article 278 Human Urine in Lechuguilla Cave: The Microbiological Impact and Potential for Bioremediation Michael D. Johnston, Brittany A. Muench, Eric D. Banks, and Hazel A. Barton Article 292 74 Number 3 December 2012 Volume A Method to Determine Cover-Collapse Frequency in the Western Pennyroyal Karst of Kentucky James C. Currens, Randall L. Paylor, E. Glynn Beck, and Bart Davidson DEDICATED TO THE ADVANCEMENT OF SCIENCE, EDUCATION, AND EXPLORATION GuIDE TO AUTHORS Published By BoArD of eDITORS the National Speleological Society Anthropology George Crothers University of Kentucky The Journal of Cave and Karst Studies is a multidisciplinary specifications may be downloaded.
    [Show full text]
  • Downloaded from Brill.Com10/11/2021 02:28:07AM Via Free Access 202 Ascarrunz Et Al
    Contributions to Zoology, 85 (2) 201-234 (2016) Triadobatrachus massinoti, the earliest known lissamphibian (Vertebrata: Tetrapoda) re-examined by µCT scan, and the evolution of trunk length in batrachians Eduardo Ascarrunz1, 2, Jean-Claude Rage2, Pierre Legreneur3, Michel Laurin2 1 Department of Geosciences, University of Fribourg, Chemin du Musée 6, 1700 Fribourg, Switzerland 2 Sorbonne Universités CR2P, CNRS-MNHN-UPMC, Département Histoire de la Terre, Muséum National d’Histoire Naturelle, CP 38, 57 rue Cuvier, 75005 Paris, France 3 Inter-University Laboratory of Human Movement Biology, University of Lyon, 27-29 Bd du 11 Novembre 1918, 69622 Villeurbanne Cédex, France 4 E-mail: [email protected] Key words: Anura, caudopelvic apparatus, CT scan, Salientia, Triassic, trunk evolution Abstract Systematic palaeontology ........................................................... 206 Geological context and age ................................................. 206 Triadobatrachus massinoti is a batrachian known from a single Description .............................................................................. 207 fossil from the Early Triassic of Madagascar that presents a com- General appearance of the reassembled nodule ............ 207 bination of apomorphic salientian and plesiomorphic batrachian Skull ........................................................................................... 208 characters. Herein we offer a revised description of the specimen Axial skeleton .........................................................................
    [Show full text]
  • Bsal) in the EU
    SCIENTIFIC REPORT APPROVED: 21 February 2017 doi:10.2903/j.efsa.2017.4739 Scientific and technical assistance concerning the survival, establishment and spread of Batrachochytrium salamandrivorans (Bsal) in the EU European Food Safety Authority (EFSA), Voitech Balàž, Christian Gortázar Schmidt, Kris Murray, Edoardo Carnesecchi, Ana Garcia, Andrea Gervelmeyer, Laura Martino, Irene Munoz Guajardo, Frank Verdonck, Gabriele Zancanaro and Chiara Fabris Abstract A new fungus, Batrachochytrium salamandrivorans (Bsal), was identified in wild populations of salamanders in The Netherlands, Belgium and in kept populations in Germany and UK. EFSA assessed the potential of Bsal to affect the health of wild and kept salamanders in the EU, the effectiveness and feasibility of a movement ban of traded salamanders, the validity, reliability and robustness of available diagnostic methods for Bsal detection, and possible alternative methods and feasible risk mitigation measures to ensure safe international and EU trade of salamanders and their products. Bsal was isolated and characterized in 2013 from a declining fire salamander (Salamandra salamandra) population in The Netherlands. Based on the available evidence, it is likely that Bsal is a sufficient cause for the death of Salamandra salamandra both in the laboratory and in the wild. Despite small sample sizes, the available experimental evidence indicates that Bsal is associated with disease and death in individuals of 12 European and 3 Asian Caudata, and with high mortality rate outbreaks in kept salamanders. Bsal experimental infection was detected in individuals of at least one species pertaining to the families Salamandridae, Plethodontidae, Hynobiidae and Sirenidae. Movement bans constitute key risk mitigation measures to prevent pathogen spread into naïve areas and populations.
    [Show full text]