Deprotonation of Guanine Radical Cation G Mediated by the Protonated Water Cluster

Total Page:16

File Type:pdf, Size:1020Kb

Deprotonation of Guanine Radical Cation G Mediated by the Protonated Water Cluster pubs.acs.org/JPCA Article Deprotonation of Guanine Radical Cation G•+ Mediated by the Protonated Water Cluster Xianwang Zhang, Jialong Jie,* Di Song,* and Hongmei Su Cite This: J. Phys. Chem. A 2020, 124, 6076−6083 Read Online ACCESS Metrics & More Article Recommendations *sı Supporting Information ABSTRACT: Proton transfer is regarded as a fundamental process in chemical reactions of DNA molecules and continues to be an active research theme due to the connection with charge transport and oxidation damage of DNA. For the guanine radical cation (G•+) derived from one-electron oxidation, experiments suggest a facile proton transfer within the G•+:C base pair, and a rapid deprotonation from N1 in free base or single-strand DNA. To address the deprotonation mechanism, we perform a thorough investigation on deprotonation of G•+ in free G base by combining density functional theory (DFT) and laser flash photolysis spectroscopy. Experimentally, kinetics of deprotonation is monitored at temperatures varying from 280 to 298 K, from which the activation energy of 15.1 ± 1.5 kJ/mol is determined for the first time. Theoretically, four solvation models incorporating explicit waters and the polarized continuum model (PCM), i.e., 3H2O-PCM, 4H2O-PCM, fi 5H2O-PCM, and 7H2O-PCM models are used to calculate deprotonation potential energy pro le, and the barriers of 5.5, 13.4, 14.4, and 13.7 kJ/mol are obtained, respectively. It is shown that at least four explicit waters are required for properly simulating the deprotonation reaction, where the participation of protonated water cluster plays key roles in facilitating the proton release from G•+. ■ INTRODUCTION undergo rapid proton transfer, competing with hole transfer Proton transfer through hydrogen bonds attracts continuous along DNA or leading to oxazolone via further reaction of its − • 12−24 interests and massive research efforts, because of the product, guanine radical G( H) . As shown in Scheme 1, •+ − − significance in most essential chemical and biological G has two sites, N1 H(pKa = 3.9) and N2 H(pKa = 4.7), 1−10 − processes. Many theoretical and experimental investiga- to lose a proton. According to the pKa values, the N1 H site is tions show that molecular mechanism behind proton transfer suggested to be favored over the N2−Hsite.Pulse − 12,17 18 probably involves protonated water clusters.1 7 Two important radiolysis and ESR experiments showed that only + − • structures of protonated water clusters, H (H2O)4 with a G(N1 H) were observed in the aqueous phase after proton + 1 central hydronium core (H3O ) bound to three waters and transfer at pH = 7.0. Density functional theory (DFT) Downloaded via BEIJING NORMAL UNIV on September 25, 2020 at 08:35:17 (UTC). + fl H (H2O)2 possessing a proton uctuating between two calculations including seven water molecules as the hydration waters,2 are proposed to explain anomalously high proton shell also provided a theoretical support that G(N1−H)• is See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles. mobility of liquid water.3 Unlike other ions, the transport of more stable than G(N2−H)• by 13.6 kJ/mol.18 Therefore, the protons in aqueous solution does not require the net diffusion proton transfer of G•+ in free nucleobase is thought to occur at of ionic species but instead is driven by a periodic series of the N1−H site. + + isomerizations between H (H2O)4 and H (H2O)2, where the It is noticeable that in different DNA structures, mechanisms 3,6,10 charge is transferred along the hydrogen bond. Even for of proton transfer of G•+ are different. In the DNA duplex, a proton transfer across biomembranes such as bacteriorhodop- facile proton transfer from N1 of G•+ to N3 of hydrogen- ff sin, which a ects biological functions of protein assemblies, the bonded cytosine (C) within the G:C base pair was proposed suggested mechanism also emphasizes the participations of 12,16,21,22,25,26 (Scheme 1), since the pKa (4.3) of N3- protonated water clusters based on time-resolved Fourier •+ 18 protonated cytosine is higher than that of G . Both transient transform infrared spectroscopy (trFTIR) and in situ H2 O/ 16 11 H2 O exchange FTIR measurements. Interestingly, proton transfer is also a universal phenomenon Received: April 27, 2020 in chemical reactions of DNA molecules, the mechanism of Revised: June 24, 2020 which continues to be an active research theme because of the Published: June 25, 2020 connection with charge transport and oxidation damage of DNA. Following one-electron oxidation of DNA, for example, the instantaneously generated guanine radical cation (G•+) can © 2020 American Chemical Society https://dx.doi.org/10.1021/acs.jpca.0c03748 6076 J. Phys. Chem. A 2020, 124, 6076−6083 The Journal of Physical Chemistry A pubs.acs.org/JPCA Article Scheme 1. (a) Proton Transfer (PT) Reaction in a One- activation energy of deprotonation was determined. To Electron Oxidized G:C Base Pair and (b) Deprotonation provide further mechanistic insights, potential energy profiles from N1 and N2 Site of Guanine Radical Cation, of deprotonation were calculated under solvation models Respectively incorporating explicit waters and the polarized continuum model (PCM), which provide energy barriers matching the experimental value and thus suggest a deprotonation process assisted by protonated water cluster. The deprotonation mechanism of G•+ in free base after one-electron oxidation is clarified, revealing the crucial role of protonated water cluster. These results enrich understandings for proton transfer of DNA systems, which are closely associated with hole transfer along DNA and oxidative damage of DNA. ■ MATERIALS AND METHODS Materials. 2′-Deoxyguanosine (G, Alfa Aesar), sodium persulfate (Na2S2O8, Sigma-Aldrich), and sodium phosphate buffer (50 mM, Beijing Solarbio Science & Technology) were used as purchased. Ultrapure water obtained by Millipore fi ltration was used as solvent. The sample of G and Na2S2O8 (ca. 0.215 g) was dissolved in 3 mL of sodium phosphate ff bu er (50 mM, pH 7.0) in H2O. Laser Flash Photolysis. Nanosecond time-resolved transient absorption spectra were measured using a flash photolysis setup Edinburgh LP920 spectrometer (Edinburgh Instruments Ltd.) combined with a Nd:YAG laser (Spectra- Physics Lab 170, Newport Corp.).30,31 Each measurement was absorption spectra and kinetics measurements further con- performed in a 1 cm path length quartz cuvette that was put in firmed this intrabase proton transfer route.17,21,27 An earlier the Oxford Instruments OptistatDN Cryostat and cooled to a DFT study on isolated G•+:C base pair in the gas phase certain temperature. The sample was excited by using a 355 predicted that the interbase proton transfer is unfavorable as nm laser pulse (1 Hz; 20 mJ/pulse; full width at half- the product G(N1−H)•:C(+H)+ is 5.9 kJ/mol less stable than maximum, ≈ 7 ns). The analyzing light was from a 450 W the reactant G•+:C, conflicting with experimental results.16 pulsed xenon lamp. A monochromator equipped with a Upon incorporation of 11 water molecules around the G•+:C, photomultiplier for collecting the spectral range from 300 to the B3LYP/6-31+G** calculations showed that the G(N1− 700 nm was used to analyze transient absorption spectra. The H)•:C(+H)+ becomes more stable than the G•+:C by 5.0 kJ/ signals from the photomultiplier were displayed and recorded mol, settling this controversy.22 It follows that hydration effect as a function of time on a 100 MHz (1.25 Gs/s sampling rate) plays an important role in reaction energetics, although the oscilloscope (TDS 3012C, Tektronix), and the data were intrabase proton transfer within the G•+:C base pair takes place transferred to a PC. Data were analyzed with online software of in a hydrophobic environment. the LP920 spectrophotometer and instrument response In free base, single-strand DNA and triplex DNA, G•+ function of Gaussian type was considered. The fitting quality transfers the N1− H proton to surrounding was judged by weighted residuals and reduced χ2 value. Note − waters,12 14,17,18,20,23,28 namely, deprotonation. Since the that each kinetic measurement was performed with new N1−H site of G•+ is not hydrogen-bonded with the C base sample. anymore and then has access to water, it is intriguing to Computational Methods. The geometries were fully investigate the role of water cluster or protonated water cluster optimized using the M06-2X density functional in connection in the process of proton transfer of G•+. However, the with the 6-31++G** basis set and the polarized continuum deprotonation mechanism of G•+ has not been addressed model. M06-2X developed by Truhlar and Zhao is a hybrid properly. In a theoretical investigation on mechanisms of meta functional having 54% Hartree−Fock exchange con- peroxynitrite oxidation of guanine,29 B3LYP calculations tribution.32,33 Due to the large exchange−correlation, this involving one water molecule presented a free energy profile functional is a better choice than other functions, for example, of G•+ deprotonation, in which the transition state was located, B3LYP, which is severely influenced by the self-interaction with an energy of 65.8 kJ/mol above the reactants. error.34 The M06-2X functional has been shown to well Unfortunately, there is hitherto no reported experimental describe noncovalent interactions; thus, it is very suitable for activation energy to be compared with. Assuming the energy studying a number of chemical problems, including radicals − barrier is 65.8 kJ/mol, deprotonation should take place on the and hydrated molecule ions.32,35 37 For example, Johnson et time scale of milliseconds, which is obviously in disagreement al. used the M06-2X functional with the 6-31++G** basis set × 7 −1 • − with the nanoseconds (1.8 10 s ) rates observed in to obtain vibration spectra of [Py (H2O)n=3−5] radical anions experiments.17 and the potential energy curve for proton transfer in • − In this context, we performed a joint theoretical and [Py (H2O)3] , revealing the important role of proton-assisted experimental investigation on deprotonation of G•+ derived charge accommodation in electron capture by a heterocyclic from one-electron oxidation of free G base.
Recommended publications
  • Acid-Base Interactions in Wetting
    J. rldlresiortSci. Tetltttol. \irl. -5.No. l. pp.57-69 ( l99l ) o VsP t9el. Acid-baseinteractions in wetting GEORGE M. WHITESIDES,*HANS A. BIEBUYCK.JOHN P.FOLKERS andKEVIN L. PRIME Departntent of Chentistry,Harvard Universiry',Cambridge, hlA 02138,USA Revisedversion received 27 Aueust1990 Abstract-The studv of the ionizationof carboxylicacid groups at the interfacebetween organic solidsand water demonstratesbroad similaritiesto the ionizationsof thesegroups in homogeneous aqueoussolution, but with importantsystematic differences. Creation of a chargedgroup from a neutralone by protonationor deprotonation(whether -NHr* from -NH, or -CO; from -CO,H) at the interfacebetu'een surface-functionalized polyethylene and \r'ateris more difficult than that in homogeneousaqueous solution. This differenceis probably related to the low effectivedielectric constantof the interface(5=9) relativeto water (e=80). It is not known to what extentthis differencein e (and in other propertiesof the interphase,considered as a thin solventphase) is reflectedin the stabilityof the organicions relativeto their neutral forms in the interphaseand in - solution,and to whatextent in differencesin the concentrationof H' and OH in the interphaseand in solution.Self-assembled monolayers (SAMs)-especially of terminallyfunctionalized alkanethiols (HS(CH:),,X) adsorbedon gold-provide model systemswith relativelywell-ordered structures thar are useful in establishingthe fundamentalsof ionizationof protic acidsand basesat the interface betr"'eenorganic solids and water.These systems,coupled r.r'ithnew analyticalmethods such as photoacousticcalorimetry (PAC) and contact angletitration, may make it possibleto disentangle some of the complex puzzlespresented by proton-transferreactions in the environmentof the organicsolid-* ater interphase. Keyx'ords:Contact ansle titration; photoacoustic calorimetrv: poly'ethylene carboxylic acid: contact angle:polvmer surfaces; u'etting; self-assembled monolavers.
    [Show full text]
  • Hydride Abstraction and Deprotonation – an Efficient Route to Low Co-Ordinate Phosphorus and Arsenic Species
    Hydride Abstraction and Deprotonation – an Efficient Route to Low Co-ordinate Phosphorus and Arsenic Species Laurence J. Taylor, Michael Bühl, Piotr Wawrzyniak, Brian A. Chalmers, J. Derek Woollins, Alexandra M. Z. Slawin, Amy L. Fuller and Petr Kilian* School of Chemistry, EastCHEM, University of St Andrews, St Andrews, Fife, KY16 9ST, UK E-mail: [email protected] URL: http://chemistry.st-andrews.ac.uk/staff/pk/group/ Supporting information for this article is given via a link at the end of the document. Abstract Treatment of Acenap(PiPr2)(EH2) (Acenap = acenaphthene-5,6-diyl; 1a, E = As; 1b, E = P) with Ph3C·BF4 resulted in hydride abstraction to give [Acenap(PiPr2)(EH)][BF4] (2a, E = As; 2b, E = P). These represent the first structurally characterised phosphino/arsino-phosphonium salts with secondary arsine/phosphine groups, as well as the first example of a Lewis base stabilised primary arsenium cation. Compounds 2a and 2b were deprotonated with NaH to afford low co-ordinate species Acenap(PiPr2)(E) (3a, E = As; 3b, E = P). This provides an alternative and practical synthetic pathway to the phosphanylidene-σ4-phosphorane 3b and provides mechanistic insight into the formation of arsanylidene-σ4-phosphorane 3a, indirectly supporting the hypothesis that the previously reported dehydrogenation of 1a occurs via an ionic mechanism. Introduction 4 Alkylidene-σ -phosphoranes (R2C=PR3), more commonly known as Wittig reagents, are widely used intermediates in the formation of C=C double bonds. The arsenic and phosphorus equivalents, 4 4 arsanylidene-σ -phosphoranes (RAs=PR3) and phosphanylidene-σ -phosphoranes (RP=PR3), are rare 4 by comparison.
    [Show full text]
  • Glossary of Terms Used in Photochemistry, 3Rd Edition (IUPAC
    Pure Appl. Chem., Vol. 79, No. 3, pp. 293–465, 2007. doi:10.1351/pac200779030293 © 2007 IUPAC INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY ORGANIC AND BIOMOLECULAR CHEMISTRY DIVISION* SUBCOMMITTEE ON PHOTOCHEMISTRY GLOSSARY OF TERMS USED IN PHOTOCHEMISTRY 3rd EDITION (IUPAC Recommendations 2006) Prepared for publication by S. E. BRASLAVSKY‡ Max-Planck-Institut für Bioanorganische Chemie, Postfach 10 13 65, 45413 Mülheim an der Ruhr, Germany *Membership of the Organic and Biomolecular Chemistry Division Committee during the preparation of this re- port (2003–2006) was as follows: President: T. T. Tidwell (1998–2003), M. Isobe (2002–2005); Vice President: D. StC. Black (1996–2003), V. T. Ivanov (1996–2005); Secretary: G. M. Blackburn (2002–2005); Past President: T. Norin (1996–2003), T. T. Tidwell (1998–2005) (initial date indicates first time elected as Division member). The list of the other Division members can be found in <http://www.iupac.org/divisions/III/members.html>. Membership of the Subcommittee on Photochemistry (2003–2005) was as follows: S. E. Braslavsky (Germany, Chairperson), A. U. Acuña (Spain), T. D. Z. Atvars (Brazil), C. Bohne (Canada), R. Bonneau (France), A. M. Braun (Germany), A. Chibisov (Russia), K. Ghiggino (Australia), A. Kutateladze (USA), H. Lemmetyinen (Finland), M. Litter (Argentina), H. Miyasaka (Japan), M. Olivucci (Italy), D. Phillips (UK), R. O. Rahn (USA), E. San Román (Argentina), N. Serpone (Canada), M. Terazima (Japan). Contributors to the 3rd edition were: A. U. Acuña, W. Adam, F. Amat, D. Armesto, T. D. Z. Atvars, A. Bard, E. Bill, L. O. Björn, C. Bohne, J. Bolton, R. Bonneau, H.
    [Show full text]
  • The Effect of Intramolecular Hydrogen Bond Type on the Gas-Phase Deprotonation of Ortho-Substituted Benzenesulfonic Acids. A
    molecules Article The Effect of Intramolecular Hydrogen Bond Type on the Gas-Phase Deprotonation of ortho-Substituted Benzenesulfonic Acids. A Density Functional Theory Study Nina I. Giricheva 1,*, Sergey N. Ivanov 1 , Anastasiya V. Ignatova 1, Mikhail S. Fedorov 1 and Georgiy V. Girichev 2 1 Department of Fundamental and Applied Chemistry, Ivanovo State University, 153025 Ivanovo, Russia; [email protected] (S.N.I.); [email protected] (A.V.I.); [email protected] (M.S.F.) 2 Department of Physics, Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Russia; [email protected] * Correspondence: [email protected]; Tel.: +7-4932-373703 Academic Editor: Giuseppe Arena Received: 31 October 2020; Accepted: 7 December 2020; Published: 9 December 2020 Abstract: Structural factors have been identified that determine the gas-phase acidity of ortho-substituted benzenesulfonic acid, 2-XC H –SO H, (X = –SO H, –COOH, –NO , –SO F, –C N, 6 4 3 3 2 2 ≡ –NH2, –CH3, –OCH3, –N(CH3)2, –OH). The DFT/B3LYP/cc-pVTZ method was used to perform conformational analysis and study the structural features of the molecular and deprotonated forms of these compounds. It has been shown that many of the conformers may contain anintramolecular hydrogen bond (IHB) between the sulfonic group and the substituent, and the sulfonic group can 0 –1 be an IHB donor or an acceptor. The Gibbs energies of gas-phase deprotonation DrG 298 (kJ mol ) were calculated for all compounds. It has been set that in ortho-substituted benzenesulfonic acids, 0 the formation of various types of IHB is possible, having a significant effect on the DrG 298 values of gas-phase deprotonation.
    [Show full text]
  • Deprotonation Property of Polyoxometalates with Different
    DEPROTONATION PROPERTY OF POLYOXOMETALATES WITH DIFFERENT LACUNARY METAL IONS A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirement for the Degree Master of Science Kexing Xiao May 2019 DEPROTONATION PROPERTY OF POLYOXOMETALATES WITH DIFFERENT LACUNARY METAL IONS Kexing Xiao Thesis Approved: Accepted: _________________________________ _________________________________ Advisor Dean of the College Dr. Tianbo Liu Dr. Ali Dhinojwala _________________________________ _________________________________ Committee Member Dean of the Graduate School Dr. Toshikazu Miyoshi Dr. Chand Midha _________________________________ _________________________________ Department Chair Date Dr. Tianbo Liu ii ABSTRACT Some biomacromolecules own unique deprotonation property due to water ligands which coordinated with metals. Like biomacromolecules, several Keplerate-type polyoxometalates (POMs) were reported to behave as weak polyprotic acids in aqueous solutions due to partial deprotonation of water ligands that attached to the non-Mo metal centers. These macroions show connections to biomacromolecules in self-assembly, self- recognition, catalysis, etc. By changing deprotonation degree, the unique bio-mimic features can be accurately tuned. Therefore, studying the deprotonation property of molecules is important as it will provide a simple model for people to understand more complicated biomacromolecules. In this work, a series of niobium/tungsten mixed-addendum POMs with different lacunary metal ions are used to investigate the deprotonation property of nanoscale molecules. Acid-base titration and isothermal titration calorimetry (ITC) were applied to characterize two POM clusters whose water ligands coordinated with two different lacunary metals, Europium and Copper. The results show that the deprotonation only occurs with the addition of base into the solutions, and the deprotonation capacity of POMs with different metals is different.
    [Show full text]
  • Aqueous Acid–Base Equilibriums”, Chapter 16 from the Book Principles of General Chemistry (Index.Html) (V
    This is “Aqueous Acid–Base Equilibriums”, chapter 16 from the book Principles of General Chemistry (index.html) (v. 1.0M). This book is licensed under a Creative Commons by-nc-sa 3.0 (http://creativecommons.org/licenses/by-nc-sa/ 3.0/) license. See the license for more details, but that basically means you can share this book as long as you credit the author (but see below), don't make money from it, and do make it available to everyone else under the same terms. This content was accessible as of December 29, 2012, and it was downloaded then by Andy Schmitz (http://lardbucket.org) in an effort to preserve the availability of this book. Normally, the author and publisher would be credited here. However, the publisher has asked for the customary Creative Commons attribution to the original publisher, authors, title, and book URI to be removed. Additionally, per the publisher's request, their name has been removed in some passages. More information is available on this project's attribution page (http://2012books.lardbucket.org/attribution.html?utm_source=header). For more information on the source of this book, or why it is available for free, please see the project's home page (http://2012books.lardbucket.org/). You can browse or download additional books there. i Chapter 16 Aqueous Acid–Base Equilibriums Many vital chemical and physical processes take place exclusively in aqueous solution, including the complex biochemical reactions that occur in living organisms and the reactions that rust and corrode steel objects, such as bridges, ships, and automobiles. Among the most important reactions in aqueous solution are those that can be categorized as acid–base, precipitation, and complexation reactions.
    [Show full text]
  • Ls1a Midterm Exam 1 Review Session Problems
    LS1a Midterm Exam 1 Review Session Problems 1. An aqueous mixture of a weak acid and its conjugate base is often used in the laboratory to prepare solutions referred to as buffers. One commonly used acid is called TRIS, which has the chemical formula shown below. + (HOCH2)3CNH3 (acid) (HOCH2)3CNH2 (conjugate base) a. Draw the chemical structures for both the acid and conjugate base forms of TRIS. You may use any drawing convention you wish, but you MUST include all lone pairs of electrons and any net formal charges. Acid Conjugate Base b. Write the chemical reaction for the deprotonation of TRIS acid to its conjugate base using the chemical formulae provided above. + + (HOCH2)3CNH3 (HOCH2)3CNH2 + H c. Write an expression for the equilibrium constant for the deprotonation reaction of the TRIS conjugate base to TRIS acid. [(HOCH ) CNH ] [H+] K = 2 3 2 eq [(HOCH ) CNH +] 2 3 3 d. Is the equilibrium constant you have just defined the same as the acid dissociation constant Ka? Yes e. The pKa of TRIS is 8.3. If the concentration of protonated TRIS is 10 mM in a solution of pH 7.3, what is the concentration (in mM) of the conjugate base at the same pH? The concentration of Tris base is 1 mM. 2. Pictured below is the small molecule thromboxane. This molecule plays a very important role in the process of blood clotting. O OH pKa = 5 cis Thromboxane O CH O 3 OH trans pKa = 15 a. Circle the chiral centers in the molecule. b.
    [Show full text]
  • Single-Crystal X-Ray Diffraction Study of Synthetic Sodium–Hydronium Jarosite
    Phys Chem Minerals DOI 10.1007/s00269-016-0802-0 ORIGINAL PAPER Single‑crystal X‑ray diffraction study of synthetic sodium–hydronium jarosite Jens Najorka1 · James M. T. Lewis2 · John Spratt1 · Mark A. Sephton2 Received: 5 November 2015 / Accepted: 21 January 2016 © The Author(s) 2016. This article is published with open access at Springerlink.com Abstract Na–H3O jarosite was synthesized hydrother- XRD in planetary settings, the temperature-related changes mally at 413 K for 8 days and investigated using single- in jarosite can mimic compositional change. crystal X-ray diffraction (XRD) and electron microprobe analysis (EMPA). The chemical composition of the studied Keywords Natrojarosite · Hydronium jarosite · A crystal is [Na0.57(3) (H3O)0.36 (H2O)0.07] Fe2.93(3) (SO4)2 Crystal structure · Single-crystal X-ray diffraction · Low (OH)5.70 (H2O)0.30, and Fe deficiency was confirmed by temperature · Mars both EMPA and XRD analysis. The single-crystal XRD data were collected at 298 and 102 K, and crystal structures were refined in space group R3m. The room-temperature Introduction data match structural trends of the jarosite group, which vary linearly with the c axis. The low-temperature struc- Jarosite group minerals are members of the alunite super- ture at 102 K shows an anisotropic decrease in the unit cell group, which has the general formula AB3(TO4)2(OH)6. parameters, with c and a decreasing by 0.45 and 0.03 %, A range of cations can be incorporated into jarosite respectively. Structural changes are mainly confined to the group minerals such as A Na, K, Ag, Tl, H3O, NH4, 3 = A site environment.
    [Show full text]
  • Carboxylic Acids a Carbonyl with One OH Attached Is Called a Carboxylic
    Carboxylic Acids A carbonyl with one OH attached is called a carboxylic acid One important property of carboxylic acids is the acidity O O pKa ~4-5 B B H H3C OH H3C O Acetic acid carboxylate Upon deprotonation a carboxylate is formed Carboxylic Acids Nomenclature There are two important guidelines to know about carboxylic acids: 1) The carboxylic acid has the highest priority in naming 2) In common names, the point of substitution is labeled by the Greek letter counting from the carbonyl " O OH # ! This naming is common practice amongst organic chemists, e,g, substitution at α-carbon Carboxylic Acids Examples O Br O OH OH (E)-2-pentenoic acid 3-bromo-2-methylpentanoic acid Or β-bromo-α-methylpentanoic acid (common) CO2H Cl Trans-2-chlorocyclohexanecarboxylic acid Carboxylic Acids Many carboxylic acids have a common name Aromatic rings have a number of these common names CO2H CO2H CO2H Benzoic acid Phthalic acid -As do many dicarboxylic acids O O HO OH Malonic acid (IUPAC: Propanediodic acid) Carboxylic Acids Due to the ability to resonate a lone pair of electrons on oxygen with the carbonyl, the structure of an acid has two preferred conformations O O H O O H s-cis s-trans The s-cis conformer also allows an acid to form a dimer in solution with two hydrogen bonds O H O O H O This hydrogen bonding causes a higher melting point and boiling point compared to compounds of similar molecular weight Carboxylic Acids As noted in the name, carboxylic acids are relatively acidic organic compounds The acidity is rationalized by the ability to resonate
    [Show full text]
  • Essentials of Heterocyclic Chemistry-I Heterocyclic Chemistry
    Baran, Richter Essentials of Heterocyclic Chemistry-I Heterocyclic Chemistry 5 4 Deprotonation of N–H, Deprotonation of C–H, Deprotonation of Conjugate Acid 3 4 3 4 5 4 3 5 6 6 3 3 4 6 2 2 N 4 4 3 4 3 4 3 3 5 5 2 3 5 4 N HN 5 2 N N 7 2 7 N N 5 2 5 2 7 2 2 1 1 N NH H H 8 1 8 N 6 4 N 5 1 2 6 3 4 N 1 6 3 1 8 N 2-Pyrazoline Pyrazolidine H N 9 1 1 5 N 1 Quinazoline N 7 7 H Cinnoline 1 Pyrrolidine H 2 5 2 5 4 5 4 4 Isoindole 3H-Indole 6 Pyrazole N 3 4 Pyrimidine N pK : 11.3,44 Carbazole N 1 6 6 3 N 3 5 1 a N N 3 5 H 4 7 H pKa: 19.8, 35.9 N N pKa: 1.3 pKa: 19.9 8 3 Pyrrole 1 5 7 2 7 N 2 3 4 3 4 3 4 7 Indole 2 N 6 2 6 2 N N pK : 23.0, 39.5 2 8 1 8 1 N N a 6 pKa: 21.0, 38.1 1 1 2 5 2 5 2 5 6 N N 1 4 Pteridine 4 4 7 Phthalazine 1,2,4-Triazine 1,3,5-Triazine N 1 N 1 N 1 5 3 H N H H 3 5 pK : <0 pK : <0 3 5 Indoline H a a 3-Pyrroline 2H-Pyrrole 2-Pyrroline Indolizine 4 5 4 4 pKa: 4.9 2 6 N N 4 5 6 3 N 6 N 3 5 6 3 N 5 2 N 1 3 7 2 1 4 4 3 4 3 4 3 4 3 3 N 4 4 2 6 5 5 5 Pyrazine 7 2 6 Pyridazine 2 3 5 3 5 N 2 8 N 1 2 2 1 8 N 2 5 O 2 5 pKa: 0.6 H 1 1 N10 9 7 H pKa: 2.3 O 6 6 2 6 2 6 6 S Piperazine 1 O 1 O S 1 1 Quinoxaline 1H-Indazole 7 7 1 1 O1 7 Phenazine Furan Thiophene Benzofuran Isobenzofuran 2H-Pyran 4H-Pyran Benzo[b]thiophene Effects of Substitution on Pyridine Basicity: pKa: 35.6 pKa: 33.0 pKa: 33.2 pKa: 32.4 t 4 Me Bu NH2 NHAc OMe SMe Cl Ph vinyl CN NO2 CH(OH)2 4 8 5 4 9 1 3 2-position 6.0 5.8 6.9 4.1 3.3 3.6 0.7 4.5 4.8 –0.3 –2.6 3.8 6 3 3 5 7 4 8 2 3 5 2 3-position 5.7 5.9 6.1 4.5 4.9 4.4 2.8 4.8 4.8 1.4 0.6 3.8 4 2 6 7 7 3 N2 N 1 4-position
    [Show full text]
  • Deprotonation of Salicylic Acid and 5-Nitrosalicylic Acid in Aqueous
    J. Serb. Chem. Soc. 76 (11) 1455–1463 (2011) UDC 547.587.11:54–145.2+547.262:54–723.4 JSCS–4219 Original scientific paper Deprotonation of salicylic acid and 5-nitrosalicylic acid in aqueous solutions of ethanol MOHAMMAD FARAJI1*, ALI FARAJTABAR2, FARROKH GHARIB3 and HASSAN GHASEMNEJAD-BORSA1 1Department of Chemistry, Islamic Azad University, Babol Branch, Babol, 2Department of Chemistry, Islamic Azad University, Jouybar Branch, Jouybar and 3Chemistry Department, Faculty of Sciences, Shahid Beheshti University, Tehran, Evin, Iran (Received 6 May, revised 21 June 2011) Abstract: The protonation constant values of two hydroxybenzoic acids (salicylic and 5-nitrosalicylic acid) were studied in some water–ethanol solutions using spec- trophotometric and potentiometric methods at 25 °C and in an ionic strength of 0.1 M sodium perchlorate. The results indicated that the pKa values increase with in- creasing proportion of ethanol in mixed solvent. The dependence of the protonation constants on the variation of the solvent were correlated by the dielectric constants of the media. Furthermore, for a better understanding of the solvent influence, the obtained results were explained in terms of the Kamlet–Taft parameters α (hydro- gen-bond donor acidity), π (dipolarity/polarizability) and β (hydrogen-bond ac- ceptor basicity) by means of linear solvation energy relationships. The multiple linear regression analysis indicated that the pKa values of salicylic acid were strongly dependent on the non-specific electrostatic solvent–solute interactions, whereas specific hydrogen bonding interactions controlled the protonation of nit- rosalicylic acid in water–ethanol binary mixtures. Keywords: pKa; hydroxybenzoic acids; binary mixtures; solvent effects. INTRODUCTION The value of the protonation constant of compounds, pKa, is a key parameter for predicting the extent of ionization of their functional groups with respect to the proton concentration of a medium.
    [Show full text]
  • First and Second Deprotonation of H2SO4 on Wet Hydroxylated (0001) A-Quartz† Cite This: Phys
    UC Irvine UC Irvine Previously Published Works Title First and second deprotonation of H₂SO₄ on wet hydroxylated (0001) α-quartz. Permalink https://escholarship.org/uc/item/67d3d9h5 Journal Physical chemistry chemical physics : PCCP, 16(40) ISSN 1463-9076 Authors Murdachaew, Garold Gaigeot, Marie-Pierre Halonen, Lauri et al. Publication Date 2014-10-01 DOI 10.1039/c4cp02752c License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California PCCP View Article Online PAPER View Journal | View Issue First and second deprotonation of H2SO4 on wet hydroxylated (0001) a-quartz† Cite this: Phys. Chem. Chem. Phys., 2014, 16, 22287 Garold Murdachaew,*a Marie-Pierre Gaigeot,bc Lauri Halonena and R. Benny Gerberade We present an ab initio molecular dynamics study of deprotonation of sulfuric acid on wet quartz, a topic of atmospheric interest. The process is preferred, with 65% of our trajectories at 250 K showing deprotonation. The time distribution of the deprotonation events shows an exponential behavior and predicts an average deprotonation time of a few picoseconds. The process is exoergic, with most of the temperature increase being due to formation of hydrogen bonds prior to deprotonation. In agreement with existing studies of H2SO4 in water clusters, in liquid water, and at the air–water interface, the main determinant of deprotonation is the degree of solvation of H2SO4 by neighboring water molecules. However, we find that if both hydrogens of H2SO4 are simultaneously donated to water oxygens, deprotonation is disfavored. Predicted spectroscopic signatures showing the presence of solvated hydronium and bisulfate are presented.
    [Show full text]