Designing Effective Lessons on Probability: a Pilot Study Focused on the Illusion of Linearity

Total Page:16

File Type:pdf, Size:1020Kb

Designing Effective Lessons on Probability: a Pilot Study Focused on the Illusion of Linearity Designing Effective Lessons on Probability: A Pilot Study Focused on the Illusion of Linearity Jean-Marc Miszaniec A Thesis in the Department of Mathematics and Statistics Presented in Partial Fulfillment of the Requirements For the degree of Master in the Teaching of Mathematics at Concordia University Montreal, Quebec, Canada APRIL 2016 © Jean-Marc Miszaniec i CONCORDIA UNIVERSITY School of Graduate Studies This is to certify that the thesis prepared By: Jean-Marc Miszaniec Entitled: Designing effective lessons on probability- A pilot study on the illusion of linearity and submitted in partial fulfillment of the requirements for the degree of Master in Teaching of Mathematics complies with the regulations of the University and meets the accepted standards with respect to originality and quality. Signed by the final Examining Committee: Dr. Nadia Hardy Chair Chair’s name Dr. Fred Szabo Examiner Examiner’s name Dr. Nadia Hardy Examiner Examiner’s name Dr. Anna Sierpinska Supervisor Supervisor’s name Approved by _______________________Dr. Nadia Hardy____________________________ Chair of Department or Graduate Program Director April 29th 2016 _____Dr. Anna Sierpiska_____ Dean of Faculty ii Abstract Designing Effective Lessons on Probability: A Pilot Study Focused on the Illusion of Linearity Jean-Marc Miszaniec Concordia University, 2016 This thesis is a summary of a pilot study adopting the design experiment methodology investigating alternative approaches to the teaching of probability – the classical approach (called “Laplace approach” in our study) and the axiomatic approach (called “Properties approach”) – and alternative pedagogical treatments of these approaches: with or without explicit refutations of common misconceptions by the teacher. Four short video-lessons were designed, focused on Bernoulli trials: “Laplace-exposition”; “Laplace-refutation”; “Properties-exposition” and “Properties-refutation “. The primary misconception addressed in the study was the erroneous application of proportionality models: the misconception called “illusion of linearity” in the context of probability. The design and layout of the videos’ visuals and audio were informed by the principles of cognitive load theory in multimedia to ensure optimal learning potential. Each lesson was tried with one volunteer participant, a post-college student. Each participant listened to the video-lesson assigned to him or her, solved six related probability questions, responded to a questionnaire and was interviewed one-on-one by the researcher. Data in the form of participants’ written responses, transcripts of the interviews and researcher’s notes were used for a thorough qualitative analysis and to inform future iterations of the study. Research suggests that the primary obstacles to probability education are misconceptions originating from cognitive biases and limitations. Often misconceptions in probability are attributed to intuitions. Intuitions are easily accessed and experience-based knowledge that can help or hinder individuals while problem solving. One question of this study was whether stating and refuting known misconceptions during a lecture-style lesson on Bernoulli trials (refutation treatment) promotes learning better than a lesson without the mention of misconceptions (exposition treatment). This study also intended to illuminate the nature of probability misconceptions, as research suggests that attributing them to “intuitions” may be misleading. “Intuition”, especially, “robust intuition”, usually refers to a connected set of beliefs, but our observations suggest that students’ predictions about probability of events are based on something much less homogeneous and connected. Participants in the study did not have consistent and robust intuitions about Bernoulli trials but rather a weaker form of basic knowledge called phenomenological primitives. Their intuitions would have to be iii developed, perhaps through a frequentist approach to probability. Participants had a high distrust in their initial guesses – a symptom of the weakness or lack of “robust intuition” – and this played an important role throughout the problem solving process. The Properties approach seemed to have more success than the Laplace approach because of its computational simplicity and because participants may have naturally implemented the Properties approach when thinking of chance events. The approaches did not seem to alter the use of misconceptions. The refutation treatment did not have the expected outcome on learning. Participants subjected to it performed better than those subjected to the exposition treatment but this could be because they “knew” (were told) – not necessarily “understood” – that changes to the number of trials and the number of desired events affect the probability of the desired event in a non-proportional manner. Future iterations of this study would explore further the above conjectures about the nature of the basis of students’ predictions about probability and the appropriateness of different approaches to probability to build on this basis. Also, other common probability misconceptions would be explored to determine their cognitive origins in order to inform the design of instructional content. iv Acknowledgements This thesis would not have been possible without the tremendous amount of effort and insight of Dr. Anna Sierpinska. I am thankful to have been her student, and I am grateful that she has kept me inspired and curious. v Table of Contents 1 Introduction .................................................................................................................................... 1 2 Sources of difficulties in the learning of probability .......................................................................... 5 2.1 Epistemological obstacles in the historical development of probability theory ......................... 6 2.1.1 THE OBSTACLE OF METAPHYSICAL DETERMINISM – GOD DOES NOT PLAY DICE ................ 6 2.1.2 THE OBSTACLE OF PREDICTABILITY – PROBABILITY THEORY DOES NOT REMOVE UNCERTAINTY ABOUT FUTURE EVENTS ............................................................................................ 7 2.1.3 THE OBSTACLE OF PROPORTIONALITY .............................................................................. 9 2.1.4 THE OBSTACLE OF PRESUMED EQUIPROBABILITY – ELEMENTARY EVENTS ARE PROBABLY EQUIPROBABLE .............................................................................................................................. 16 2.1.5 THE OBSTACLE OF INSUFFICIENT SPECIFICATION ............................................................ 21 2.2 Cognitive obstacles in the learning of probability theory ........................................................ 22 2.2.1 Obstacle of Prediction Schemas and Intuitions ............................................................... 23 2.2.2 Obstacle of Fixation ........................................................................................................ 27 2.2.1 Obstacle of Confirmation Bias in Learning ....................................................................... 28 2.2.2 Obstacle of the Unknown Nature of Probabilistic Misconceptions .................................. 29 2.2.3 Obstacle of Limited Cognitive Load ................................................................................. 30 2.3 Didactic obstacles in the learning of probability theory .......................................................... 32 2.3.1 Obstacle of Probability’s Assumed Didactic Structure ..................................................... 32 2.3.2 Obstacle of Ill-defined Basic Terminology ....................................................................... 36 3 Approaches to probability .............................................................................................................. 39 3.1 Classical (Laplace, Theoretical) Interpretation ........................................................................ 39 3.2 Frequentist (Empirical) Interpretation .................................................................................... 40 3.3 Subjective Interpretation ....................................................................................................... 40 3.4 Structural Interpretation (Properties) ..................................................................................... 41 vi 4 The Design of a teaching experiment ............................................................................................. 43 4.1 Objective of Study .................................................................................................................. 43 4.2 Material Content of Video Lessons ......................................................................................... 43 4.2.1 Layout of Lesson Material ............................................................................................... 44 4.2.2 Design of Script and Video .............................................................................................. 45 4.2.3 Measuring mental effort invested and confidence rating ................................................ 46 4.3 Misconceptions addressed in the “Refutation” treatments .................................................... 46 4.3.1 List of misconceptions and their refutations in the Laplace approach “Refutation” version 46 4.3.2 List of misconceptions and their refutations in the Properties approach “Refutation” version 48 4.4 Questions to test students’ understanding of
Recommended publications
  • Effective Program Reasoning Using Bayesian Inference
    EFFECTIVE PROGRAM REASONING USING BAYESIAN INFERENCE Sulekha Kulkarni A DISSERTATION in Computer and Information Science Presented to the Faculties of the University of Pennsylvania in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy 2020 Supervisor of Dissertation Mayur Naik, Professor, Computer and Information Science Graduate Group Chairperson Mayur Naik, Professor, Computer and Information Science Dissertation Committee: Rajeev Alur, Zisman Family Professor of Computer and Information Science Val Tannen, Professor of Computer and Information Science Osbert Bastani, Research Assistant Professor of Computer and Information Science Suman Nath, Partner Research Manager, Microsoft Research, Redmond To my father, who set me on this path, to my mother, who leads by example, and to my husband, who is an infinite source of courage. ii Acknowledgments I want to thank my advisor Prof. Mayur Naik for giving me the invaluable opportunity to learn and experiment with different ideas at my own pace. He supported me through the ups and downs of research, and helped me make the Ph.D. a reality. I also want to thank Prof. Rajeev Alur, Prof. Val Tannen, Prof. Osbert Bastani, and Dr. Suman Nath for serving on my dissertation committee and for providing valuable feedback. I am deeply grateful to Prof. Alur and Prof. Tannen for their sound advice and support, and for going out of their way to help me through challenging times. I am also very grateful for Dr. Nath's able and inspiring mentorship during my internship at Microsoft Research, and during the collaboration that followed. Dr. Aditya Nori helped me start my Ph.D.
    [Show full text]
  • 1 Dependent and Independent Events 2 Complementary Events 3 Mutually Exclusive Events 4 Probability of Intersection of Events
    1 Dependent and Independent Events Let A and B be events. We say that A is independent of B if P (AjB) = P (A). That is, the marginal probability of A is the same as the conditional probability of A, given B. This means that the probability of A occurring is not affected by B occurring. It turns out that, in this case, B is independent of A as well. So, we just say that A and B are independent. We say that A depends on B if P (AjB) 6= P (A). That is, the marginal probability of A is not the same as the conditional probability of A, given B. This means that the probability of A occurring is affected by B occurring. It turns out that, in this case, B depends on A as well. So, we just say that A and B are dependent. Consider these events from the card draw: A = drawing a king, B = drawing a spade, C = drawing a face card. Events A and B are independent. If you know that you have drawn a spade, this does not change the likelihood that you have actually drawn a king. Formally, the marginal probability of drawing a king is P (A) = 4=52. The conditional probability that your card is a king, given that it a spade, is P (AjB) = 1=13, which is the same as 4=52. Events A and C are dependent. If you know that you have drawn a face card, it is much more likely that you have actually drawn a king than it would be ordinarily.
    [Show full text]
  • 3.2.3 Binomial Distribution
    3.2.3 Binomial Distribution The binomial distribution is based on the idea of a Bernoulli trial. A Bernoulli trail is an experiment with two, and only two, possible outcomes. A random variable X has a Bernoulli(p) distribution if 8 > <1 with probability p X = > :0 with probability 1 − p, where 0 ≤ p ≤ 1. The value X = 1 is often termed a “success” and X = 0 is termed a “failure”. The mean and variance of a Bernoulli(p) random variable are easily seen to be EX = (1)(p) + (0)(1 − p) = p and VarX = (1 − p)2p + (0 − p)2(1 − p) = p(1 − p). In a sequence of n identical, independent Bernoulli trials, each with success probability p, define the random variables X1,...,Xn by 8 > <1 with probability p X = i > :0 with probability 1 − p. The random variable Xn Y = Xi i=1 has the binomial distribution and it the number of sucesses among n independent trials. The probability mass function of Y is µ ¶ ¡ ¢ n ¡ ¢ P Y = y = py 1 − p n−y. y For this distribution, t n EX = np, Var(X) = np(1 − p),MX (t) = [pe + (1 − p)] . 1 Theorem 3.2.2 (Binomial theorem) For any real numbers x and y and integer n ≥ 0, µ ¶ Xn n (x + y)n = xiyn−i. i i=0 If we take x = p and y = 1 − p, we get µ ¶ Xn n 1 = (p + (1 − p))n = pi(1 − p)n−i. i i=0 Example 3.2.2 (Dice probabilities) Suppose we are interested in finding the probability of obtaining at least one 6 in four rolls of a fair die.
    [Show full text]
  • Lecture 2: Modeling Random Experiments
    Department of Mathematics Ma 3/103 KC Border Introduction to Probability and Statistics Winter 2021 Lecture 2: Modeling Random Experiments Relevant textbook passages: Pitman [5]: Sections 1.3–1.4., pp. 26–46. Larsen–Marx [4]: Sections 2.2–2.5, pp. 18–66. 2.1 Axioms for probability measures Recall from last time that a random experiment is an experiment that may be conducted under seemingly identical conditions, yet give different results. Coin tossing is everyone’s go-to example of a random experiment. The way we model random experiments is through the use of probabilities. We start with the sample space Ω, the set of possible outcomes of the experiment, and consider events, which are subsets E of the sample space. (We let F denote the collection of events.) 2.1.1 Definition A probability measure P or probability distribution attaches to each event E a number between 0 and 1 (inclusive) so as to obey the following axioms of probability: Normalization: P (?) = 0; and P (Ω) = 1. Nonnegativity: For each event E, we have P (E) > 0. Additivity: If EF = ?, then P (∪ F ) = P (E) + P (F ). Note that while the domain of P is technically F, the set of events, that is P : F → [0, 1], we may also refer to P as a probability (measure) on Ω, the set of realizations. 2.1.2 Remark To reduce the visual clutter created by layers of delimiters in our notation, we may omit some of them simply write something like P (f(ω) = 1) orP {ω ∈ Ω: f(ω) = 1} instead of P {ω ∈ Ω: f(ω) = 1} and we may write P (ω) instead of P {ω} .
    [Show full text]
  • Probability and Counting Rules
    blu03683_ch04.qxd 09/12/2005 12:45 PM Page 171 C HAPTER 44 Probability and Counting Rules Objectives Outline After completing this chapter, you should be able to 4–1 Introduction 1 Determine sample spaces and find the probability of an event, using classical 4–2 Sample Spaces and Probability probability or empirical probability. 4–3 The Addition Rules for Probability 2 Find the probability of compound events, using the addition rules. 4–4 The Multiplication Rules and Conditional 3 Find the probability of compound events, Probability using the multiplication rules. 4–5 Counting Rules 4 Find the conditional probability of an event. 5 Find the total number of outcomes in a 4–6 Probability and Counting Rules sequence of events, using the fundamental counting rule. 4–7 Summary 6 Find the number of ways that r objects can be selected from n objects, using the permutation rule. 7 Find the number of ways that r objects can be selected from n objects without regard to order, using the combination rule. 8 Find the probability of an event, using the counting rules. 4–1 blu03683_ch04.qxd 09/12/2005 12:45 PM Page 172 172 Chapter 4 Probability and Counting Rules Statistics Would You Bet Your Life? Today Humans not only bet money when they gamble, but also bet their lives by engaging in unhealthy activities such as smoking, drinking, using drugs, and exceeding the speed limit when driving. Many people don’t care about the risks involved in these activities since they do not understand the concepts of probability.
    [Show full text]
  • 5 Stochastic Processes
    5 Stochastic Processes Contents 5.1. The Bernoulli Process ...................p.3 5.2. The Poisson Process .................. p.15 1 2 Stochastic Processes Chap. 5 A stochastic process is a mathematical model of a probabilistic experiment that evolves in time and generates a sequence of numerical values. For example, a stochastic process can be used to model: (a) the sequence of daily prices of a stock; (b) the sequence of scores in a football game; (c) the sequence of failure times of a machine; (d) the sequence of hourly traffic loads at a node of a communication network; (e) the sequence of radar measurements of the position of an airplane. Each numerical value in the sequence is modeled by a random variable, so a stochastic process is simply a (finite or infinite) sequence of random variables and does not represent a major conceptual departure from our basic framework. We are still dealing with a single basic experiment that involves outcomes gov- erned by a probability law, and random variables that inherit their probabilistic † properties from that law. However, stochastic processes involve some change in emphasis over our earlier models. In particular: (a) We tend to focus on the dependencies in the sequence of values generated by the process. For example, how do future prices of a stock depend on past values? (b) We are often interested in long-term averages,involving the entire se- quence of generated values. For example, what is the fraction of time that a machine is idle? (c) We sometimes wish to characterize the likelihood or frequency of certain boundary events.
    [Show full text]
  • 1 Normal Distribution
    1 Normal Distribution. 1.1 Introduction A Bernoulli trial is simple random experiment that ends in success or failure. A Bernoulli trial can be used to make a new random experiment by repeating the Bernoulli trial and recording the number of successes. Now repeating a Bernoulli trial a large number of times has an irritating side e¤ect. Suppose we take a tossed die and look for a 3 to come up, but we do this 6000 times. 1 This is a Bernoulli trial with a probability of success of 6 repeated 6000 times. What is the probability that we will see exactly 1000 success? This is de…nitely the most likely possible outcome, 1000 successes out of 6000 tries. But it is still very unlikely that an particular experiment like this will turn out so exactly. In fact, if 6000 tosses did produce exactly 1000 successes, that would be rather suspicious. The probability of exactly 1000 successes in 6000 tries almost does not need to be calculated. whatever the probability of this, it will be very close to zero. It is probably too small a probability to be of any practical use. It turns out that it is not all that bad, 0:014. Still this is small enough that it means that have even a chance of seeing it actually happen, we would need to repeat the full experiment as many as 100 times. All told, 600,000 tosses of a die. When we repeat a Bernoulli trial a large number of times, it is unlikely that we will be interested in a speci…c number of successes, and much more likely that we will be interested in the event that the number of successes lies within a range of possibilities.
    [Show full text]
  • Bernoulli Random Forests: Closing the Gap Between Theoretical Consistency and Empirical Soundness
    Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16) Bernoulli Random Forests: Closing the Gap between Theoretical Consistency and Empirical Soundness , , , ? Yisen Wang† ‡, Qingtao Tang† ‡, Shu-Tao Xia† ‡, Jia Wu , Xingquan Zhu ⇧ † Dept. of Computer Science and Technology, Tsinghua University, China ‡ Graduate School at Shenzhen, Tsinghua University, China ? Quantum Computation & Intelligent Systems Centre, University of Technology Sydney, Australia ⇧ Dept. of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, USA wangys14, tqt15 @mails.tsinghua.edu.cn; [email protected]; [email protected]; [email protected] { } Traditional Bernoulli Trial Controlled Abstract Tree Node Splitting Tree Node Splitting Random forests are one type of the most effective ensemble learning methods. In spite of their sound Random Attribute Bagging Bernoulli Trial Controlled empirical performance, the study on their theoreti- Attribute Bagging cal properties has been left far behind. Recently, several random forests variants with nice theoreti- Random Structure/Estimation cal basis have been proposed, but they all suffer Random Bootstrap Sampling Points Splitting from poor empirical performance. In this paper, we (a) Breiman RF (b) BRF propose a Bernoulli random forests model (BRF), which intends to close the gap between the theoreti- Figure 1: Comparisons between Breiman RF (left panel) vs. cal consistency and the empirical soundness of ran- the proposed BRF (right panel). The tree node splitting of dom forests classification. Compared to Breiman’s Breiman RF is deterministic, so the final trees are highly data- original random forests, BRF makes two simplifi- dependent. Instead, BRF employs two Bernoulli distributions cations in tree construction by using two indepen- to control the tree construction.
    [Show full text]
  • 1 — a Single Random Variable
    1 | A SINGLE RANDOM VARIABLE Questions involving probability abound in Computer Science: What is the probability of the PWF world falling over next week? • What is the probability of one packet colliding with another in a network? • What is the probability of an undergraduate not turning up for a lecture? • When addressing such questions there are often added complications: the question may be ill posed or the answer may vary with time. Which undergraduate? What lecture? Is the probability of turning up different on Saturdays? Let's start with something which appears easy to reason about: : : Introduction | Throwing a die Consider an experiment or trial which consists of throwing a mathematically ideal die. Such a die is often called a fair die or an unbiased die. Common sense suggests that: The outcome of a single throw cannot be predicted. • The outcome will necessarily be a random integer in the range 1 to 6. • The six possible outcomes are equiprobable, each having a probability of 1 . • 6 Without further qualification, serious probabilists would regard this collection of assertions, especially the second, as almost meaningless. Just what is a random integer? Giving proper mathematical rigour to the foundations of probability theory is quite a taxing task. To illustrate the difficulty, consider probability in a frequency sense. Thus a probability 1 of 6 means that, over a long run, one expects to throw a 5 (say) on one-sixth of the occasions that the die is thrown. If the actual proportion of 5s after n throws is p5(n) it would be nice to say: 1 lim p5(n) = n !1 6 Unfortunately this is utterly bogus mathematics! This is simply not a proper use of the idea of a limit.
    [Show full text]
  • Probabilities, Random Variables and Distributions A
    Probabilities, Random Variables and Distributions A Contents A.1 EventsandProbabilities................................ 318 A.1.1 Conditional Probabilities and Independence . ............. 318 A.1.2 Bayes’Theorem............................... 319 A.2 Random Variables . ................................. 319 A.2.1 Discrete Random Variables ......................... 319 A.2.2 Continuous Random Variables ....................... 320 A.2.3 TheChangeofVariablesFormula...................... 321 A.2.4 MultivariateNormalDistributions..................... 323 A.3 Expectation,VarianceandCovariance........................ 324 A.3.1 Expectation................................. 324 A.3.2 Variance................................... 325 A.3.3 Moments................................... 325 A.3.4 Conditional Expectation and Variance ................... 325 A.3.5 Covariance.................................. 326 A.3.6 Correlation.................................. 327 A.3.7 Jensen’sInequality............................. 328 A.3.8 Kullback–LeiblerDiscrepancyandInformationInequality......... 329 A.4 Convergence of Random Variables . 329 A.4.1 Modes of Convergence . 329 A.4.2 Continuous Mapping and Slutsky’s Theorem . 330 A.4.3 LawofLargeNumbers........................... 330 A.4.4 CentralLimitTheorem........................... 331 A.4.5 DeltaMethod................................ 331 A.5 ProbabilityDistributions............................... 332 A.5.1 UnivariateDiscreteDistributions...................... 333 A.5.2 Univariate Continuous Distributions . 335
    [Show full text]
  • Probability Theory
    Probability Theory Course Notes — Harvard University — 2011 C. McMullen March 29, 2021 Contents I TheSampleSpace ........................ 2 II Elements of Combinatorial Analysis . 5 III RandomWalks .......................... 15 IV CombinationsofEvents . 24 V ConditionalProbability . 29 VI The Binomial and Poisson Distributions . 37 VII NormalApproximation. 44 VIII Unlimited Sequences of Bernoulli Trials . 55 IX Random Variables and Expectation . 60 X LawofLargeNumbers...................... 68 XI Integral–Valued Variables. Generating Functions . 70 XIV RandomWalkandRuinProblems . 70 I The Exponential and the Uniform Density . 75 II Special Densities. Randomization . 94 These course notes accompany Feller, An Introduction to Probability Theory and Its Applications, Wiley, 1950. I The Sample Space Some sources and uses of randomness, and philosophical conundrums. 1. Flipped coin. 2. The interrupted game of chance (Fermat). 3. The last roll of the game in backgammon (splitting the stakes at Monte Carlo). 4. Large numbers: elections, gases, lottery. 5. True randomness? Quantum theory. 6. Randomness as a model (in reality only one thing happens). Paradox: what if a coin keeps coming up heads? 7. Statistics: testing a drug. When is an event good evidence rather than a random artifact? 8. Significance: among 1000 coins, if one comes up heads 10 times in a row, is it likely to be a 2-headed coin? Applications to economics, investment and hiring. 9. Randomness as a tool: graph theory; scheduling; internet routing. We begin with some previews. Coin flips. What are the chances of 10 heads in a row? The probability is 1/1024, less than 0.1%. Implicit assumptions: no biases and independence. 10 What are the chance of heads 5 out of ten times? ( 5 = 252, so 252/1024 = 25%).
    [Show full text]
  • Why Retail Therapy Works: It Is Choice, Not Acquisition, That
    ASSOCIATION FOR CONSUMER RESEARCH Labovitz School of Business & Economics, University of Minnesota Duluth, 11 E. Superior Street, Suite 210, Duluth, MN 55802 Why Retail Therapy Works: It Is Choice, Not Acquisition, That Primarily Alleviates Sadness Beatriz Pereira, University of Michigan, USA Scott Rick, University of Michigan, USA Can shopping be used strategically as an emotion regulation tool? Although prior work demonstrates that sadness encourages spending, it is unclear whether and why shopping actually alleviates sadness. Our work suggests that shopping can heal, but that it is the act of choosing (e.g., between money and products), rather than the act of acquiring (e.g., simply being endowed with money or products), that primarily alleviates sadness. Two experiments that induced sadness and then manipulated whether participants made monetarily consequential choices support our conclusions. [to cite]: Beatriz Pereira and Scott Rick (2011) ,"Why Retail Therapy Works: It Is Choice, Not Acquisition, That Primarily Alleviates Sadness", in NA - Advances in Consumer Research Volume 39, eds. Rohini Ahluwalia, Tanya L. Chartrand, and Rebecca K. Ratner, Duluth, MN : Association for Consumer Research, Pages: 732-733. [url]: http://www.acrwebsite.org/volumes/1009733/volumes/v39/NA-39 [copyright notice]: This work is copyrighted by The Association for Consumer Research. For permission to copy or use this work in whole or in part, please contact the Copyright Clearance Center at http://www.copyright.com/. 732 / Working Papers SIGNIFICANCE AND Implications OF THE RESEARCH In this study, we examine how people’s judgment on the probability of a conjunctive event influences their subsequent inference (e.g., after successfully getting five papers accepted what is the probability of getting tenure?).
    [Show full text]