L a B O R a T O R Y M E T H O D S of O R G a N I C C H E M I S T R Y

Total Page:16

File Type:pdf, Size:1020Kb

L a B O R a T O R Y M E T H O D S of O R G a N I C C H E M I S T R Y LABORATORY METHODS OF ORGANIC CHEMISTRY BY L. GATTERMANN COMPLETELY REVISED BY HEINRICH WIELAND TRANSLATED FROM THE TWENTY-FOURTH GERMAN EDITION BY W. MCCARTNEY, PH.D.(EDIN.), A.I.C. LATE ASSISTANT IN THE DEPARTMENT OF MEDICAL CHEMISTRY, UNIVERSITY OF EDINBURGH WITH 59 ILLUSTRATIONS IN THE TEXT NEW YORK THE MACMILLAN COMPANY 1937 COPYRIGHT PRINTFD IN GEEAT BRITAIN BY R. & R. CLARK, LIMITED, EDINBUEGH PEEFACE TO THE TWENTY-FOUKTH EDITION WHILE the student is being educated in preparative work it is necessary for him to acquire some knowledge of the incessant pro- gress in the methods of organic chemistry and at the same time to become familiar with the most recent results of research work. For these reasons a series of changes had to be made when this new edition was prepared. In order not to increase the bulk of the book these objects have been attained by sacrificing examples (e.g. lino- lenic acid, crystal violet, Gattermann-Koch aldehyde synthesis) with which, from this point of view, it seemed possible to dispense. Of the newly included methods two may be mentioned here : analysis by chromatographic adsorption which has attained such great importance, and the ozonisation of unsaturated compounds by the recently well-developed procedure. The section on analytical methods has been completely re- written because the development of organic chemistry has caused the macro-methods practised in the classic period, methods which required considerable amount of material, to come to be regarded as survivals. The candidate for the Doctor degree, we know, no longer has to acquire the art of carrying out combustions since he is rightly unwilling, in practising this art, to sacrifice relatively enormous amounts of pure substance, often laboriously obtained. On various grounds I doubt the advisability of including micro-analysis in general practical courses. During a period of two years we have obtained such good results in this laboratory with a procedure worked out, on the basis of Pregl's method, by Dr. F. Holscher that I have included it in this book. For this procedure 20-30 mg. of substance are required. The position has been reached where the candidate for the Doctor vi LABORATOKY METHODS OF ORGANIC CHEMISTRY degree who reaps from his investigation a harvest not altogether too scanty and too precious, again carries out himself the com- bustion of his substances. It will be understood that, in working out this " meso-analytical " method now recommended we have made use, not only of the funda- mental principles of Pregl, but also of all practical and tested improvements of other authors. (I propose the term " meso- analytical " instead of the clumsy " half-micro ".) A reprint of the English edition of the book has appeared, and I have by chance learned that it has been translated into Russian and already published in two very large editions in Soviet Russia. An Italian translation is in course of preparation. I again have to thank several colleagues for valuable suggestions. In particular I have to thank Prof. F. G. Fischer, Freiburg, and Dr. Elisabeth Dane, as well as my teaching assistant Dr. G. Hesse, for their active collaboration in the revision of the book. The proofs have been corrected by T. Wieland. HEINRICH WIELAND MUNICH, June 1935 PEEFACE TO THE EEVISED (NINETEENTH) EDITION IT is rather more than thirty years ago since Ludwig Gattermann published the first edition of his Anleitungfiir das organisch-chemische Praktikum. The plan of providing the preparative directions with theoretical explanations has certainly proved satisfactory. That is already shown by the wide circulation of the book, of which eighteen editions have appeared. Methodology and technique are undoubtedly the chief objects of the practical course, but aiming merely at culinary art and technical achievement such a course does not accomplish enough. A command of methods implies above all an understanding of their rationale and a power of adapting their numerous modifications to particular requirements; the architect is more important than the mason. We demand that the student should be conversant with the theory of the transfor- mations which he carries out practically. The comments made on the individual preparations are intended to facilitate a survey of the subject in hand, and to encourage the use of text-books and journals by further reading. Now that a knowledge of the principles of organic chemistry may be assumed during the pre- parative work in German universities, the danger of such com- ments becoming a pons asinorum is remote. In rewriting the book the theoretical and practical requirements have been deliberately increased. The equipment which sufficed during the last three decades has now become insufficient for those who desire to work at present-day problems, where difficulties have been accentuated alike in pure science and in technology. The idea of making the preparative work at once an explanation and a living experience of the science has demanded a rearrange- viii LABOKATOKY METHODS OF ORGANIC CHBMISTEY ment of the subject matter in accordance with systematic relation- ships. It will be seen that the new arrangement does not depart seriously from the path which ascends from the more simple to the more difficult. In any case a considerable educational advantage may be expected to result from the rounding off of successive sub- jects. The general part as well as the analytical have been completely revised and greatly shortened in order to make more space for the preparative part. The increase in the number of preparations is intended to provide variety, and to counteract a tendency towards stereotyped routine in the organic practical course. I am greatly indebted to my assistants, especially to Drs. Franz Bergel and F. Gottwalt Fischer, for untiring co-operation in carrying out numerous experiments. Dr. Fischer has, moreover, drawn the new diagrams for this edition and has prepared the index. HBINEICH WIBLAND FEEIBURG I. B., Master 1925 CONTENTS A. SOME GENERAL LABORATORY RULES PAGE Reaction Velocity and Temperature ...... 1 Purification of Organic Substances ...... 3 Crystallisation ........ 4 Chromatographic adsorption ...... 14 Distillation ......... 15 Sublimation ......... 26 Distillation with Steam ....... 27 Evaporation of Solvents ....... 29 Extraction ......... 32 Working with Compressed Gases . .35 Heating under Pressure ....... 37 Stirring and Shaking ........ 38 Determination of the Melting Point ...... 40 B. ORGANIC ANALYTICAL METHODS Detection of Carbon, Hydrogen, Nitrogen, Sulphur, and the Halogens . 43 Organic Elementary Analysis ...... 46 I. Determination of Nitrogen by Dumas' Method . .47 II. Determination of Carbon and Hydrogen by Liebig's Method . 55 III. Determination of Halogen, Sulphur, and other Elements . 69 1. Determination of halogen by the Carius method, p. 69; 2. Argentometric determination of chlorine and bromine, p. 73; 3. Iodine determination by the Leipert-Munster method, p. 76; 4. Determination of sulphur by the Carius method, p. 77; 5. Deter- mination of sulphur by combustion, p. 78; 6. Simultaneous determination of halogen and sulphur, p. 79; 7. Determination of other elements, p. 79. IV. Determination of Organic Groups . .80 1. Volumetric determination of methoxyl and ethoxyl, p. 80; 2. Determination of the acetyl and benzoyl groups, p. 82; 3. Determination of active hydrogen by the method of Tschugaeff and Zerevitinoff, p. 84. V. Determination of Molecular Weight . .86 x LABOKATOKY METHODS OF OEGANIC CHBMISTEY C. PREPARATIVE PART PAGE On the Prevention of Accidents ...... 88 Equipment required by the Beginner . .90 I. THE REPLACEMENT OF HYDROXYL AND HYDBOQEN BY HALOGEN. ALCOHOLS AND OLEITNES 1. Ethyl bromide from ethyl alcohol . .93 • Methyl bromide, p. 95. 2. Ethyl iodide from ethyl alcohol ...... 95 Methyl iodide, p. 96. 3. Benzyl chloride from toluene ...... 100 4. Bromobenzene ........ 103 2>-Dibromobenzene, p. 105. 5. Ethylene from ethyl alcohol. Ethylene dibromide . 107 6. Glycol from ethylene dibromide . .114 7. Isoamyl ether . .117 8. Chloroacetic acid from acetic acid and chlorine . .118 II. CAEBOXYLIC ACIDS AND THEIE SIMPLE DERIVATIVES 1. Acid chlorides ........ 121 (a) Acetyl chloride, p. 121 ; (b) Benzoyl chloride, p. 121 ; Acetanilide, p. 125 ; Benzoyl peroxide, p. 125. 2. Acetic anhydride . t. 126 3. Acetamide ......... 129 Benzamide, p. 130. 4. Urea and semicarbazide . .131 (a) Potassium cyanate by oxidative fusion, p. 131 ; (b) Urea, p. 132 ; (c) Semicarbazide, p. 134; (d) Urea (and uric acid) from urine, p. 135. 5. Nitriles 137 (a) Acetonitrile, p. 137 ; (b) Benzyl cyanide, p. 137. 6. Hydrolysis of a nitrile to the acid. Phenylacetic acid . 140 7. Esters 141 (a) Ethyl acetate from acetic acid and alcohol, p. 141, Ethyl benzoate, p. 141; (6) Isoamyl nitrite, p. 146, Ethyl nitrite, p. 147 ; (c) Ethyl nitrate, p. 148 ; (d) Hydrolysis of fat or vegetable oil, p. 149 ; Prepara- tion of the free fatty acid, p. 150, Glycerol, p. 150; Analysis of fats, p. 151. 8. Conversion of carboxylic acids into the next lower amines . .152 (a) The Hofmann reaction. Methylamine from acetamide, p. 152; (b) The Curtius reaction, p. 153, Benzoyl azide, p. 153, Phenyl cyanate, p. 153, Phenylurethane, p. 154. CONTENTS x III. NlTBO-COMPOUNDS AND THEIR REDUCTION PRODUCTS PAG] 1. Nitromethane . 15( Methylamine, p. 158, N-Methylhydroxylamine, p. 158, Methyl- nitrolio acid, p. 158, Silver fulminate, p. 159, Phenylnitroethylene, p. 160. 2. Nitration of an aromatic hydrocarbon . .161 (a) Nitrobenzene, p. 161; (b) Dinitrobenzene, p. 162. 3. Reduction of a nitro-compound to an amine .... 16£ (a) Aniline from nitrobenzene, p. 165, Diphenyltbiourea, Phenyl- isothiocyanate, p. 169; (b) m-Nitraniline from m-dinitrobenzene, p. 171. 4. Phenylhydroxylamine ....... 174 y-Aminophenol, p. 176, Nitrosophenylhydroxylamine, p. 177. 5. Nitrosobenzene . 17S Nitrosobenzene from aniline and Caro's acid, p. 179, Azobenzene from aniline and nitrosobenzene, p. 181, Azoxybenzene from phenyl- hydroxylamine and nitrosobenzene, p. 182. 6. Hydrazobenzene and azobenzene ...... 183 (a) Hydrazobenzene, p. 183; (b) Azobenzene from hydrazobenzene, p. 184; (c) Benzidine from hydrazobenzene, p. 186. Mechanism of the reduction of nitrobenzene, p.
Recommended publications
  • Tutorial 2 FORMULAS, PERCENTAGE COMPOSITION
    T-6 Tutorial 2 FORMULAS, PERCENTAGE COMPOSITION, AND THE MOLE FORMULAS: A chemical formula shows the elemental composition of a substance: the chemical symbols show what elements are present and the numerical subscripts show how many atoms of each element there are in a formula unit. Examples: NaCl: one sodium atom, one chlorine atom in a formula unit CaCl2: one calcium atom, two chlorine atoms in a formula unit Mg3N2: three magnesium atoms, two nitrogen atoms in a formula unit The presence of a metal in a chemical formula indicates an ionic compound, which is composed of positive ions (cations) and negative ions (anions). A formula with only nonmetals indicates a + molecular compound (unless it is an ammonium, NH4 , compound). Only ionic compounds are considered in this Tutorial. There are tables of common ions in your lecture text, p 56 (cations) and p 57 (anions). A combined table of these same ions can be found on the inside back cover of the lecture text. A similar list is on the next page; all formulas needed in this and subsequent Tutorial problems can be written with ions from this list. Writing formulas for ionic compounds is very straightforward: TOTAL POSITIVE CHARGES MUST BE THE SAME AS TOTAL NEGATIVE CHARGES. The formula must be neutral. The positive ion is written first in the formula and the name of the compound is the two ion names. EXAMPLE: Write the formula for potassium chloride. The name tells you there are potassium, K+, and chloride, Cl–, ions. Each potassium ion is +1 and each chloride ion is -1: one of each is needed, and the formula for potassium chloride is KCl.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2011/0027386 A1 Kurihara Et Al
    US 20110027386A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2011/0027386 A1 Kurihara et al. (43) Pub. Date: Feb. 3, 2011 (54) ANTMICROBAL. ZEOLITE AND (30) Foreign Application Priority Data ANTMICROBAL COMPOSITION Feb. 22, 2006 (JP) ................................. 2006-045241 (75) Inventors: Yasuo Kurihara, Nagoya-shi (JP); Kumiko Miyake, Nagoya-shi (JP); Publication Classification Masashi Uchida, Nagoya-shi (JP) (51) Int. Cl. Correspondence Address: AOIN 59/6 (2006.01) NIXON & VANDERHYE, PC COB 39/02 (2006.01) 901 NORTH GLEBE ROAD, 11TH FLOOR AOIP I/00 (2006.01) ARLINGTON, VA 22203 (US) (52) U.S. Cl. .......................... 424/618; 423/701; 423/700 (73) Assignee: Sinanen Zeomic Co., Ltd., (57) ABSTRACT Nagoya-Shi (JP) The present invention relates to antimicrobial zeolite which comprises zeolite whereina hardly soluble zinc salt is formed (21) Appl. No.: 12/923,854 within fine pores present therein and an antimicrobial com position which comprises the foregoing antimicrobial Zeolite (22) Filed: Oct. 12, 2010 in an amount ranging from 0.05 to 80% by mass. The antimi crobial Zeolite according to the present invention can widely Related U.S. Application Data be applied, without causing any color change, even to the (63) Continuation of application No. 1 1/705,460, filed on goods which undergo color changes with the elapse of time Feb. 13, 2007. when the conventional antimicrobial zeolite is added. US 2011/002738.6 A1 Feb. 3, 2011 ANTMICROBAL. ZEOLITE AND 3. An antimicrobial composition comprising the foregoing ANTMICROBAL COMPOSITION antimicrobial zeolite as set forth in the foregoing item 1 or 2 in an amount ranging from 0.05 to 80% by mass.
    [Show full text]
  • Diaminomaleonitrile
    PREBIOLOGICAL PROTEIN SYNTHESIS BY CLIFFORD N. MATTHEWS AND ROBERT E. MOSER CENTRAL RESEARCH DEPARTMENT, MONSANTO COMPANY, ST. LOUIS, MISSOURI Communicated by Charles A. Thomas, July 18, 1966 A major concern of chemical evolution research1 4 is to find an answer to the question: How were proteins originally formed on Earth before the appearance of life? A widely held view stimulated by the speculations of Oparin,5 Haldane,6 Bernal,7 and Urey8 is that the formation of polypeptides occurred via two essential steps, a-amino acid synthesis initiated by the action of natural high-energy sources on the components of a reducing atmosphere, followed by polycondensations in the oceans or on land. The results of a dozen years of simulation experiments1-4 appear to support this view. Experiments in which high-energy radiations were applied to reduced mixtures of gases have yielded many of the 20 a-amino acids commonly found in proteins. The pioneering research of M\iller9 showed that glycine, alanine, aspartic acid, and glutamic acid were among the products obtained by passing electric discharges through a refluxing mixture of hydrogen, methane, ammonia, and water. Exten- sions of these studies by Abelson10 and others'-4 showed that a-amino acid synthesis could be effected by almost any source of high energy so long as the starting mix- ture contained water and was reducing. Since mechanism studies by Miller9 indicated that aldehydes and hydrogen cyanide were transient intermediates during the course of the reaction, it was concluded that the a-amino acids were formed by the well-known Strecker route involving hydrolysis of aminoacetonitriles arising from the interactions of aldehydes, hydrogen cyanide, and ammonia.
    [Show full text]
  • Elemental Impurities: Standards-Setting Record
    Elemental Impurities: Standards-Setting Record December 20, 2012 I. Purpose Current official standards expressed in General Chapter <231> Heavy Metals were last updated in USP 28. This document summarizes the standards-setting activities relative to USP’s new Elemental Impurities (EI) standards, which are designed to replace <231>. The document is divided into four sections: work done prior to 2000, and work in each of the three revision cycles of the 21st century. II. Prior to 2000 Prior to 2000, there were a number of publications which appeared in Pharmacopeial Forum (PF) relating to compendial testing for EI, some of which related to <231> and others of which related to the USP monograph for Magnesium Stearate. These are summarized below. PF Stimuli article [1975] page 861(Attachment 1) This publication made the following recommendations with respect to <231>: a. It is recommended that all articles now tested by Method I be evaluated by the three-tube monitor procedure to confirm the suitability of the method (i.e., no complexation due to the sample, no interfering colors, and no precipitation) or use with each article. Note: It is hoped that each producer of the articles involved will look at his products and report directly to the appropriate Director of Revision (Dr. D. Banes for NF and USP articles; Mr. Duarward Dodgen for FCC articles) concerning the suitability, or lack of suitability, of the method for use with his products. b. It is recommended that the three-tube monitor procedure, with or without the zirconium modification, be given consideration as a replacement for the current Method I procedure.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,359,162 B1 Wilms (45) Date of Patent: Mar
    USOO6359162B1 (12) United States Patent (10) Patent No.: US 6,359,162 B1 Wilms (45) Date of Patent: Mar. 19, 2002 (54) METHOD FOR PRODUCING OTHER PUBLICATIONS GLUFOSINATES AND INTERMEDIATE Mundy, Bradford P.; Ellerd, Michael G. “Name Reactions PRODUCTS FOR THE SAME and Reagents in Organic Syntheses'; John Wiley and Sons: New York, 1988: p. 244.* (75) Inventor: Lothar Wilms, Hofheim (DE) Ivan A. Natchev, J. Chem. Soc. Perkin. Trans. 1, pp. (73) Assignee: Hoechst Schering AgrEvo GmbH, 125-131, 1989. Berlin (DE) * cited by examiner (*) Notice: Subject to any disclaimer, the term of this Primary Examiner Fiona T. Powers patent is extended or adjusted under 35 (74) Attorney, Agent, or Firm-Frommer Lawrence & U.S.C. 154(b) by 0 days. Haug LLP (21) Appl. No.: 09/486,031 (57) ABSTRACT (22) PCT Filed: Aug. 8, 1998 Glufosinate and the 2-methyl analog thereof can be prepared in a multi-step Synthesis from methylphosphorus com (86) PCT No.: PCT/EP98/05053 pounds (II) with unsaturated keto compounds (III) via adducts (IV), Subsequent reaction under the conditions of a S371 Date: Feb. 17, 2000 Strecker synthesis and finally hydrolysis of the aminonitrile S 102(e) Date: Feb. 17, 2000 (V): (87) PCT Pub. No.: WO99/09039 Step 1: PCT Pub. Date: Feb. 25, 1999 (30) Foreign Application Priority Data HC-P -- 21 Aug. 20, 1997 (DE) ......................................... 19736 125 (51) Int. Cl." .............................. C07F 9/30; CO7F 9/32; (II) (III) (IV) CO7F 9/6571 (52) U.S. Cl. ......................... 558/82; 558/179; 558/346; 558/386; 562/11; 562/24 Step 2: (58) Field of Search .........................
    [Show full text]
  • A Chemical Study of the Water Extract of Meat
    WILLIAMS Chemical Study of the Water Extract of Meat »**• 5 , J^*—J* . fA fee Chemistry B. S. - v. * 1902 Of w * * * * * * * * * * I > f I * * * * f • " sfglf * * % % .* * * * * H* * f 1 * , , * * * ^ * * * * ^ * ^ ^ ' * * * > ^ + :«t ^ * * , * '/-l^^K' * * * * f ^^^^^^ ^ * * * * * " * * ** * * * * «* i * * * * * * ^ * ^ % ^ m e * * * * * W Criniung anb JTabor. f LIBRARY Illinois. | University of li CLASS. BOOK. volumi;. IBn i ^ Accession No. ' ** ' * S ! H 1 HE* Si * * * * * * * * * .* * * % * * * # * ^ y + ^^^8 1 4 * % * ^ ^ % •- ^ ^ ^» i| **** *** ** ^ * >f t- * + f 4 4* 4v 4k , *fk , • 4 / ^pk 4 s^^^^l^^fc^^lfe7 4 4 4 * * * * i^M^Kv^^r** 4 4» 4 4 * 4 4 ' * JmS^ % 4 * 4 * >ffe^j^|k Us 4 4 , 4* 4 4 4 * >f 4, * *** * || II ^ * * * ^l^i^i^ ^ f ^.4 4. * S^7^fe' * * 4 * 4 fc, 4*-. 4 4- 4 4 * @4 ^444 * 4 «f 4k ' % 4- 4 -4 ^4 ^flPfc ^K; *, 4. 4. 4» * 4 4 *. 4 4 4' 4*' 4* lpl^'4/. vf,:, ... % * 4* 4= 4* 4* 4. * 4 4 . 4- * 4 -4~4^^4%4>4* * * * **** 4 4 4 4 % " 4 4* 4- * * ^ 4 4 4 4 , 4 |^y^p^;>^ 4^.*,- ^,-.4, ,,4 -* ^ 4 4. * * ' * * % I t i 4 # 4- * 4 4 "4 4 * . * ^fV"'^ 1 * * * 4 4- * 4-: * 4* 4 4 % * 4* * * * * 4 4 4 4- . 4 4 * * * 4- 4 % 4 ,". ^H^jw I * 4 * * f * 4 4 4 4 * 4 ; * 4 4^ 4. <** 4,,. 4^ 4 4* 4. 4* 4 4* * 4* 4" ' * 4 * * 4 4. * 4 * * 4 4 * 4 ^ * ^ --4 4v -4 4-4 4 4-4^- % ? 4 4 + ^ 4 4-4 # -A % 4*. 4 4* 4* * . 4- 4 4 4 4 * 4 4'* ^ -4- ^ 4 * * + 4 ^ 4 4 * * *• * ^-^-^^ 4 % * *- * 4* * * ********* % % 4- 4^ 4 4^-^- * * + * ^ % % 4* ^ %^4-%^4.*4 ¥ % * * * * ; 4s '#4^ >|, 4^ 4, : -% * 4, * % 4*4 4^ 4 * 4 ^ 4 4 * 4k 4 4, 4.
    [Show full text]
  • Evidence of Ammonium Salts in Comet 67P As Explanation for the Nitrogen Depletion in Cometary Comae
    Evidence of ammonium salts in comet 67P as explanation for the nitrogen depletion in cometary comae Authors: K. Altwegg1*, H. Balsiger1, J.-J. Berthelier2, C. Briois3, M. Combi4, H. Cottin5, J. De Keyser6, F. Dhooghe6, B. Fiethe7, S. A. Fuselier8,9, T. I. Gombosi4, N. Hänni1, M. Rubin1, M. Schuhmann1, I. Schroeder1, T. Sémon1, S. Wampfler2 Affiliations: 1Physikalisches Institut, University of Bern, Sidlerstr. 5, CH-3012 Bern, Switzerland. 2Center for Space and Habitability, University of Bern, Sidlerstr. 5, CH-3012 Bern, Switzerland. 2LATMOS/IPSL-CNRS-UPMC-UVSQ, 4 Avenue de Neptune F-94100, Saint-Maur, France. 3Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), UMR CNRS 7328 – Université d'Orléans, France 4Department of Climate and Space Sciences and Engineering, University of Michigan, 2455 Hayward, Ann Arbor, MI 48109, USA. 5 LISA, UMR CNRS 7583, Université Paris-Est-Créteil, Université de Paris, Institut Pierre Simon Laplace (IPSL), Créteil, France 6Royal Belgian Institute for Space Aeronomy, BIRA-IASB, Ringlaan 3, B-1180 Brussels, Belgium. 7Institute of Computer and Network Engineering (IDA), TU Braunschweig, Hans-Sommer- Straße 66, D-38106 Braunschweig, Germany. 8Space Science Directorate, Southwest Research Institute, 6220 Culebra Rd., San Antonio, TX 78228, USA. 9Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, TX, 78249 Cometary comae are generally depleted in nitrogen. The main carriers for volatile nitrogen in comets are NH3 and HCN. It is known that ammonia readily combines with many acids like e.g. HCN, HNCO, HCOOH, etc. encountered in the interstellar medium as well as in + - cometary ice to form ammonium salts (NH4 X ) at low temperatures.
    [Show full text]
  • Working with Hazardous Chemicals
    A Publication of Reliable Methods for the Preparation of Organic Compounds Working with Hazardous Chemicals The procedures in Organic Syntheses are intended for use only by persons with proper training in experimental organic chemistry. All hazardous materials should be handled using the standard procedures for work with chemicals described in references such as "Prudent Practices in the Laboratory" (The National Academies Press, Washington, D.C., 2011; the full text can be accessed free of charge at http://www.nap.edu/catalog.php?record_id=12654). All chemical waste should be disposed of in accordance with local regulations. For general guidelines for the management of chemical waste, see Chapter 8 of Prudent Practices. In some articles in Organic Syntheses, chemical-specific hazards are highlighted in red “Caution Notes” within a procedure. It is important to recognize that the absence of a caution note does not imply that no significant hazards are associated with the chemicals involved in that procedure. Prior to performing a reaction, a thorough risk assessment should be carried out that includes a review of the potential hazards associated with each chemical and experimental operation on the scale that is planned for the procedure. Guidelines for carrying out a risk assessment and for analyzing the hazards associated with chemicals can be found in Chapter 4 of Prudent Practices. The procedures described in Organic Syntheses are provided as published and are conducted at one's own risk. Organic Syntheses, Inc., its Editors, and its Board of Directors do not warrant or guarantee the safety of individuals using these procedures and hereby disclaim any liability for any injuries or damages claimed to have resulted from or related in any way to the procedures herein.
    [Show full text]
  • Circular of the Bureau of Standards No
    DEPARTMENT OF COMMERCE BUREAU OF STANDARDS George K. Burgess, Director CIRCULAR OF THE BUREAU OF STANDARDS, No. 14S SUMMARY OF TECHNICAL METHODS FOR THE UTILIZATION OF MOLASSES COLLATED FROM PATENT LITERATURE January 28, 1924 PRICE, IS CENTS Sold only by the Superintendent of Documents, Government Ptintine Office Washineton, D. C. WASHINGTON GOVERNMENT PRINTING OFFICE 1924 DEPARTMENT OF COMMERCE BUREAU OF STANDARDS George K. Burgess, Director CIRCULAR OF THE BUREAU OF STANDARDS, No. 145 SUMMARY OF TECHNICAL METHODS FOR THE UTILIZATION OF MOLASSES , COLLATED FROM PATENT LITERATURE January 28, 1924 PRICE, 15 CENTS Sold only by the Superintendent of Documents, Government Printing Office Washington, D. C. WASHINGTON GOVERNMENT PRINTING OFFiCE 1924 SUMMARY OF TECHNICAL METHODS FOR THE UTILI¬ ZATION OF MOLASSES. COLLATED FROM PATENT LITERATURE. ABSTRACT. Economic conditions the world over have made it generally recognized that the future of the American beet-sugar industry is to a great extent dependent on the profitable utilization of the molasses produced. The latter contains numerous val¬ uable substances which have never been successfully recovered outside of Germany. For many years that country has seen fit to veil its developments and discoveries and to maintain the strictest secrecy regarding the operation of its molasses plants. The scientific literature on the subject is practically barren, so far as the actual results achieved in Germany are concerned. In order to carry out the necessary experi¬ mental work for the American industry every possible source of information has been investigated. After a few clues were obtained the United States Patent Office liter¬ ature was searched and eventually over 1,000 German patents on molasses utilization and associated subjects were uncovered.
    [Show full text]
  • 140 ORGANIC ANALYSIS. Elementary Micro-Analysis Of
    140 ABSTEiACTS OF CHEMICAL PAPERR ORGANIC ANALYSIS. Elementary Micro-Analysis of Organic Substances. J. V. Dubsky. (Helv. Chirn. Acta, 1919, 2, 63-75,)-Gas- Volumetric Estimatiort of Nitrogen : The use of Kipp's apparatus for the preparation of air-free carbon dioxide has the draw- back that, owing to the adsorption of the air on the aides of the flask and the marble fragments, tbe gas is unsuitable for the purpose until after one or two days. A more simple and rapid method is to prepare the gas by heating sodium bicarbonate for six to eight minutes in a micro-bicarbonate tube 8 crns. long by 10 to 16 mm. in diameter, cloeed by a cork through which passes a capillary tube. This must fit perfectly into the perforation, or air will be drawn into the - tube. A new form of micro-nitrometer is described. It has a capacity of 1.9 crns., and is sealed by a small amount of mercury, whilst the carbon dioxide is introduoed directly at the base (see diagram). The combustion tube is charged in the manner previously described (Chem. Zeit., 1916, M, 201), but care must be taken that the reduced copper spiral is carefully heated in the Oven to expel the last traces of methyl alcohol. When once reduced, the same spiral may be used for a, series of analyses, provided that tho combustion tube is always allowed to cool in a current of carbon dioxide. It is essential to have a sufficiently long layer of copper oxide in the tube, and for this reason a tube 43 cms.
    [Show full text]
  • Cyanide-Containing Hemoglobin Reagent Composition and Method
    * — llllllllllllllllllllllllllllll OJII Eur°Pean Patent Office <*S Office europeen des brevets (11) EP 0 878 715 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) int. CI.6: G01N 33/72 18.11.1998 Bulletin 1998/47 (21) Application number: 98108384.3 (22) Date of filing: 08.05.1998 (84) Designated Contracting States: (72) Inventor: Malin, Michael J. AT BE CH CY DE DK ES Fl FR GB GR IE IT LI LU Park Ridge, New Jersey 07056 (US) MCNLPTSE Designated Extension States: (74) Representative: AL LT LV MK RO SI Burkert, Frank et al Bayer AG, (30) Priority: 13.05.1997 US 854914 Konzernbereich RP Patente und Lizenzen (71) Applicant: Bayer Corporation 51368 Leverkusen (DE) Pittsburgh, PA 15205-9741 (US) (54) Cyanide-containing hemoglobin reagent composition and method providing acceptable precision, accuracy and freedom from white cell interference on automated hematology analyzers (57) The invention describes an improved stable reagent composition and method for the determination of hemoglobin (Hb) using whole blood samples and automated hematology analyzers, for example, the TECHNICON H*™ series of instruments as sold by the assignee hereof. The Hb reagent comprises an inor- ganic cyanide salt, at least one surfactant and a base and has a final pH of about 10.0 to about 1 1 .2, prefera- bly about 1 0.4 to about 1 1 .2 or less and more preferably about 10.8 to about 11.2 or less. This reagent is intended for use as a universal Hb determination rea- gent for all of the instruments in the aforementioned series and will provide accurate and precise results without accompanying interference from elevated num- bers of white blood cells, especially as found in abnor- mal blood specimens, and without system-to-system variation in the results obtained.
    [Show full text]
  • Method for Inhibiting Fatigue of Aluminum
    Patentamt JEuropaischesJ European Patent Office @ Publication number: 0 042 205 ^ ^ Office europeen des brevets g) EUROPEAN PATENT APPLICATION g) Application number: 81301540.1 © Int. CI.3: C 23 F X/ C 23 F 11/18 g) Date of filing: 08.04.81 (§) Priority: 13.06.80 US 159128 @ Applicant: EARLY CALIFORNIA INDUSTRIES, INC., P.O. Drawer 21 568, Phoenix Arizona 85036 (US) Crouch Robert L 1509 W. ® Date of publication of application : 23.12.81 @ Lnhvent?r Pierson, No. 3, Bulletin 81/51 Phoenix Arizona 85015 (US) @ Representative: Newens, Leonard Eric et al, F.J. CLEVELAND CO. 40/43 Chancery Lane, London @ Designated Contracting States : FR IT WC2A 1 JQ (GB) @ Method for inhibiting fatigue of aluminum. A method of inhibiting the fatigue of aluminum comprising the steps of immersing aluminum in an aque- ous solution of a water soluble cyanide compound at room temperature and continuously maintaining the alu- minum in contact with the aqueous solution. The aque- ous solution is substantially free of chromium. This invention concerns a method for inhibiting fatigue. More particularly, the invention relates to a method for inhibiting the fatigue of aluminum and aluminum alloys. According to a further aspect, the invention relates to inhibiting fatigue corrosion in aluminum and aluminum alloys. A number of aluminum corrosion inhibitors are well known in the art. Chromates, in particular sodium dichromate, have long been recognized as one of the better corrosion inhibitors of aluminum. Another known aluminum corrosion inhibitor is comprised of an aqueous solution of chromic acid or a water soluble chromic salt and, of ferricyanic or ferrocyanic acid or a water soluble salt thereof.
    [Show full text]