Gridded Model Output Statistics: Improving and Expanding

Total Page:16

File Type:pdf, Size:1020Kb

Gridded Model Output Statistics: Improving and Expanding 6A.6 GRIDDED MODEL OUTPUT STATISTICS: IMPROVING AND EXPANDING Kathryn K. Gilbert*, Bob Glahn, Rebecca L. Cosgrove1, Kari L. Sheets, Geoffrey A. Wagner2 Meteorological Development Laboratory National Weather Service, NOAA Silver Spring, MD 1National Center for Environmental Prediction, National Weather Service, Camp Springs, MD 2Wyle Information Systems, McLean, VA 1. INTRODUCTION Since the original implementation, gridded MOS has undergone several adaptations to improve For years, National Weather Service (NWS) consistency as well as regional applicability. MDL forecasters have used Model Output Statistics developers have welcomed assessments of grid- (MOS) guidance (Glahn and Lowry 1972) as an ded MOS from local forecasters in order to make aid in producing text forecast products issued to adjustments to provide guidance which is both the user community. However, the methods fore- representative of the local area, and compatible casters use to generate products have changed with the process for generating forecasts for because of requirements to produce the official NDFD. Some of the improvements resulting from NWS 7-day forecasts on high-resolution grids. forecaster feedback include: removal of unrepre- These gridded, or digital, forecasts are put into a sentative forecasts from the analysis, expansion of National Digital Forecast Database (NDFD; Glahn the grid coverage, and modifications to the and Ruth 2003). NWS forecasters need support- land/water mask. ing guidance available on a grid, at a resolution comparable to the grid resolution used at the local In this paper, we discuss the current state of forecast office. One approach to the problem of the gridded MOS suite, as well as ongoing en- providing guidance on the required grid is to objec- hancements to the operational GFS-based MOS tively analyze forecasts at MOS stations. Initial guidance, and the process used to diagnose po- testing and development resulted in a prototype tential errors in the analysis. Challenges encoun- gridded MOS system over the western CONUS tered in gathering and processing the data neces- (Dallavalle and Glahn 2005). The first set of op- sary to support the development on a high- erational Global Forecast System (GFS)-based resolution grid are described. In addition, current gridded MOS guidance using this method became and future development activities are presented. available in the National Digital Guidance Data- base (NDGD) in August 2006 over the contermi- 2. CURRENT STATE OF GRIDDED MOS nous U.S. (CONUS) on a 5-km grid. Since the initial CONUS implementation in 2006, more 2.1 Development Techniques weather elements have been added and the geo- graphic coverage has expanded to include an There are two methods currently in use to pro- Alaska domain. Gridded MOS has become a use- duce MOS guidance on a grid. The main method ful resource to NWS forecasters for initializing employed to produce the weather fields in the forecasts, particularly in the forecast periods from gridded MOS guidance is based on an objective days 4 through 7. Emphasis is placed in the later technique to analyze the MOS station-based fore- time periods on only making changes to the MOS casts to points. A scheme of successive correc- grids when and where the forecasters see an ob- tions has been extended to analyze site-specific vious opportunity to improve over the guidance. MOS forecasts to the desired grid (Glahn et al. 2009). This scheme is similar to the approach The gridded MOS guidance has demonstrated implemented by Cressman (1959), but it has been many of the positive attributes of its parent station- expanded to account for differences between land based MOS, while including options for tailoring and water forecast points, and it can account for the grid point values to best reflect the terrain. changes in an element’s values due to vertical changes in the elevation. The vertical correction is *Corresponding author address: Kathryn Gilbert, commonly associated with decreasing tempera- 1325 East-West Highway, W/OST22, Sta. 11306, tures as elevation is increasing. However there Silver Spring, MD 20910 e-mail: are cases where the elevation correction can take [email protected] on positive values over limited areas, as with tem- 1 perature inversions. The current gridded MOS vance). Guidance is available in graphical form on software configuration performs some amount of the NDGD web site shown in Figure 1 elevation correction, either positive or negative (http://www.weather.gov/mdl/synop/gridded/sector (snowfall amounts and wind speed may increase s/index.php) and it is also encoded and transmit- with height for example) for every analyzed ted in GRIB2 format. weather element except the probability of precipi- tation and wind direction. For all weather elements except the thunder- storms, MOS guidance is developed for specific The other method uses a generalized operator observing locations. For continuous variables equation applied over the entire domain. This such as temperature and wind speed, the histori- technique combines all of the stations into a single cal sample of observations and model data is region to increase the sample size and stability of adequate to derive single-station MOS equations the equations, which is particularly important for for each projection, cycle, and season. For many some relatively rare and non-continuous weather discontinuous elements, a larger sample com- elements. A single MOS equation is developed for posed of several stations combined outweighs the a given cycle and projection, which may then be slight loss of specific characteristics at an observ- applied to any station or grid point. The general- ing site. Variables such as the probability of pre- ized operator method is used to generate the cipitation and snowfall amounts are developed for probability of a thunderstorm equations currently groups of stations with similar characteristics available in NDGD (Shafer and Gilbert 2008; within a geographic area. These groups of sta- Hughes and Trimarco 2004). Thunderstorm fore- tions are referred to as regions. Using relative cast equations are developed on a 40-km grid and frequencies or other geoclimatic variables specific the resulting forecasts are then interpolated to the to each observing site provides additional site- 5-km NDFD grid. These gridded MOS thunder- specific information. storm forecasts represent the probability of one or more cloud-to-ground lightning strikes within a 2.3 Cycle Averaging 40-km area centered around each 5-km grid point during the given time period. Cycle averaging was implemented to reduce the impacts of model flip-flops and pulsing in small 2.2 Available Weather Elements and Projec- areas between cycles. These oscillations between tions cycles may be attributed to several factors; the numerical weather prediction models themselves The goal of gridded MOS is to provide guid- have some temporal inconsistencies between ance on high-resolution grids, which corresponds model runs, samples available for the 0000 and to all of the elements in NDFD, and provide this 1200 UTC MOS developments vary for some ele- guidance at the same time and space resolution ments, not every station has a forecast for a par- needed by the NWS forecasters, while maintaining ticular element at all projections, and finally even a level of accuracy and skill comparable to the when stations and sample sizes are matched be- station-based MOS guidance. GFS-based MOS tween cycles, there is no guarantee the unique grids are currently produced on a 5-km grid over regression equations will yield consistent fore- the CONUS and a 3-km grid over Alaska from the casts. 0000 and 1200 UTC GFS model runs. Unless otherwise noted, the following gridded elements An "ensemble of two" approach minimizes the are available in NDGD on the hour every 3 hours oscillation from run to run for an analyses made from 6 to 192 hours in advance: daytime maxi- from only one run. It is a simple 50%/50% weight- mum (max) and nighttime minimum (min) tem- ing of the current cycle and the previous cycle perature, 2-m temperature, 2-m dewpoint, relative 12 hours earlier. So, for instance, the 36-h fore- humidity calculated from the temperature and cast from one cycle is blended together with the dewpoint, sky cover, wind direction, wind speed, 48-h forecast from the previous cycle. Tests have wind gusts, probability of precipitation over 6- and shown that cycle averaging makes little difference 12-h time periods, total expected precipitation in the accuracy or bias of the gridded MOS fore- amount over 6- and 12-h time periods (CONUS cast (Ruth et al. 2009). only, valid out to 156 hours in advance), probabil- ity of thunderstorms over 3-, 6-, and 12-h time pe- Cycle averaging is used for all of the station- riods, and total snowfall amount over a 24-h time based gridded MOS elements except the wind period (CONUS only, valid out to 132 hours in ad- speeds, gusts and direction. The gridded wind 2 averaging was turned off after forecasters noticed 4. CHARACTERISTICS cases of unrealistic wind patterns, described in more detail in Section 5. Gridded MOS has several strengths, one being a lack of discontinuities between WFO boundaries, 3. POST-PROCESSING evident in some forecast fields in NDFD. The use of vertical elevation differences to adjust some A limited amount of internal grid consistency gridded MOS fields results in realistic features checking (i.e. quality control) has been imple- which correspond well to the influencing terrain. mented. Before the station values are offered to The lapse rate used in the gridded MOS analysis the analysis software, the station forecasts are is not limited to a standard lapse rate, but rather checked for consistency. Some inconsistency is the data themselves determine the amount of ver- introduced to the grids due to the analysis proce- tical correction to apply with changing elevation.
Recommended publications
  • Verification of Model Output Statistics Forecasts Associated with the North
    Allison Monarski, University of Maryland Masters Scholarly Paper, December 6, 2011 1 Department of Atmospheric and Oceanic Science Verification of Model Output Statistics forecasts associated with the North American Mesoscale model upgrade Results of work done during the Student Career Experience Program tour with the Statistical Modeling Branch (SMB) of the Meteorological Development Lab (MDL) of the National Weather Service (NWS), Silver Spring, MD, under the guidance of Mark Antolik & Kathy Gilbert, NWS/MDL/SMB I. Introduction and Motivation For the past four decades, the model output statistics (MOS) technique has been in operation and forecasters and meteorologists globally have used forecasts generated through MOS. MOS is a statistical approach to forecasting which involves determination of a relationship between a predictand and numerical weather prediction (NWP) model output for a variety of variables (predictors) at the same projection times (Glahn and Lowry 1972). Through the years, MOS has provided reliable forecasts, predicting quantities that the underlying NWP model is unable to predict. Specifically, the MOS technique can account for local effects on certain elements that the coarser resolution NWP model cannot detect (Antolik and Baker 2009). Usually, statistical forecasting systems, such as MOS, rely on many years of stable development data for optimal performance. However, due to frequent changes in the underlying structure, physics, and dynamics of the NWP models, this kind of data is difficult to obtain. Fortunately, developers at the National Weather Service’s (NWS) Meteorological Development Laboratory (MDL) have been able to show that reliable MOS forecasts can be produced using as little as just two years of data from models which are evolving (Antolik and Baker 2009).
    [Show full text]
  • Model Output Statistics Cascade to Improve Day Ahead Solar Irradiance Forecast
    Available online at www.sciencedirect.com ScienceDirect Solar Energy 117 (2015) 99–113 www.elsevier.com/locate/solener Model output statistics cascade to improve day ahead solar irradiance forecast M. Pierro a, F. Bucci a, C. Cornaro a,⇑, E. Maggioni b, A. Perotto b, M. Pravettoni c, F. Spada b a Department of Enterprise Engineering, University of Rome Tor Vergata, Via del Politecnico, 1, 00133 Rome, Italy b IDEAM srl, Via Frova 34, Cinisello Balsamo, MI, Italy c Institute of Applied Sustainability to the Build Environment, University of Applied Sciences and Arts of Southern Switzerland, Canobbio CH-6952, Switzerland Received 29 September 2014; received in revised form 9 April 2015; accepted 26 April 2015 Communicated by: Associate Editor Christian A. Gueymard Abstract In this paper a new hybrid Model Output Statistics (MOS), named MOS cascade, is developed to refine the day-ahead forecast of the global horizontal irradiance provided by the Weather Research and Forecast (WRF) model. The proposed approach is based on a sequence of two different MOS. The first, called MOSRH, is a new physically based algorithm, built to correct the treatment of humidity in the WRF radiation schemes. The second, called MOSNN, is based on artificial intelligence techniques and aims to correct the main systematic and learnable errors of the Numerical Weather Prediction output. The 1-day and 2-day forecast accuracies are analyzed via direct comparison with irradiance data measured in two sites, Rome and Lugano. The paper shows that a considerable reduction in error was achieved using MOSRH model and MOS cascade. The differences between the two sites are discussed in details.
    [Show full text]
  • Supporting Gridded Model Output Statistics Forecast Guidance System
    Supporting Gridded Model Output Statistics Forecast Guidance System Kari L. Sheets ABSTRACT The Meteorological Development Laboratory (MDL) of NOAA’s National Weather Service is creating a National Digital Guidance Database at a fine resolution to comple- ment the existing National Digital Forecast Database. To help accomplish this goal, MDL is producing a gridded Model Output Statistics (MOS) forecast guidance system. Currently, gridded MOS populates a 5-km grid with elements needed for weather fore- cast grids covering the contiguous United States. This paper describes the use of Geographic Information System (GIS) to gener- ate and quality control geophysical variables, create a station dictionary including land/water designations for the observing stations, and analyze or troubleshoot problem areas in gridded MOS weather elements. Stations used in traditional MOS development are unevenly distributed, leaving developers searching for additional data to aid in ana- lyzing these values to the aforementioned grid. GIS is integral in supplying the data to move from station-based MOS to gridded MOS. 1. Introduction The Meteorological Development Laboratory (MDL) of NOAA’s National Weather Service (NWS) is developing a National Digital Guidance Database (NDGD) at fine reso- lutions to complement the existing National Digital Forecast Database (NDFD, Glahn and Ruth 2003). To help accomplish this goal, MDL is creating a gridded forecast guid- ance system. Current forecast guidance is produced for the United States and its terri- tories at approximately 1800 hourly observing sites and over 5000 cooperative observ- ing sites by using the Model Output Statistics (MOS) technique (Glahn and Lowry 1972). In the MOS approach, observed predictand data are statistically related to predictors such as forecasts from dynamical models, surface observations, and geoclimatic infor- mation.
    [Show full text]
  • Statistical Post-Processing of Ensemble Forecasts of Temperature in Santiago De Chile
    Statistical post-processing of ensemble forecasts of temperature in Santiago de Chile Mailiu D´ıaza, Orietta Nicolisa;b, Julio Cesar´ Mar´ınc and Sandor´ Barand aDepartment of Statistics, University of Valpara´ıso Gran Breta~na1111, Valpara´ıso,Chile bFaculty of Engineering, Andres Bello University Quillota 980, Vi~nadel Mar, Chile cDepartment of Meteorology, University of Valpara´ıso Gran Breta~na644, Valpara´ıso,Chile dFaculty of Informatics, University of Debrecen Kassai ´ut26, H-4028 Debrecen, Hungary Abstract Currently all major meteorological centres generate ensemble forecasts using their operational ensemble prediction systems; however, it is a general problem that the spread of the ensemble is too small, resulting in underdispersive forecasts, leading to a lack of calibration. In order to correct this problem, different statistical calibration techniques have been developed in the last two decades. In the present work different post-processing techniques are tested for calibrating arXiv:1809.04042v1 [stat.AP] 11 Sep 2018 9 member ensemble forecast of temperature for Santiago de Chile, obtained by the Weather Research and Forecasting (WRF) model using different planetary boundary layer and land surface model parametrization. In particular, the ensemble model out- put statistics (EMOS) and Bayesian model averaging techniques are implemented and since the observations are characterized by large altitude differences, the estimation of model parameters is adapted to the actual conditions at hand. Compared to the raw ensemble all tested post-processing approaches significantly improve the calibration of probabilistic and the accuracy of point forecasts. The EMOS method using parameter estimation based on expert clustering of stations (according to their altitudes) shows the best forecast skill.
    [Show full text]
  • Statistical Postprocessing of Ensemble Forecasts for Severe Weather at Deutscher Wetterdienst
    Nonlin. Processes Geophys., 27, 473–487, 2020 https://doi.org/10.5194/npg-27-473-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Statistical postprocessing of ensemble forecasts for severe weather at Deutscher Wetterdienst Reinhold Hess Deutscher Wetterdienst, Offenbach, Germany Correspondence: Reinhold Hess ([email protected]) Received: 7 January 2020 – Discussion started: 20 January 2020 Revised: 13 August 2020 – Accepted: 19 August 2020 – Published: 6 October 2020 Abstract. This paper gives an overview of Deutscher Wet- 1 Introduction terdienst’s (DWD’s) postprocessing system called Ensemble- MOS together with its motivation and the design con- Ensemble forecasting rose with the understanding of the lim- sequences for probabilistic forecasts of extreme events ited predictability of weather. This limitation is caused by based on ensemble data. Forecasts of the ensemble systems sparse and imperfect observations, approximating numerical COSMO-D2-EPS and ECMWF-ENS are statistically opti- data assimilation and modelling, and by the chaotic phys- mised and calibrated by Ensemble-MOS with a focus on se- ical nature of the atmosphere. The basic idea of ensemble vere weather in order to support the warning decision man- forecasting is to vary observations, initial and boundary con- agement at DWD. ditions, and physical parameterisations within their assumed Ensemble mean and spread are used as predictors for lin- scale of uncertainty and rerun the forecast model with these ear and logistic multiple regressions to correct for conditional changes. biases. The predictands are derived from synoptic observa- The obtained ensemble of forecasts expresses the distribu- tions and include temperature, precipitation amounts, wind tion of possible weather scenarios to be expected.
    [Show full text]
  • REFORECASTS an Important Dataset for Improving Weather Predictions
    REFORECASTS An Important Dataset for Improving Weather Predictions BY THOMAS M. HAMILL, JEFFREY S. WHITAKER, AND STEVEN L. MULLEN Statistical correction of today’s numerical forecast using a long set of reforecasts (hindcasts) dramatically improves its forecast skill. eanalyses such as the National Centers for reanalysis datasets have facilitated a wide range of Environmental Prediction (NCEP)–National research; for example, the Kalnay et al. (1996) article R Center for Atmospheric Research (NCAR) re- above has been cited more than 3200 times. analysis (Kalnay et al. 1996) and the European Centre In this article, we explore the value of a companion for Medium-Range Weather Forecasts (ECMWF) dataset to reanalyses, which we shall call “reforecasts.” 40-year reanalysis (ERA-40; Uppala et al. 2005) have These are retrospective weather forecasts generated become heavily used products for geophysical science with a fixed numerical model. Model developers research. These reanalyses run a practical, consistent could use them for diagnosing model bias, thereby data assimilation and short-range forecast system facilitating the development of new, improved ver- over a long period of time. While the observation sions of the model. Others could use them as data type and quality may change somewhat, the forecast for statistically correcting weather forecasts, thereby model and assimilation system are typically fixed. developing improved, user-specific products [e.g., This facilitates the generation of a reanalysis dataset model output statistics (MOS) Glahn and Lowry that is fairly consistent in quality over time. These 1972; Carter et al. 1989]. Others may use them for studies of atmospheric predictability. Unfortunately, extensive sets of reforecasts are not commonly pro- AFFILIATIONS: HAMILL AND WHITAKER—NOAA Earth System duced utilizing the same model version as is run Research Lab, Physical Sciences Division, Boulder, Colorado; operationally.
    [Show full text]
  • Articles Described by the Community Multiscale Air Datasets, Moderate-To-Large Biases Exist in Hourly Precipita- Quality Modeling System
    Geosci. Model Dev., 14, 3969–3993, 2021 https://doi.org/10.5194/gmd-14-3969-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Evaluation of the offline-coupled GFSv15–FV3–CMAQv5.0.2 in support of the next-generation National Air Quality Forecast Capability over the contiguous United States Xiaoyang Chen1, Yang Zhang1, Kai Wang1, Daniel Tong2,6, Pius Lee4,3, Youhua Tang3,4, Jianping Huang5,6, Patrick C. Campbell3,4, Jeff Mcqueen5, Havala O. T. Pye7, Benjamin N. Murphy7, and Daiwen Kang7 1Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA 2Department of Atmospheric, Oceanic and Earth Sciences, George Mason University, Fairfax, VA 22030, USA 3Center for Spatial Information Science and System, George Mason University, Fairfax, VA 22030, USA 4Air Resources Laboratory, National Oceanic and Atmospheric Administration, College Park, MD 20740, USA 5National Oceanic and Atmospheric Administration/National Centers for Environmental Prediction/Environmental Modeling Center, College Park, MD 20740, USA 6IM Systems Group, Rockville, MD 20852, USA 7Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA Correspondence: Yang Zhang ([email protected]) Received: 11 August 2020 – Discussion started: 2 September 2020 Revised: 19 January 2021 – Accepted: 7 February 2021 – Published: 29 June 2021 Abstract. As a candidate for the next-generation National Teorological Aerodrome Reports (METAR) dataset.
    [Show full text]
  • Performance Assessment of General Circulation Model in Simulating Daily Precipitation and Temperature Using Multiple Gridded Datasets
    water Article Performance Assessment of General Circulation Model in Simulating Daily Precipitation and Temperature Using Multiple Gridded Datasets Najeebullah Khan 1,2, Shamsuddin Shahid 1 , Kamal Ahmed 1,2, Tarmizi Ismail 1 , Nadeem Nawaz 2 and Minwoo Son 3,* 1 School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Malaysia; [email protected] (N.K.); [email protected] (S.S.); [email protected] (K.A.); [email protected] (T.I.) 2 Faculty of Water Resource Management, Lasbela University of Agriculture Water and Marine Sciences (LUAWMS), 90150 Uthal, Balochistan, Pakistan; [email protected] 3 Department of Civil Engineering, Chungnam National University, Daejeon 34134, Korea * Correspondence: [email protected]; Tel.: +82-42-821-5676 Received: 28 September 2018; Accepted: 4 December 2018; Published: 6 December 2018 Abstract: The performance of general circulation models (GCMs) in a region are generally assessed according to their capability to simulate historical temperature and precipitation of the region. The performance of 31 GCMs of the Coupled Model Intercomparison Project Phase 5 (CMIP5) is evaluated in this study to identify a suitable ensemble for daily maximum, minimum temperature and precipitation for Pakistan using multiple sets of gridded data, namely: Asian Precipitation– Highly-Resolved Observational Data Integration Towards Evaluation (APHRODITE), Berkeley Earth Surface Temperature (BEST), Princeton Global Meteorological Forcing (PGF) and Climate Prediction Centre (CPC) data. An entropy-based robust feature selection approach known as symmetrical uncertainty (SU) is used for the ranking of GCM. It is known from the results of this study that the spatial distribution of best-ranked GCMs varies for different sets of gridded data.
    [Show full text]
  • Guidelines on Ensemble Prediction System Postprocessing
    Guidelines on Ensemble Prediction System Postprocessing 2021 edition WEATHER CLIMATE WATER CLIMATE WEATHER WMO-No. 1254 Guidelines on Ensemble Prediction System Postprocessing 2021 edition WMO-No. 1254 WMO-No. 1254 © World Meteorological Organization, 2021 The right of publication in print, electronic and any other form and in any language is reserved by WMO. Short extracts from WMO publications may be reproduced without authorization, provided that the complete source is clearly indicated. Editorial correspondence and requests to publish, reproduce or translate this publication in part or in whole should be addressed to: Chair, Publications Board World Meteorological Organization (WMO) 7 bis, avenue de la Paix Tel.: +41 (0) 22 730 84 03 P.O. Box 2300 Fax: +41 (0) 22 730 81 17 CH-1211 Geneva 2, Switzerland Email: [email protected] ISBN 978-92-63-11254-5 NOTE The designations employed in WMO publications and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of WMO concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products does not imply that they are endorsed or recommended by WMO in preference to others of a similar nature which are not mentioned or advertised. PUBLICATION REVISION TRACK RECORD Part/chapter/ Date Purpose of amendment Proposed by Approved by section CONTENTS Page ACKNOWLEDGEMENTS . vii EXECUTIVE SUMMARY . viii KEY RECOMMENDATIONS . ix CHAPTER 1 . INTRODUCTION . 1 CHAPTER 2 . PHYSICAL POSTPROCESSING . 5 2.1 Meteorological diagnostic information.
    [Show full text]
  • A Model Output Deep Learning Method for Grid Temperature Forecasts in Tianjin Area
    applied sciences Article A Model Output Deep Learning Method for Grid Temperature Forecasts in Tianjin Area Keran Chen 1,2 , Ping Wang 1,2, Xiaojun Yang 3, Nan Zhang 3 and Di Wang 1,2,* 1 School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China; [email protected] (K.C.); [email protected] (P.W.) 2 Joint Laboratory of Intelligent Identification & Nowcasting Service for Convective System, CMA Public Meteorological Service Center, Beijing 100081, China 3 Tianjin Bureau of Meteorology, Tianjin 300074, China; [email protected] (X.Y.); [email protected] (N.Z.) * Correspondence: [email protected] Received: 25 June 2020; Accepted: 18 August 2020; Published: 22 August 2020 Abstract: In weather forecasting, numerical weather prediction (NWP) that is based on physical models requires proper post-processing before it can be applied to actual operations. Therefore, research on intelligent post-processing algorithms has always been an important topic in this field. This paper proposes a model output deep learning (MODL) method for post-processing, which can improve the forecast effect of numerical weather prediction. MODL is an end-to-end post-processing method based on deep convolutional neural network, which directly learns the mapping relationship between the forecast fields output by numerical model and the observation temperature field in order to obtain more accurate temperature forecasts. MODL modifies the existing deep convolution model according to the post-processing problem’s characteristics, thereby improving the performance of the weather forecast. This paper uses The International Grand Global Ensemble (TIGGE) dataset from European Centre for Medium-Range Weather Forecasts (ECMWF) and the observed air temperature of 2 m obtained from Tianjin meteorological station in order to test the post-processing performance of MODL.
    [Show full text]
  • SCN21-21 Updated: Notification of Dissemination Changes of Models Downstream of the GFS Due To
    NOUS41 KWBC 181800 AAA PNSWSH Service Change Notice 21-21 Updated National Weather Service Headquarters Silver Spring MD 200 PM EDT Thu Mar 18 2021 To: Subscribers: -NOAA Weather Wire Service -Emergency Managers Weather Information Network -NOAAPort Other NWS Partners, Users and Employees FROM: Mike Farrar Director National Centers for Environmental Prediction SUBJECT: Updated: Notification of Dissemination Changes of Models Downstream of the GFS due to the GFSv16 Upgrade: Effective March 22, 2021 Updated to reflect delay in implementation date to Monday, March 22 due to Critical Weather Day. Effective on or about March 22, 2021, beginning with the 1200 Coordinated Universal Time (UTC) cycle of the Global Forecast System (GFS), models that use GFS products for initialization will experience delays associated with the upgrade to GFS V16. Due to timing changes with the GFSv16 upgrade, which are laid out in its own SCN, the following downstream models will have timing changes across all dissemination channels including AWIPS, Satellite Broadcast Network(SBN)/NOAAPort, and NCEP and NWS web services (NOMADS, NOMADS GDS, NOMADS grib filter, FTPPRD and TGFTP). Ensemble Tracker: up to 16 min later https://nomads.ncep.noaa.gov/pub/data/nccf/com/ens_tracker/prod/ ftp://ftp.ncep.noaa.gov/pub/data/nccf/com/ens_tracker/prod/ Extra-Tropical Storm Surge (ETSS): up to 10 min later https://nomads.ncep.noaa.gov/pub/data/nccf/com/etss/prod/ ftp://ftp.ncep.noaa.gov/pub/data/nccf/com/etss/prod/ https://tgftp.nws.noaa.gov/SL.us008001/ST.expr/DF.gr2/DC.ndgd/GT
    [Show full text]
  • Generalizing Model Output Statistics with Recurrent Neural Networks
    Generalizing Model Output Statistics With Recurrent Neural Networks Joan Creus-Costa Departments of Computer Science and Physics Stanford University [email protected] Abstract We present an architecture using a single neural network to learn a mapping between the raw outputs of a numerical prediction model and model output statistics of interest, in this case temperature and dewpoint temperature. Instead of learning a model for each of thousands of weather stations, we enable data reuse and better learning by using a single recurrent neural network that learns the biases based on the errors of the model in the previous days. This greater generalization enables for better adaptation to changes in NWP models and makes it easier to add new locations for which predictions of model output statistics are desired. It achieves comparable performance to NOAA’s state of the art model output statistics, with a root-mean-square error of 1.88 and 1.70 degrees Celsius in predicting temperature and dewpoint 24 hours in advance. 1 Introduction Global numerical weather prediction models, such as the American GFS or the European ECMWF, produce outputs for various variables—such as humidity or temperature—on a coarse grid with a resolution of approximately 27 km. These raw forecasts, however, do not directly translate to weather forecasts as we know them. The issue with them is threefold: one, it does not capture all the variables humans care about (such as probability of rain, or surface-level quantities); second, it can have a variety local and global biases and systematics; and thirdly, its limited resolution means interpolation is required to produce predictions of meaningful quantities at the points of interest [1].
    [Show full text]