Model Output Statistics (MOS) - Objective Interpretation of NWP Model Output University of Maryland – April 4, 2012

Total Page:16

File Type:pdf, Size:1020Kb

Model Output Statistics (MOS) - Objective Interpretation of NWP Model Output University of Maryland – April 4, 2012 Model Output Statistics (MOS) - Objective Interpretation of NWP Model Output University of Maryland – April 4, 2012 Mark S. Antolik Meteorological Development Laboratory Statistical Modeling Branch NOAA/National Weather Service Silver Spring, MD (301) 713-0023 ext. 110 email: [email protected] MOS Operational System “Fun Facts” With apologies to David Letterman, of course! ● 9 million regression equations ● 75 million forecasts per day ● 1200 products sent daily ● 400,000 lines of code – mostly FORTRAN ● 180 min. supercomputer time daily 8 ● All developed and maintained by ~ 12X MDL / SMB meteorologists! OUTLINE 1. Why objective statistical guidance? 2. What is MOS? Definition and characteristics The “traditional” MOS product suite (GFS, NAM) Other additions to the lineup 3. Simple regression examples / REEP 4. Development strategy - MOS in the “real world” 5. Verification 6. Dealing with NWP model changes 7. Where we’re going – GMOS and the future WHY STATISTICAL GUIDANCE? ● Add value to direct NWP model output Objectively interpret model - remove systematic biases - quantify uncertainty Predict what the model does not Produce site-specific forecasts (i.e. a “downscaling” technique) ● Assist forecasters “First Guess” for expected local conditions “Built-in” model/climo memory for new staff A SIMPLE STATISTICAL MODEL Relative Frequency of Precipitation as a Function of 12-24 Hour NGM Model-Forecast Mean RH 1.0 0.9 3-YR SAMPLE; 200 STATIONS 0.8 1987-1990 COOL SEASON 0.7 0.6 0.5 47% 0.4 0.3 0.2 0.1 OBSERVED REL. FREQUENCY REL. OBSERVED 0.0 0 10 20 30 40 50 60 70 80 90 100 NGM MEAN RELATIVE HUMIDITY (%) MOS Max Temp vs. Direct Model Output MRF MOS Max Temp 1999 Warm Season - CONUS/AK 8 7 6 CLIMO 5 MAE (deg F) DMO 4 3 NEW MOS CLIMO DMO MOS 2 24 48 72 96 120 144 168 192 Projection (hours) What is MOS? MODEL OUTPUT STATISTICS (MOS) Relates observed weather elements (PREDICTANDS) to appropriate variables (PREDICTORS) via a statistical approach. Predictors are obtained from: 1. Numerical Weather Prediction (NWP) Model Forecasts 2. Prior Surface Weather Observations 3. Geoclimatic Information Current Statistical Method: MULTIPLE LINEAR REGRESSION (Forward Selection) MODEL OUTPUT STATISTICS (MOS) Properties ● Mathematically simple, yet powerful ● Need historical record of observations at forecast points (Hopefully a long, stable one!) ● Equations are applied to future run of similar forecast model MODEL OUTPUT STATISTICS (MOS) Properties (cont.) ● Non-linearity can be modeled by using NWP variables and transformations ● Probability forecasts possible from a single run of NWP model ● Other statistical methods can be used e.g. Polynomial or logistic regression; Neural networks MODEL OUTPUT STATISTICS (MOS) ● ADVANTAGES Recognition of model predictability Removal of some systematic model bias Optimal predictor selection Reliable probabilities Specific element and site forecasts ● DISADVANTAGES Short samples Changing NWP models Availability & quality of observations MAJOR CHALLENGE TO MOS DEVELOPMENT: RAPIDLYRAPIDLY EVOLVINGEVOLVING NWPNWP MODELSMODELS ANDAND OBSERVATIONOBSERVATION PLATFORMSPLATFORMS OBS MODELS Can make for: Mesonets NCEP 1. SHORT, UNREPRESENTATIVE DATA SAMPLES 2. DIFFICULT COLLECTION OF APPROPRIATE PREDICTAND DATA New observing systems: (ASOS, WSR-88D, Satellite) (Co-Op, Mesonets) “Old” predictands: The elements don’t change! “Traditional” MOS text products GFS MOS GUIDANCE MESSAGE FOUS21-26 (MAV) KLNS GFS MOS GUIDANCE 11/29/2004 1200 UTC DT /NOV 29/NOV 30 /DEC 1 /DEC 2 HR 18 21 00 03 06 09 12 15 18 21 00 03 06 09 12 15 18 21 00 06 12 N/X 28 48 35 49 33 TMP 43 44 39 36 33 32 31 39 46 45 41 38 37 39 41 44 45 44 40 40 35 DPT 27 27 28 29 29 29 29 33 35 35 36 35 36 39 41 42 37 34 30 30 28 CLD CL BK BK BK OV OV OV OV OV OV OV OV OV OV OV OV OV BK CL CL CL WDR 34 36 00 00 00 00 00 00 00 14 12 12 10 11 12 19 28 29 29 29 28 WSP 06 02 00 00 00 00 00 00 00 01 02 04 04 06 07 08 15 17 18 09 05 P06 0 0 4 3 11 65 94 96 7 0 0 P12 6 19 94 96 0 Q06 0 0 0 0 0 3 4 4 0 0 0 Q12 0 0 4 2 0 T06 0/ 0 0/18 0/ 3 0/ 0 0/ 0 0/18 2/ 1 10/ 4 0/ 3 1/ 0 T12 0/26 0/17 0/27 10/25 1/38 POZ 2 0 0 1 2 4 4 0 1 1 2 3 3 1 1 0 2 1 2 3 1 POS 13 2 1 2 1 0 0 0 0 0 0 0 0 2 0 0 0 3 0 9 28 TYP R R R R R R R R R R R R R R R R R R R R R SNW 0 0 0 CIG 8 8 8 8 7 7 7 8 8 7 7 7 4 2 3 3 6 7 8 8 8 VIS 7 7 7 7 7 7 7 7 7 7 7 7 5 5 4 2 6 7 7 7 7 OBV N N N N N N N N N N N N BR BR BR BR N N N N N NAM MOS GUIDANCE MESSAGE FOUS44-49 (MET) KBWI NAM MOS GUIDANCE 2/27/2009 1200 UTC DT /FEB 27/FEB 28 /MAR 1 /MAR 2 HR 18 21 00 03 06 09 12 15 18 21 00 03 06 09 12 15 18 21 00 06 12 N/X 38 46 32 41 24 TMP 59 58 55 54 49 43 38 38 43 45 40 38 37 35 33 34 37 38 33 29 25 DPT 46 47 48 46 37 30 24 22 22 22 24 27 28 26 25 24 24 21 17 12 10 CLD OV OV OV OV OV SC SC SC CL BK OV OV OV OV OV OV OV OV OV OV BK WDR 21 20 22 25 31 32 34 36 01 03 05 04 01 36 35 35 35 34 35 33 34 WSP 15 09 08 06 10 11 10 12 10 09 08 10 12 13 14 16 11 13 15 16 17 P06 89 10 3 2 2 76 73 13 17 27 19 P12 10 3 81 17 30 Q06 1 0 0 0 0 4 1 0 0 0 0 Q12 0 0 4 0 0 T06 2/ 9 0/ 5 0 /0 0/ 5 3/ 1 5/ 3 0/ 0 0/ 2 2/ 5 0/ 0 T12 2/ 9 0/ 5 5/ 3 1/ 2 7/ 5 SNW 0 0 0 CIG 6 6 4 5 7 8 8 8 8 8 7 6 4 3 4 3 4 4 7 6 7 VIS 7 7 6 7 7 7 7 7 7 7 7 7 3 6 5 7 7 7 7 7 7 OBV N N N N N N N N N N N N BR N BR N N N N N N Short-range (GFS / NAM) MOS ● STATIONS: Now at approx. 1990 Forecast Sites (CONUS, AK, HI, PR, Canada) ● FORECASTS: Available at projections of 6-84 hours GFS available for 0600 and 1800 UTC cycles ● RESOLUTION: GFS predictors on 95.25 km grid; NAM on 32 km Predictor fields available at 3-h timesteps ● DEPENDENT SAMPLE NOT “IDEAL”: Fewer seasons than older MOS systems Non-static underlying NWP model Approx. 1990 sites Short-range (GFS / NAM) MOS ● STATIONS: Now at approx. 1990 Forecast Sites (CONUS, AK, HI, PR) ● FORECASTS: Available at projections of 6-84 hours GFS available for 0600 and 1800 UTC cycles ● RESOLUTION: GFS predictors on 95.25 km grid; NAM on 32 km Predictor fields available at 3-h timesteps ● DEPENDENT SAMPLE NOT “IDEAL”: Fewer seasons than older MOS systems Non-static underlying NWP model GFSX MOS GUIDANCE MESSAGE FEUS21-26 (MEX) KCXY GFSX MOS GUIDANCE 11/26/2004 0000 UTC FHR 24| 36 48| 60 72| 84 96|108 120|132 144|156 168|180 192 FRI 26| SAT 27| SUN 28| MON 29| TUE 30| WED 01| THU 02| FRI 03 CLIMO X/N 43| 29 47| 40 55| 35 51| 29 45| 32 40| 36 42| 30 45 31 46 TMP 37| 32 43| 43 46| 37 41| 32 39| 35 36| 38 37| 33 37 DPT 24| 27 37| 40 32| 28 28| 26 31| 32 30| 32 27| 24 25 CLD PC| OV OV| OV PC| CL PC| PC OV| OV OV| PC CL| CL CL WND 10| 5 11| 11 16| 10 10| 5 9| 6 10| 12 14| 12 12 P12 0| 5 13| 91 13| 3 9| 14 24| 52 54| 48 21| 12 25 20 18 P24 | 16| 100| 9| 26| 62| 72| 25 29 Q12 0| 0 0| 3 0| 0 0| 0 0| 2 2| 2 | Q24 | 0| 3| 0| 0| 4| | T12 0| 0 0| 3 0| 0 0| 0 4| 6 4| 3 1| 1 1 T24 | 0 | 3 | 0 | 0 | 6 | 4 | 1 PZP 12| 9 12| 4 3| 5 6| 10 8| 8 3| 16 10| 12 8 PSN 62| 15 3| 0 0| 10 9| 15 24| 1 0| 9 32| 27 18 PRS 26| 24 7| 0 17| 18 20| 13 15| 1 2| 18 9| 11 11 TYP S| RS R| R R| R R| R RS| R R| R RS| RS R SNW | 0| 0| 0| 0| | | MOS station-oriented products: Other additions Marine MOS 44004 GFS MOS GUIDANCE 11/22/2005 1200 UTC DT /NOV 22/NOV 23 /NOV 24 /NOV 25 HR 18 21 00 03 06 09 12 15 18 21 00 03 06 09 12 15 18 21 00 03 06 TMP 58 53 49 49 50 48 46 44 44 45 47 48 51 54 56 60 62 61 59 51 47 WD 23 25 27 28 28 29 29 28 28 27 27 25 22 22 22 23 23 23 24 27 28 WS 33 31 29 25 23 22 24 25 23 18 14 12 14 19 26 29 30 29 29 28 24 WS10 36 34 31 26 25 24 26 27 25 19 15 13 15 21 28 31 32 31 31 30 26 DT /NOV 25 / HR 09 12 15 18 21 00 TMP 45 45 45 47 47 47 WD 29 29 28 30 29 34 WS 18 15 10 10 13 12 WS10 20 16 11 11 14 13 Marine MOS sites Standard MOS sites Max/Min Guidance for Co-op Sites GFS-BASED MOS COOP MAX/MIN GUIDANCE 3/01/05 1800 UTC WED 02| THU 03| FRI 04 ANNM2 26 46| 24 45| 25 46 BERM2 28 41| 25 39| 25 43 BTVM2 23 39| 21 38| 20 43 Beltsville, MD CBLM2 20 40| 18 39| 20 46 CHEM2 25 42| 21 39| 21 44 CNWM2 21 42| 21 40| 20 45 DMAM2 20 37| 18 37| 20 42 ELCM2 25 41| 21 41| 18 45 EMMM2 23 42| 20 41| 20 43 FREM2 23 46| 21 42| 23 44 FRSM2 17 27| 13 27| 13 36 GLDM2 21 37| 18 39| 18 43 Glenn Dale, MD HAGM2 23 43| 18 43| 19 45 KAPG 27 41| 23 37| 22 43 LRLM2 23 44| 21 42| 22 46 MECM2 24 47| 20 42| 20 45 Laurel 3 W MILM2 25 48| 22 41| 20 39 MLLM2 22 39| 18 37| 18 41 OLDM2 18 31| 13 28| 12 35 OXNM2 23 42| 22 40| 23 48 PRAM2 22 49| 22 45| 18 45 Western Pacific MOS Guidance Midway, US Saipan, ROM Wake, US NSTU GFS MOS GUIDANCE 11/07/2008 1200 UTC DT /NOV 7/NOV 8 /NOV 9 /NOV 10 HR 18 21 00 03 06 09 12 15 18 21 00 03 06 09 12 15 18 21 00 06 12 TMP 84 85 85 85 82 82 81 79 80 83 84 83 81 81 80 79 81 84 86 82 80 DPT 77 77 78 77 76 77 76 75 77 78 77 77 76 77 76 75 77 78 77 77 76 WDR 08 08 08 09 08 07 05 04 06 07 08 07 05 02 35 01 02 07 07 08 10 WSP 17 17 15 13 11 08 07 07 07 08 09 08 07 05 04 04 04 08 09 06 06 P06 36 37 47 46 50 43 25 35 43 30 31 P12 60 66 60 59 47 Application of Linear Regression to MOS Development MOS LINEAR REGRESSION JANUARY 1 - JANUARY 30, 1994 0000 UTC KCMH 60 50 F) 40 ° 30 20 10 TODAY'S MAX ( TODAY'S 0 -10 1150 1200 1250 1300 1350 18-H NGM 850-1000 MB THICKNESS (M) MOS LINEAR REGRESSION JANUARY 1 - JANUARY 30, 1994 0000 UTC KCMH 60 MAX T = -352 + (0.3 x 850-1000 mb THK) 50 F) 40 ° RV=93.1% 30 20 10 TODAY'S MAX ( TODAY'S 0 -10 1150 1200 1250 1300 1350 18-H NGM 850-1000 MB THICKNESS (M) REDUCTION OF VARIANCE A measure of the “goodness” of fit and Predictor / Predictand correlation Variance - Standard Error = RV Variance MEAN RV PREDICTAND { } UNEXPLAINED VARIANCE * PREDICTOR MOS LINEAR REGRESSION JANUARY 1 - JANUARY 30, 1994 0000 UTC KUIL 60 F) ° 50 RV=26.8% 40 Same predictor, TODAY'S MAX ( MAX TODAY'S Different site, Different relationship! 30 1250 1300 1350 1400 18-H NGM 850-1000 MB THICKNESS (M) MOS LINEAR REGRESSION DECEMBER 1 1993 - MARCH 5 1994 0000 UTC KCMH 1 0 24 H PRECIPITATION .01" ≥ 24 H PRECIPITATION - 12 10 20 30 40 50 60 70 80 90 100 AVG.
Recommended publications
  • Gridded Model Output Statistics: Improving and Expanding
    6A.6 GRIDDED MODEL OUTPUT STATISTICS: IMPROVING AND EXPANDING Kathryn K. Gilbert*, Bob Glahn, Rebecca L. Cosgrove1, Kari L. Sheets, Geoffrey A. Wagner2 Meteorological Development Laboratory National Weather Service, NOAA Silver Spring, MD 1National Center for Environmental Prediction, National Weather Service, Camp Springs, MD 2Wyle Information Systems, McLean, VA 1. INTRODUCTION Since the original implementation, gridded MOS has undergone several adaptations to improve For years, National Weather Service (NWS) consistency as well as regional applicability. MDL forecasters have used Model Output Statistics developers have welcomed assessments of grid- (MOS) guidance (Glahn and Lowry 1972) as an ded MOS from local forecasters in order to make aid in producing text forecast products issued to adjustments to provide guidance which is both the user community. However, the methods fore- representative of the local area, and compatible casters use to generate products have changed with the process for generating forecasts for because of requirements to produce the official NDFD. Some of the improvements resulting from NWS 7-day forecasts on high-resolution grids. forecaster feedback include: removal of unrepre- These gridded, or digital, forecasts are put into a sentative forecasts from the analysis, expansion of National Digital Forecast Database (NDFD; Glahn the grid coverage, and modifications to the and Ruth 2003). NWS forecasters need support- land/water mask. ing guidance available on a grid, at a resolution comparable to the grid resolution used at the local In this paper, we discuss the current state of forecast office. One approach to the problem of the gridded MOS suite, as well as ongoing en- providing guidance on the required grid is to objec- hancements to the operational GFS-based MOS tively analyze forecasts at MOS stations.
    [Show full text]
  • Verification of Model Output Statistics Forecasts Associated with the North
    Allison Monarski, University of Maryland Masters Scholarly Paper, December 6, 2011 1 Department of Atmospheric and Oceanic Science Verification of Model Output Statistics forecasts associated with the North American Mesoscale model upgrade Results of work done during the Student Career Experience Program tour with the Statistical Modeling Branch (SMB) of the Meteorological Development Lab (MDL) of the National Weather Service (NWS), Silver Spring, MD, under the guidance of Mark Antolik & Kathy Gilbert, NWS/MDL/SMB I. Introduction and Motivation For the past four decades, the model output statistics (MOS) technique has been in operation and forecasters and meteorologists globally have used forecasts generated through MOS. MOS is a statistical approach to forecasting which involves determination of a relationship between a predictand and numerical weather prediction (NWP) model output for a variety of variables (predictors) at the same projection times (Glahn and Lowry 1972). Through the years, MOS has provided reliable forecasts, predicting quantities that the underlying NWP model is unable to predict. Specifically, the MOS technique can account for local effects on certain elements that the coarser resolution NWP model cannot detect (Antolik and Baker 2009). Usually, statistical forecasting systems, such as MOS, rely on many years of stable development data for optimal performance. However, due to frequent changes in the underlying structure, physics, and dynamics of the NWP models, this kind of data is difficult to obtain. Fortunately, developers at the National Weather Service’s (NWS) Meteorological Development Laboratory (MDL) have been able to show that reliable MOS forecasts can be produced using as little as just two years of data from models which are evolving (Antolik and Baker 2009).
    [Show full text]
  • Model Output Statistics Cascade to Improve Day Ahead Solar Irradiance Forecast
    Available online at www.sciencedirect.com ScienceDirect Solar Energy 117 (2015) 99–113 www.elsevier.com/locate/solener Model output statistics cascade to improve day ahead solar irradiance forecast M. Pierro a, F. Bucci a, C. Cornaro a,⇑, E. Maggioni b, A. Perotto b, M. Pravettoni c, F. Spada b a Department of Enterprise Engineering, University of Rome Tor Vergata, Via del Politecnico, 1, 00133 Rome, Italy b IDEAM srl, Via Frova 34, Cinisello Balsamo, MI, Italy c Institute of Applied Sustainability to the Build Environment, University of Applied Sciences and Arts of Southern Switzerland, Canobbio CH-6952, Switzerland Received 29 September 2014; received in revised form 9 April 2015; accepted 26 April 2015 Communicated by: Associate Editor Christian A. Gueymard Abstract In this paper a new hybrid Model Output Statistics (MOS), named MOS cascade, is developed to refine the day-ahead forecast of the global horizontal irradiance provided by the Weather Research and Forecast (WRF) model. The proposed approach is based on a sequence of two different MOS. The first, called MOSRH, is a new physically based algorithm, built to correct the treatment of humidity in the WRF radiation schemes. The second, called MOSNN, is based on artificial intelligence techniques and aims to correct the main systematic and learnable errors of the Numerical Weather Prediction output. The 1-day and 2-day forecast accuracies are analyzed via direct comparison with irradiance data measured in two sites, Rome and Lugano. The paper shows that a considerable reduction in error was achieved using MOSRH model and MOS cascade. The differences between the two sites are discussed in details.
    [Show full text]
  • Supporting Gridded Model Output Statistics Forecast Guidance System
    Supporting Gridded Model Output Statistics Forecast Guidance System Kari L. Sheets ABSTRACT The Meteorological Development Laboratory (MDL) of NOAA’s National Weather Service is creating a National Digital Guidance Database at a fine resolution to comple- ment the existing National Digital Forecast Database. To help accomplish this goal, MDL is producing a gridded Model Output Statistics (MOS) forecast guidance system. Currently, gridded MOS populates a 5-km grid with elements needed for weather fore- cast grids covering the contiguous United States. This paper describes the use of Geographic Information System (GIS) to gener- ate and quality control geophysical variables, create a station dictionary including land/water designations for the observing stations, and analyze or troubleshoot problem areas in gridded MOS weather elements. Stations used in traditional MOS development are unevenly distributed, leaving developers searching for additional data to aid in ana- lyzing these values to the aforementioned grid. GIS is integral in supplying the data to move from station-based MOS to gridded MOS. 1. Introduction The Meteorological Development Laboratory (MDL) of NOAA’s National Weather Service (NWS) is developing a National Digital Guidance Database (NDGD) at fine reso- lutions to complement the existing National Digital Forecast Database (NDFD, Glahn and Ruth 2003). To help accomplish this goal, MDL is creating a gridded forecast guid- ance system. Current forecast guidance is produced for the United States and its terri- tories at approximately 1800 hourly observing sites and over 5000 cooperative observ- ing sites by using the Model Output Statistics (MOS) technique (Glahn and Lowry 1972). In the MOS approach, observed predictand data are statistically related to predictors such as forecasts from dynamical models, surface observations, and geoclimatic infor- mation.
    [Show full text]
  • Statistical Post-Processing of Ensemble Forecasts of Temperature in Santiago De Chile
    Statistical post-processing of ensemble forecasts of temperature in Santiago de Chile Mailiu D´ıaza, Orietta Nicolisa;b, Julio Cesar´ Mar´ınc and Sandor´ Barand aDepartment of Statistics, University of Valpara´ıso Gran Breta~na1111, Valpara´ıso,Chile bFaculty of Engineering, Andres Bello University Quillota 980, Vi~nadel Mar, Chile cDepartment of Meteorology, University of Valpara´ıso Gran Breta~na644, Valpara´ıso,Chile dFaculty of Informatics, University of Debrecen Kassai ´ut26, H-4028 Debrecen, Hungary Abstract Currently all major meteorological centres generate ensemble forecasts using their operational ensemble prediction systems; however, it is a general problem that the spread of the ensemble is too small, resulting in underdispersive forecasts, leading to a lack of calibration. In order to correct this problem, different statistical calibration techniques have been developed in the last two decades. In the present work different post-processing techniques are tested for calibrating arXiv:1809.04042v1 [stat.AP] 11 Sep 2018 9 member ensemble forecast of temperature for Santiago de Chile, obtained by the Weather Research and Forecasting (WRF) model using different planetary boundary layer and land surface model parametrization. In particular, the ensemble model out- put statistics (EMOS) and Bayesian model averaging techniques are implemented and since the observations are characterized by large altitude differences, the estimation of model parameters is adapted to the actual conditions at hand. Compared to the raw ensemble all tested post-processing approaches significantly improve the calibration of probabilistic and the accuracy of point forecasts. The EMOS method using parameter estimation based on expert clustering of stations (according to their altitudes) shows the best forecast skill.
    [Show full text]
  • Statistical Postprocessing of Ensemble Forecasts for Severe Weather at Deutscher Wetterdienst
    Nonlin. Processes Geophys., 27, 473–487, 2020 https://doi.org/10.5194/npg-27-473-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Statistical postprocessing of ensemble forecasts for severe weather at Deutscher Wetterdienst Reinhold Hess Deutscher Wetterdienst, Offenbach, Germany Correspondence: Reinhold Hess ([email protected]) Received: 7 January 2020 – Discussion started: 20 January 2020 Revised: 13 August 2020 – Accepted: 19 August 2020 – Published: 6 October 2020 Abstract. This paper gives an overview of Deutscher Wet- 1 Introduction terdienst’s (DWD’s) postprocessing system called Ensemble- MOS together with its motivation and the design con- Ensemble forecasting rose with the understanding of the lim- sequences for probabilistic forecasts of extreme events ited predictability of weather. This limitation is caused by based on ensemble data. Forecasts of the ensemble systems sparse and imperfect observations, approximating numerical COSMO-D2-EPS and ECMWF-ENS are statistically opti- data assimilation and modelling, and by the chaotic phys- mised and calibrated by Ensemble-MOS with a focus on se- ical nature of the atmosphere. The basic idea of ensemble vere weather in order to support the warning decision man- forecasting is to vary observations, initial and boundary con- agement at DWD. ditions, and physical parameterisations within their assumed Ensemble mean and spread are used as predictors for lin- scale of uncertainty and rerun the forecast model with these ear and logistic multiple regressions to correct for conditional changes. biases. The predictands are derived from synoptic observa- The obtained ensemble of forecasts expresses the distribu- tions and include temperature, precipitation amounts, wind tion of possible weather scenarios to be expected.
    [Show full text]
  • REFORECASTS an Important Dataset for Improving Weather Predictions
    REFORECASTS An Important Dataset for Improving Weather Predictions BY THOMAS M. HAMILL, JEFFREY S. WHITAKER, AND STEVEN L. MULLEN Statistical correction of today’s numerical forecast using a long set of reforecasts (hindcasts) dramatically improves its forecast skill. eanalyses such as the National Centers for reanalysis datasets have facilitated a wide range of Environmental Prediction (NCEP)–National research; for example, the Kalnay et al. (1996) article R Center for Atmospheric Research (NCAR) re- above has been cited more than 3200 times. analysis (Kalnay et al. 1996) and the European Centre In this article, we explore the value of a companion for Medium-Range Weather Forecasts (ECMWF) dataset to reanalyses, which we shall call “reforecasts.” 40-year reanalysis (ERA-40; Uppala et al. 2005) have These are retrospective weather forecasts generated become heavily used products for geophysical science with a fixed numerical model. Model developers research. These reanalyses run a practical, consistent could use them for diagnosing model bias, thereby data assimilation and short-range forecast system facilitating the development of new, improved ver- over a long period of time. While the observation sions of the model. Others could use them as data type and quality may change somewhat, the forecast for statistically correcting weather forecasts, thereby model and assimilation system are typically fixed. developing improved, user-specific products [e.g., This facilitates the generation of a reanalysis dataset model output statistics (MOS) Glahn and Lowry that is fairly consistent in quality over time. These 1972; Carter et al. 1989]. Others may use them for studies of atmospheric predictability. Unfortunately, extensive sets of reforecasts are not commonly pro- AFFILIATIONS: HAMILL AND WHITAKER—NOAA Earth System duced utilizing the same model version as is run Research Lab, Physical Sciences Division, Boulder, Colorado; operationally.
    [Show full text]
  • Articles Described by the Community Multiscale Air Datasets, Moderate-To-Large Biases Exist in Hourly Precipita- Quality Modeling System
    Geosci. Model Dev., 14, 3969–3993, 2021 https://doi.org/10.5194/gmd-14-3969-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Evaluation of the offline-coupled GFSv15–FV3–CMAQv5.0.2 in support of the next-generation National Air Quality Forecast Capability over the contiguous United States Xiaoyang Chen1, Yang Zhang1, Kai Wang1, Daniel Tong2,6, Pius Lee4,3, Youhua Tang3,4, Jianping Huang5,6, Patrick C. Campbell3,4, Jeff Mcqueen5, Havala O. T. Pye7, Benjamin N. Murphy7, and Daiwen Kang7 1Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA 2Department of Atmospheric, Oceanic and Earth Sciences, George Mason University, Fairfax, VA 22030, USA 3Center for Spatial Information Science and System, George Mason University, Fairfax, VA 22030, USA 4Air Resources Laboratory, National Oceanic and Atmospheric Administration, College Park, MD 20740, USA 5National Oceanic and Atmospheric Administration/National Centers for Environmental Prediction/Environmental Modeling Center, College Park, MD 20740, USA 6IM Systems Group, Rockville, MD 20852, USA 7Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA Correspondence: Yang Zhang ([email protected]) Received: 11 August 2020 – Discussion started: 2 September 2020 Revised: 19 January 2021 – Accepted: 7 February 2021 – Published: 29 June 2021 Abstract. As a candidate for the next-generation National Teorological Aerodrome Reports (METAR) dataset.
    [Show full text]
  • Performance Assessment of General Circulation Model in Simulating Daily Precipitation and Temperature Using Multiple Gridded Datasets
    water Article Performance Assessment of General Circulation Model in Simulating Daily Precipitation and Temperature Using Multiple Gridded Datasets Najeebullah Khan 1,2, Shamsuddin Shahid 1 , Kamal Ahmed 1,2, Tarmizi Ismail 1 , Nadeem Nawaz 2 and Minwoo Son 3,* 1 School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Malaysia; [email protected] (N.K.); [email protected] (S.S.); [email protected] (K.A.); [email protected] (T.I.) 2 Faculty of Water Resource Management, Lasbela University of Agriculture Water and Marine Sciences (LUAWMS), 90150 Uthal, Balochistan, Pakistan; [email protected] 3 Department of Civil Engineering, Chungnam National University, Daejeon 34134, Korea * Correspondence: [email protected]; Tel.: +82-42-821-5676 Received: 28 September 2018; Accepted: 4 December 2018; Published: 6 December 2018 Abstract: The performance of general circulation models (GCMs) in a region are generally assessed according to their capability to simulate historical temperature and precipitation of the region. The performance of 31 GCMs of the Coupled Model Intercomparison Project Phase 5 (CMIP5) is evaluated in this study to identify a suitable ensemble for daily maximum, minimum temperature and precipitation for Pakistan using multiple sets of gridded data, namely: Asian Precipitation– Highly-Resolved Observational Data Integration Towards Evaluation (APHRODITE), Berkeley Earth Surface Temperature (BEST), Princeton Global Meteorological Forcing (PGF) and Climate Prediction Centre (CPC) data. An entropy-based robust feature selection approach known as symmetrical uncertainty (SU) is used for the ranking of GCM. It is known from the results of this study that the spatial distribution of best-ranked GCMs varies for different sets of gridded data.
    [Show full text]
  • Guidelines on Ensemble Prediction System Postprocessing
    Guidelines on Ensemble Prediction System Postprocessing 2021 edition WEATHER CLIMATE WATER CLIMATE WEATHER WMO-No. 1254 Guidelines on Ensemble Prediction System Postprocessing 2021 edition WMO-No. 1254 WMO-No. 1254 © World Meteorological Organization, 2021 The right of publication in print, electronic and any other form and in any language is reserved by WMO. Short extracts from WMO publications may be reproduced without authorization, provided that the complete source is clearly indicated. Editorial correspondence and requests to publish, reproduce or translate this publication in part or in whole should be addressed to: Chair, Publications Board World Meteorological Organization (WMO) 7 bis, avenue de la Paix Tel.: +41 (0) 22 730 84 03 P.O. Box 2300 Fax: +41 (0) 22 730 81 17 CH-1211 Geneva 2, Switzerland Email: [email protected] ISBN 978-92-63-11254-5 NOTE The designations employed in WMO publications and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of WMO concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products does not imply that they are endorsed or recommended by WMO in preference to others of a similar nature which are not mentioned or advertised. PUBLICATION REVISION TRACK RECORD Part/chapter/ Date Purpose of amendment Proposed by Approved by section CONTENTS Page ACKNOWLEDGEMENTS . vii EXECUTIVE SUMMARY . viii KEY RECOMMENDATIONS . ix CHAPTER 1 . INTRODUCTION . 1 CHAPTER 2 . PHYSICAL POSTPROCESSING . 5 2.1 Meteorological diagnostic information.
    [Show full text]
  • A Model Output Deep Learning Method for Grid Temperature Forecasts in Tianjin Area
    applied sciences Article A Model Output Deep Learning Method for Grid Temperature Forecasts in Tianjin Area Keran Chen 1,2 , Ping Wang 1,2, Xiaojun Yang 3, Nan Zhang 3 and Di Wang 1,2,* 1 School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China; [email protected] (K.C.); [email protected] (P.W.) 2 Joint Laboratory of Intelligent Identification & Nowcasting Service for Convective System, CMA Public Meteorological Service Center, Beijing 100081, China 3 Tianjin Bureau of Meteorology, Tianjin 300074, China; [email protected] (X.Y.); [email protected] (N.Z.) * Correspondence: [email protected] Received: 25 June 2020; Accepted: 18 August 2020; Published: 22 August 2020 Abstract: In weather forecasting, numerical weather prediction (NWP) that is based on physical models requires proper post-processing before it can be applied to actual operations. Therefore, research on intelligent post-processing algorithms has always been an important topic in this field. This paper proposes a model output deep learning (MODL) method for post-processing, which can improve the forecast effect of numerical weather prediction. MODL is an end-to-end post-processing method based on deep convolutional neural network, which directly learns the mapping relationship between the forecast fields output by numerical model and the observation temperature field in order to obtain more accurate temperature forecasts. MODL modifies the existing deep convolution model according to the post-processing problem’s characteristics, thereby improving the performance of the weather forecast. This paper uses The International Grand Global Ensemble (TIGGE) dataset from European Centre for Medium-Range Weather Forecasts (ECMWF) and the observed air temperature of 2 m obtained from Tianjin meteorological station in order to test the post-processing performance of MODL.
    [Show full text]
  • SCN21-21 Updated: Notification of Dissemination Changes of Models Downstream of the GFS Due To
    NOUS41 KWBC 181800 AAA PNSWSH Service Change Notice 21-21 Updated National Weather Service Headquarters Silver Spring MD 200 PM EDT Thu Mar 18 2021 To: Subscribers: -NOAA Weather Wire Service -Emergency Managers Weather Information Network -NOAAPort Other NWS Partners, Users and Employees FROM: Mike Farrar Director National Centers for Environmental Prediction SUBJECT: Updated: Notification of Dissemination Changes of Models Downstream of the GFS due to the GFSv16 Upgrade: Effective March 22, 2021 Updated to reflect delay in implementation date to Monday, March 22 due to Critical Weather Day. Effective on or about March 22, 2021, beginning with the 1200 Coordinated Universal Time (UTC) cycle of the Global Forecast System (GFS), models that use GFS products for initialization will experience delays associated with the upgrade to GFS V16. Due to timing changes with the GFSv16 upgrade, which are laid out in its own SCN, the following downstream models will have timing changes across all dissemination channels including AWIPS, Satellite Broadcast Network(SBN)/NOAAPort, and NCEP and NWS web services (NOMADS, NOMADS GDS, NOMADS grib filter, FTPPRD and TGFTP). Ensemble Tracker: up to 16 min later https://nomads.ncep.noaa.gov/pub/data/nccf/com/ens_tracker/prod/ ftp://ftp.ncep.noaa.gov/pub/data/nccf/com/ens_tracker/prod/ Extra-Tropical Storm Surge (ETSS): up to 10 min later https://nomads.ncep.noaa.gov/pub/data/nccf/com/etss/prod/ ftp://ftp.ncep.noaa.gov/pub/data/nccf/com/etss/prod/ https://tgftp.nws.noaa.gov/SL.us008001/ST.expr/DF.gr2/DC.ndgd/GT
    [Show full text]