water Article Performance Assessment of General Circulation Model in Simulating Daily Precipitation and Temperature Using Multiple Gridded Datasets Najeebullah Khan 1,2, Shamsuddin Shahid 1 , Kamal Ahmed 1,2, Tarmizi Ismail 1 , Nadeem Nawaz 2 and Minwoo Son 3,* 1 School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Malaysia;
[email protected] (N.K.);
[email protected] (S.S.);
[email protected] (K.A.);
[email protected] (T.I.) 2 Faculty of Water Resource Management, Lasbela University of Agriculture Water and Marine Sciences (LUAWMS), 90150 Uthal, Balochistan, Pakistan;
[email protected] 3 Department of Civil Engineering, Chungnam National University, Daejeon 34134, Korea * Correspondence:
[email protected]; Tel.: +82-42-821-5676 Received: 28 September 2018; Accepted: 4 December 2018; Published: 6 December 2018 Abstract: The performance of general circulation models (GCMs) in a region are generally assessed according to their capability to simulate historical temperature and precipitation of the region. The performance of 31 GCMs of the Coupled Model Intercomparison Project Phase 5 (CMIP5) is evaluated in this study to identify a suitable ensemble for daily maximum, minimum temperature and precipitation for Pakistan using multiple sets of gridded data, namely: Asian Precipitation– Highly-Resolved Observational Data Integration Towards Evaluation (APHRODITE), Berkeley Earth Surface Temperature (BEST), Princeton Global Meteorological Forcing (PGF) and Climate Prediction Centre (CPC) data. An entropy-based robust feature selection approach known as symmetrical uncertainty (SU) is used for the ranking of GCM. It is known from the results of this study that the spatial distribution of best-ranked GCMs varies for different sets of gridded data.