Listeria Monocytogenes

Total Page:16

File Type:pdf, Size:1020Kb

Listeria Monocytogenes Listeria monocytogenes L.monocytogenes morphology Introduction: history • Murray in 1926: – Bacterium monocytogenes – blood monocytes in rabbits – human and animal pathogen • Pirie in 1940: – Listeria monocytogenes – Joseph Lister • Since 1980 – foodborn pathogen Introduction: general • Cause of listeriosis • Found in environment – water, soil, sudge, … Found in animal feaces • Taxonomy: – Kingdom: Bacteria Division: Firmicutes Class: Bacilli Order: Bacillales Family: Listeriaceae Genus: Listeria Species: L. monocytogenes Listeria monocytogenes • L.monocytogenes is the only important human pathogen among the six species: Listeria monocytogenes, Listeria innocua, Listeria ivanovii, Listeria seeligeri, Listeria welshimeri and Listeria grayi. Only two species of the genus are generally considered to be pathogenic, L. monocytogenes in humans and L. ivanovii in other mammals. L.monocytogenes is a Gram- positive , facultatively anaerobic, catalase-positive, oxidase- negative, non-sporeformer. • L.monocytogenes elaborates a 58 kDa β-haemolysin, listeriolysin O, which acts synergistically with the haemolysin produced by Staphylococcus aureus Characteristics Basic features • Gram positive • Facultatively anaerobe • Catalase positive • Oxidase negative • Non-spore former • Coccoid to rod shaped • 0,4 – 0,5 µm x 0,5 – 2,0 µm • Cultured at 20 – 25°C • Petritious flagella and tumbling motility • T-range: grow 0 – 42 °C, Opt: 30 – 35°C • Min pH: 4,4 – 5,6 pH • Salt tolerated Characteristics Biochemical facts • Foodborn: The pathogen can be present inin thethe originaloriginal foodstuffoodstuf oror enterenter thethe foodchain during processing. – Lactating cows can shed L. monocytogenes inin milkmilk asas aa consequenceconsequence ofof mastitismastitis forfor aa rather long time. – Soft cheese such as Camembert can be contaminated on the surface duringduring ripening;ripening; Food items which may contain L. monocytogenes Food items which in general are free of Listeriae Sausages (salami, pate¤) All kinds of food immediately after heating Raw meat, in particular turkey and chicken Pasteurized milk, yoghurt (industrial products!) Sandwiches Hard cheese Lettuce, raw mushrooms Chocolate, marmalade, cookies Raw milk and products made from this material Raw carrots Soft cheese (Munster, Roquefort, Camembert, Brie) Raw apples Fresh cheese (ricotta, feta) Raw tomatoes Seafood (mussels, salmon) All kind of meals which are conserved after heating Characteristics Pathogenesis and clinical features The manifestations of listeriosis include: – Septicemia (blood poisoning) – Meningitis – Encephalitis (an acute inflammation ot the brain) – Intrauterine or cervical infections in pregnant women spontaneous abortion (2nd/3rd trimester) or stillbirth. Symptoms: • Influenza-like symptoms: persistent fever. • Gastrointestinal symptoms: nausea, vomiting, and diarrhea Characteristics Pathogenesis and clinical features Incubation Period: • Is variable and ranges from 3 to 70 days, with the median incubation period being three weeks. • In infections during pregnancy, the mother usually survives. Treatment: – Parenteral penicillin or ampicillin with aminogycosides. – Trimethoprim-sulfamethoxazole for patients allergic to penicillin. Prevention: • Similar to prevent from other foodborne illnesses, such as salmonellosis. L.monocytogenes • Organism grows over a wide range of temperature from 0 – 42oC with an optimum between 30 and 35oC . • Organism is ubiquitous in the environment. Isolation from fresh and salt water, soil, sewage sludge, decaying vegetation, silage. • Oportunistic pathogen – incubation periods for disease from 1 day to 90 days. Symptoms vary from a mild, flu-like illness to mengitis and meningoencephalitis. • Attack : pregnant women, children (0 – 2 years) or elderly (more 65 years) and the immunocompromised population. Introduction: properties • Gram positive, facultative anaerobe • Non-sporeformer • Rod shaped with flagella – tumbling mobility • Growth temperature: 0 – 42°C – optimum: 30 – 35°C • Min pH for growth: 4.4 – 5.6 • D60: few minutes D70: few seconds • Other properties: – catalase +, oxidase –, hemolysis Foods containing L. monocytogenes • Raw vegetables – cabbage, tomatoes, lettuce, … • Meat – delicatesses: salami, ham, paté, … – pork sausages, chicken nuggets, … • Dairy products – pasteurised milk – soft cheeses: brie, camenbert, … – even butter Listeriosis • Flu-like illness, meningitis, meningoencephalitis, sepsis, (endocarditis) • Patients – pregnant women – newborn and old people – immunocompromised • Incubation: 1 – 90 days • Infective dose: not known Listeriosis • Symptoms: – fever, headache, sometimes stomacache – pregnant women: abortion, stillbirth, premature labour – newborn: pneumonia, sepsis, abscesses, meningitis, infection of nervous system • Treatment with antibiotics – ampicillin, vancomycin, … • Mortality 20-25% – meningitis 70% – sepsis 50% – neonatal infections 80% !!! Early diagnosis is rather rare !!! Listeriosis: lifecycle Methodology Traditional Identification • Microscopic examination of plates illuminated from below at 45° blue-grey to blue-green Conformation • Sugar-fermentation test ( distinguish from other Listeria species) Methodology Modern Isolation: Two of the most widely-used culture reference methods for detection of Listeria in all foods are – FDA bacteriological and analytical method (BAM) – the International Organization of Standards (ISO) 11290 method Identification: – CAMP test ( figure) – Chromogenic substrates – Antibody-based tests • Enzyme-linked immunosorbent assay (ELISA ) • Immuno-capture – Molecular tests • DNA hybridization • Polymerase chain reaction (PCR) Methodology Modern Future directions for the detection and identification of L. monocytogenes • Tests targeting RNA – Reverse transcription (RT)-PCR – Real-time PCR – Nucleic acid sequence-based amplification (NASBA) • DNA microarrays – PCR-based microarrays – Oligonucleotide-based microarrays Detection: standard • Isolation / enrichment (48h) – buffered Listeria enrichment broth base (BLEB) – slow: enrichment at 4°C – faster: antibiotics at optimal growth temperature • Incubation 24-48h at 30°C – selective agents: lithium chloride, polyethanol, antibiotics, … – elective agents: aesculin, ferric ammonium citrate – agar: PALCAM, MOX, … Detection: standard • Identification – blue-green colonies (Henry illumination) – black halo (aesculetin + iron) – other Listeria: yellow (mannitol fermentation) • Confirmation – catalase, oxidase, nitrate reduction, CAMP tests, … – fast methods !!! Takes 5-7 days !!! Detection: new methods • DNA probes – hybridisation • Recombinant DNA – plasmid • New, faster media – Rapid'L.Mono Medium • Commercial kits – AccuProbeTM, GeneTrak Conclusion L. monocytogenes is a wide spread organism, able to grow in many foods Listeriosis dangerous difficult to recognise pregnant women, newborn and eldery people, immunocompromised Standard detection methods take a long time Listeria monocytogenes Scanning EM showing Flagella L.monocytogenes • Association with food : documented were: coleslaw salad, raw vegetable (celery, tomatoes, lettuce), dairy products as raw milk, soft cheeses, smoked salmon, pork tongue in aspic. • Ability to multiply at refrigerator temperatures • Morrtality: 20 – 40% Detection Listeria monocytogenes according to ISO 11290-1:1996 Characteristics of L. monocytogenes Gram-positive facultative anaerobic bacterium resistant to environmental conditions 0,5 – 45 °C pH from 4,3 to 9,6 high concentration of NaCl (10 – 15 %) Found in the environments (studied, not known exactly) from there it can infect food Characteristics of L. monocytogenes Intracellular parasite - causative agent of alimentary disease listeriosis High mortality (~ 30 %) in the threaten groups elder people, babies, persons with weakened or insufficiently developped immune system abortions at pregnant women http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=8082 Food safety criteria COMMISSION REGULATION (EC) No 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs (Text with EEA relevance) ANNEX I Microbiological criteria for foodstuffs Chapter 1. Food safety criteria Chapter 2. Process hygiene criteria Chapter 3. Rules for sampling and preparation of test samples COMMISSION REGULATION (EC) No 1441/2007 of 5 December 2007 amending Regulation (EC) No 2073/2005 on microbiological criteria for foodstuffs (Text with EEA relevance) COMMISSION REGULATION (EU) No 365/2010 of 28 April 2010 amending Regulation (EC) No 2073/2005 on microbiological criteria for foodstuffs as regards Enterobacteriaceae in pasteurised milk and other pasteurised liquid dairy products and Listeria monocytogenes in food grade salt (Text with EEA relevance) Food safety criteria • Listeria monocytogenes • All ready-to-eat foods - Target: Reduction of human listeriosis • Although the disease is relatively rare, listeriosis is a significant public health concern • Clinical severity and high mortality (20-30%) http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=8082 Food safety criteria 2073/2005 Food category Microorgani Sampling Limits 2 Analytical Stage where the criterion sm/their plan 1 reference applies toxins, method 3 n c m M metabolites 1.1 Ready-to-eat foods L. 10 0 Absence EN/ISO Products intended for infants monocytoge in 25 g 11290-1 placed on the market during and ready-to-eat foods nes their shelf-life for special medical purposes4 (1) n = number of units comprising the sample; c = number of sample units
Recommended publications
  • Validation of the Asaim Framework and Its Workflows on HMP Mock Community Samples
    Validation of the ASaiM framework and its workflows on HMP mock community samples The ASaiM framework and its workflows have been tested and validated on two mock metagenomic data of an artificial community (with 22 known microbial strains). The datasets are available on EBI metagenomics database (project accession number: SRP004311). First we checked that the targeted abundances (based on number of PCR product) from both mock datasets were similar to the effective abundance (by mapping reads on reference genomes). Second, taxonomic and functional results produced by the ASaiM framework have been extensively analyzed and compared to expectations and to results obtained with the EBI metagenomics pipeline (S. Hunter et al. 2014). For these datasets, the ASaiM framework produces accurate and precise taxonomic assignations, different functional results (gene families, pathways, GO slim terms) and results combining taxonomic and functional information. Despite almost 1.4 million of raw metagenomic sequences, these analyses were executed in less than 6h on a commodity computer. Hence, the ASaiM framework and its workflows are proven to be relevant for the analysis of microbiota datasets. 1Data On EBI metagenomics database, two mock community samples for Human Microbiome Project (HMP) are available. Both samples contain a genomic mixture of 22 known microbial strains. Relative abundance of each strain has been targeted using the number of PCR product of their respective 16S sequences (Table 1). In first sample (SRR072232), the targeted 16S copies of the strains vary by up to four orders of magnitude between the strains (Table 1), whereas in second sample (SRR072233) the same 16S copy number is targeted for each strain (Table 1).
    [Show full text]
  • Inhibitory Activity of Lactobacillus Plantarum LMG P-26358 Against
    Mills et al. Microbial Cell Factories 2011, 10(Suppl 1):S7 http://www.microbialcellfactories.com/content/10/S1/S7 PROCEEDINGS Open Access Inhibitory activity of Lactobacillus plantarum LMG P-26358 against Listeria innocua when used as an adjunct starter in the manufacture of cheese Susan Mills1,3, L Mariela Serrano3, Carmel Griffin1,3, Paula M O’Connor1, Gwenda Schaad3, Chris Bruining3, Colin Hill2,4, R Paul Ross1,2*, Wilco C Meijer3 From 10th Symposium on Lactic Acid Bacterium Egmond aan Zee, the Netherlands. 28 August - 1 September 2011 Abstract Lactobacillus plantarum LMG P-26358 isolated from a soft French artisanal cheese produces a potent class IIa bacteriocin with 100% homology to plantaricin 423 and bacteriocidal activity against Listeria innocua and Listeria monocytogenes. The bacteriocin was found to be highly stable at temperatures as high as 100°C and pH ranges from 1-10. While this relatively narrow spectrum bacteriocin also exhibited antimicrobial activity against species of enterococci, it did not inhibit dairy starters including lactococci and lactobacilli when tested by well diffusion assay (WDA). In order to test the suitability of Lb. plantarum LMG P-26358 as an anti-listerial adjunct with nisin-producing lactococci, laboratory-scale cheeses were manufactured. Results indicated that combining Lb. plantarum LMG P- 26358 (at 108 colony forming units (cfu)/ml) with a nisin producer is an effective strategy to eliminate the biological indicator strain, L. innocua. Moreover, industrial-scale cheeses also demonstrated that Lb. plantarum LMG P-26358 was much more effective than the nisin producer alone for protection against the indicator. MALDI-TOF mass spectrometry confirmed the presence of plantaricin 423 and nisin in the appropriate cheeses over an 18 week ripening period.
    [Show full text]
  • Supplemental Material S1.Pdf
    Phylogeny of Selenophosphate synthetases (SPS) Supplementary Material S1 ! SelD in prokaryotes! ! ! SelD gene finding in sequenced prokaryotes! We downloaded a total of 8263 prokaryotic genomes from NCBI (see Supplementary Material S7). We scanned them with the program selenoprofiles (Mariotti 2010, http:// big.crg.cat/services/selenoprofiles) using two SPS-family profiles, one prokaryotic (seld) and one mixed eukaryotic-prokaryotic (SPS). Selenoprofiles removes overlapping predictions from different profiles, keeping only the prediction from the profile that seems closer to the candidate sequence. As expected, the great majority of output predictions in prokaryotic genomes were from the seld profile. We will refer to the prokaryotic SPS/SelD !genes as SelD, following the most common nomenclature in literature.! To be able to inspect results by hand, and also to focus on good-quality genomes, we considered a reduced set of species. We took the prok_reference_genomes.txt list from ftp://ftp.ncbi.nlm.nih.gov/genomes/GENOME_REPORTS/, which NCBI claims to be a "small curated subset of really good and scientifically important prokaryotic genomes". We named this the prokaryotic reference set (223 species - see Supplementary Material S8). We manually curated most of the analysis in this set, while we kept automatized the !analysis on the full set.! We detected SelD proteins in 58 genomes (26.0%) in the prokaryotic reference set (figure 1 in main paper), which become 2805 (33.9%) when considering the prokaryotic full set (figure SM1.1). The difference in proportion between the two sets is due largely to the presence of genomes of very close strains in the full set, which we consider redundant.
    [Show full text]
  • Sanitation Assessment of Food Contact Surfaces and Lethality Of
    University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 5-2012 Sanitation Assessment of Food Contact Surfaces and Lethality of Moist Heat and a Disinfectant Against Listeria Strains Inoculated on Deli Slicer Components Sabelo Muzikayise Masuku University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Food Microbiology Commons Recommended Citation Masuku, Sabelo Muzikayise, "Sanitation Assessment of Food Contact Surfaces and Lethality of Moist Heat and a Disinfectant Against Listeria Strains Inoculated on Deli Slicer Components" (2012). Theses and Dissertations. 355. http://scholarworks.uark.edu/etd/355 This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. SANITATION ASSESSMENT OF FOOD CONTACT SURFACES AND LETHALITY OF MOIST HEAT AND A DISINFECTANT AGAINST LISTERIA STRAINS INOCULATED ON DELI SLICER COMPONENTS SANITATION ASSESSMENT OF FOOD CONTACT SURFACES AND LETHALITY OF MOIST HEAT AND A DISINFECTANT AGAINST LISTERIA STRAINS INOCULATED ON DELI SLICER COMPONENTS A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Food Science By Sabelo Muzikayise Masuku Tshwane University of Technology Bachelor of Technology in Environmental Health, 2000 Curtin University Master of Public Health, 2005 May 2012 University of Arkansas ABSTRACT The overall objectives of this study were to: evaluate the efficacy of different cleaning cloth types and cloth-disinfectant combinations in reducing food contact surface contamination to acceptable levels; determine the optimum moist heat and moist heat + sanitizer treatments that can significantly reduce the number of Listeria strains on deli slicer components; and investigate if the moist heat treatment used in this study induced the viable-but-non-culturable (VBNC) state in Listeria cells.
    [Show full text]
  • Reducing Listeria Contamination from Salad Vegetable Farms
    Reducing Listeria contamination from salad vegetable farms Robert Premier Global FS Pty Ltd Project Number: VG07079 VG07079 This report is published by Horticulture Australia Ltd to pass on information concerning horticultural research and development undertaken for the vegetables industry. The research contained in this report was funded by Horticulture Australia Ltd with the financial support of the vegetables industry. All expressions of opinion are not to be regarded as expressing the opinion of Horticulture Australia Ltd or any authority of the Australian Government. The Company and the Australian Government accept no responsibility for any of the opinions or the accuracy of the information contained in this report and readers should rely upon their own enquiries in making decisions concerning their own interests. ISBN 0 7341 2463 5 Published and distributed by: Horticulture Australia Ltd Level 7 179 Elizabeth Street Sydney NSW 2000 Telephone: (02) 8295 2300 Fax: (02) 8295 2399 © Copyright 2010 Reducing Listeria monocytogenes contamination from salad vegetable farms VG07079 Final report for HAL project (July 2010) Robert Premier Global F.S. Pty Ltd Reducing Listeria monocytogenes contamination from salad vegetable farms Final report for HAL project VG07079 By: Robert Premier Project Leader Dr Robert Premier Global F.S. pty ltd Ph: 0418317786 Email: [email protected] Scope of the Report This report presents the key findings and a summary of the work conducted in Victoria and Queensland from September 2008 to June 2010 by the Project team. Funded By: Horticulture Australia Limited and the Australian vegetable industry levy. This publication may be of assistance to you but Global F.S.
    [Show full text]
  • Production of Antibodies for Use in a Biosensor- Based Assay for Listeria Monocytogenes
    Production of antibodies for use in a biosensor- based assay for Listeria monocytogenes A thesis submitted for the degree of Ph.D. By Paul Leonard B.Sc. (Hons), August 2003. Based on research carried out at School of Biotechnology, Dublin City University, D ublin 9, Ireland, Under the supervision of Professor Richard O’Kennedy. This thesis is dedicated to my parents for all their encouragement and support over the last number of years. “I am not discouraged, because every wrong attempt discarded is another step forward” -Thomas Edison. Declaration I hereby certify that this material, which 1 now submit for assessment on the programme of study leading to the award of Doctor of Philosophy, is entirely my own work, and has not been taken from the work of others, save and to the extent that such work is cited and acknowledged within the text. Signed Date: Acknowledgements Sincere thanks to Prof. Richard O'Kennedy for his constant support and guidance over the past few years, in particular for sharing his wealth of experience and knowledge throughout my studies. Thanks to all the lab group, past and present and all my friends at DC’U for their companionship and some unforgettable (and more often than not better forgotten) nights out! Special thanks goes to Steve, a great scientist and friend, for his support, knowledge and overall enthusiasm over the last few years. To Monty, Macker, Ryaner and the rest of the “Finian's lads” for their continual ‘good humoured harassment’ and alcohol-based support! Cheers! I would like to thank all my family for their unequivocal support from start to finish, I owe you so much! Finally, 1 would like to reserve a very special thanks to Nerea, my source of inspiration, for her patience, companionship and constant love and support.
    [Show full text]
  • Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
    Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341
    [Show full text]
  • Suppl Table 2
    Table S2. Large subunit rRNA gene sequences of Bacteria and Eukarya from V5. ["n" indicates information not specified in the NCBI GenBank database.] Accession number Q length Q start Q end e-value %-ident %-sim GI number Domain Phylum Family Genus / Species JQ997197 529 30 519 3E-165 89% 89% 48728139 Bacteria Actinobacteria Frankiaceae uncultured Frankia sp. JQ997198 732 17 128 2E-35 93% 93% 48728167 Bacteria Actinobacteria Frankiaceae uncultured Frankia sp. JQ997196 521 26 506 4E-95 81% 81% 48728178 Bacteria Actinobacteria Frankiaceae uncultured Frankia sp. JQ997274 369 8 54 4E-14 100% 100% 289551862 Bacteria Actinobacteria Mycobacteriaceae Mycobacterium abscessus JQ999637 486 5 321 7E-62 82% 82% 269314044 Bacteria Actinobacteria Mycobacteriaceae Mycobacterium immunoGenum JQ999638 554 17 509 0 92% 92% 44368 Bacteria Actinobacteria Mycobacteriaceae Mycobacterium kansasii JQ999639 552 18 455 0 93% 93% 196174916 Bacteria Actinobacteria Mycobacteriaceae Mycobacterium sHottsii JQ997284 598 5 598 0 90% 90% 2414571 Bacteria Actinobacteria Propionibacteriaceae Propionibacterium freudenreicHii JQ999640 567 14 560 8E-152 85% 85% 6714990 Bacteria Actinobacteria THermomonosporaceae Actinoallomurus spadix JQ997287 501 8 306 4E-119 93% 93% 5901576 Bacteria Actinobacteria THermomonosporaceae THermomonospora cHromoGena JQ999641 332 26 295 8E-115 95% 95% 291045144 Bacteria Actinobacteria Bifidobacteriaceae Bifidobacterium bifidum JQ999642 349 19 255 5E-82 90% 90% 30313593 Bacteria Bacteroidetes Bacteroidaceae Bacteroides caccae JQ997308 588 20 582 0 90%
    [Show full text]
  • Cross-Resistance to Phage Infection in Listeria Monocytogenes Serotype 1/2A Mutants and Preliminary Analysis of Their Wall Teichoic Acids
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 8-2019 Cross-resistance to Phage Infection in Listeria monocytogenes Serotype 1/2a Mutants and Preliminary Analysis of their Wall Teichoic Acids Danielle Marie Trudelle University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Recommended Citation Trudelle, Danielle Marie, "Cross-resistance to Phage Infection in Listeria monocytogenes Serotype 1/2a Mutants and Preliminary Analysis of their Wall Teichoic Acids. " Master's Thesis, University of Tennessee, 2019. https://trace.tennessee.edu/utk_gradthes/5512 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Danielle Marie Trudelle entitled "Cross-resistance to Phage Infection in Listeria monocytogenes Serotype 1/2a Mutants and Preliminary Analysis of their Wall Teichoic Acids." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Food Science. Thomas G. Denes, Major Professor We have read this thesis and recommend its acceptance:
    [Show full text]
  • Identification, Properties, and Application of Enterocins Produced by Enterococcal Isolates from Foods
    IDENTIFICATION, PROPERTIES, AND APPLICATION OF ENTEROCINS PRODUCED BY ENTEROCOCCAL ISOLATES FROM FOODS THESIS Presented in Partial Fulfillment of the Requirement for the Degree Master of Science in the Graduate School of The Ohio State University By Xueying Zhang, B.S. ***** The Ohio State University 2008 Master Committee: Approved by Professor Ahmed E. Yousef, Advisor Professor Hua Wang __________________________ Professor Luis Rodriguez-Saona Advisor Food Science and Nutrition ABSTRACT Bacteriocins produced by lactic acid bacteria have gained great attention because they have potentials for use as natural preservatives to improve food safety and stability. The objectives of the present study were to (1) screen foods and food products for lactic acid bacteria with antimicrobial activity against Gram-positive bacteria, (2) investigate virulence factors and antibiotic resistance among bacteriocin-producing enterooccal isolates, (3) characterize the antimicrobial agents and their structural gene, and (4) explore the feasibility of using these bacteriocins as food preservatives. In search for food-grade bacteriocin-producing bacteria that are active against spoilage and pathogenic microorganisms, various commercial food products were screened and fifty-one promising Gram-positive isolates were studied. Among them, fourteen food isolates with antimicrobial activity against food-borne pathogenic bacteria, Listeria monocytogenes and Bacillus cereus, were chosen for further study. Based on 16S ribosomal RNA gene sequence analysis, fourteen food isolates were identified as Enterococcus faecalis, and these enterococcal isolates were investigated for the presence of virulence factors and antibiotic resistance through genotypic and phenotypic screening. Results indicated that isolates encoded some combination of virulence factors. The esp gene, encoding extracellular surface protein, was not detected in any of the isolates.
    [Show full text]
  • Thesis Listeria Monocytogenes and Other
    THESIS LISTERIA MONOCYTOGENES AND OTHER LISTERIA SPECIES IN SMALL AND VERY SMALL READY-TO-EAT MEAT PROCESSING PLANTS Submitted by Shanna K. Williams Department of Animal Sciences In partial fulfillment of the requirements for the degree of Master of Science Colorado State University Fort Collins, Colorado Fall 2010 Master’s Committee: Department Chair: William Wailes Advisor: Kendra Nightingale John N. Sofos Doreene Hyatt ABSTRACT OF THESIS DETECTION AND MOLECULAR CHARACTERIZATION OF LISTERIA MONOCYTOGENES AND OTHER LISTERIA SPECIES IN THE PROCESSING PLANT ENVIRONMENT Listeria monocytogenes is the causative agent of listeriosis, a severe foodborne disease associated with a high case fatality rate. To prevent product contamination with L. monocytogenes, it is crucial to understand Listeria contamination patterns in the food processing plant environment. The aim of this study was to monitor Listeria contamination patterns for two years in six small or very small ready-to-eat (RTE) meat processing plants using a routine combined cultural and molecular typing program. Each of the six plants enrolled in the study were visited on a bi-monthly basis for a two-year period where samples were collected, microbiologically analyzed for Listeria and isolates from positive samples were characterized by molecular subtyping. Year one of the project focused only on non-food contact environmental samples within each plant, and year two focused again on non-food contact environmental samples as well as food contact surfaces and finished RTE meat product samples from participating plants. Between year one and year two of sampling, we conducted an in-plant training session ii involving all employees at each plant.
    [Show full text]
  • UK Standards for Microbiology Investigations
    UK Standards for Microbiology Investigations Identification of Listeria species, and other Non-Sporing Gram Positive Rods (except Corynebacterium) Issued by the Standards Unit, Microbiology Services, PHE Bacteriology – Identification | ID 3 | Issue no: 3.1 | Issue date: 29.10.14 | Page: 1 of 29 © Crown copyright 2014 Identification of Listeria species, and other Non-Sporing Gram Positive Rods (except Corynebacterium) Acknowledgments UK Standards for Microbiology Investigations (SMIs) are developed under the auspices of Public Health England (PHE) working in partnership with the National Health Service (NHS), Public Health Wales and with the professional organisations whose logos are displayed below and listed on the website https://www.gov.uk/uk- standards-for-microbiology-investigations-smi-quality-and-consistency-in-clinical- laboratories. SMIs are developed, reviewed and revised by various working groups which are overseen by a steering committee (see https://www.gov.uk/government/groups/standards-for-microbiology-investigations- steering-committee). The contributions of many individuals in clinical, specialist and reference laboratories who have provided information and comments during the development of this document are acknowledged. We are grateful to the Medical Editors for editing the medical content. For further information please contact us at: Standards Unit Microbiology Services Public Health England 61 Colindale Avenue London NW9 5EQ E-mail: [email protected] Website: https://www.gov.uk/uk-standards-for-microbiology-investigations-smi-quality-
    [Show full text]